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Nonequilibrium Energy Transfer at 
Nanoscale: A Unified Theory from 
Weak to Strong Coupling
Chen Wang1,2,3, Jie Ren1,4 & Jianshu Cao1,2

Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides 
crucial insights to the optimal design and potential applications of low-dimensional nanodevices. 
Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a 
fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the 
strong system-bath coupling regime. The exact expression of energy flux is analytically established, 
which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis 
provides a unified interpretation of several observations, including coherence-enhanced heat flux 
and negative differential thermal conductance. The results will have broad implications for the fine 
control of energy transfer in nano-structural devices.

Energy dissipation has become a severe bottleneck to the sustainability of any modern economy1. To 
address this issue, efficient energy transfer and the corresponding smart control and detection at nano-
scale have created unprecedented opportunities and challenges2–5. Therefore, understanding and con-
trolling energy transfer in low-dimensional systems is of significant importance not only in fundamental 
researches but also in practical applications6–9. For typical energy transport far from equilibrium, two 
baths should be included with thermodynamic bias (e.g. temperature bias), as shown in Fig. 1. The pro-
totype paradigm is termed as the nonequilibrium spin boson model, given by
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where the two-level system (TLS) is represented by Pauli matrices σ = −ˆ 1 1 0 0z  and 
σ = +ˆ 1 0 0 1x , with ε0 the energy spacing and Δ  the tunneling strength between the TLS. 
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with energy ωk,v and momentum k in the vth bath. The last term describes the spin-boson interaction 
with λk,v the coupling strength. In the long time limit, the system reaches the nonequilibrium steady state 
(with stable energy flow).

For NESB, the TLS can manifest itself as impurity magnets, anharmonic molecules, excitons, cold 
atoms, low-energy band structures, etc. Bosonic baths can register as electromagnetic environments, lattice 
vibrations, Luttinger liquid, magnons, etc. Hence, the NESB has already found widespread applications in 
fertile frontiers. Particularly, In phononics5, NESB describes the phononic energy transfer in anharmonic 
molecular junctions10–17, and can be regarded as a special realization of the famous Caldeira-Leggett 
model18. In many-body physics, NESB describes the novel Kondo physics and nonequilibrium phase 
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transitions19,20. In spin caloritronics, NESB describes the nontrivial spin Seebeck effects that pave the 
way for thermal-driven spin diode and transistor21. In quantum biology, NESB models the exciton trans-
fer embedded in the photosynthetic complexes7,9,22–24. Also, NESB describes electromagnetic transport 
through superconducting circuits25 and photonic waveguides with a local impurity26. Moreover, this 
generic model can be extended to one dimensional spin chains at ultra-low temperatures27.

Theoretically, many approaches have been proposed to explore energy transfer in NESB, but each 
approach works with limitations. Typically, in the weak spin-boson coupling regime, the Redfield equa-
tion applies and gives the resonant energy transfer and additive contributions of separate baths12,16. 
While in the strong spin-boson coupling regime, the nonequilibrium version of the noninteracting-blip 
approximation (NIBA) equation applies and provides the off-resonant steady energy transfer and 
non-additive picture14,28,29, which is usually based on the Born approximation in the polaron framework. 
Note the traditional NIBA of a single bath spin-boson model is consistent with the Redfield scheme 
in the weak-coupling regime30. This is distinct from the nonequilibrium NIBA, which only applies 
in the strong-coupling limit29. Moreover, for the negative differential thermal conductance (NDTC), 
the nonequilibrium NIBA scheme claims its appearance in the strong coupling for NESB, whereas the 
Redfield scheme predicts its absence in the weak coupling14. Similar limitations between these two 
schemes also occur in the high order flux-fluctuations as well as in the geometric-phase-induced energy 
transfer29. Although some numerical simulations, e.g. path-integral monte carlo and multi-configuration 
time-dependent Hartree (MCTDH) method20,31, have recently been carried out, which attempt to exactly 
calculate the energy transfer in NESB, they all have their practical limitations or require expensive com-
putations. Moreover, numerical approaches may not provide clear physical insights to the underlying 
energy transfer mechanism.

To solve the long-standing challenge and answer these important questions, we present a nonequilib-
rium polaron-transformed Redfield equation (NE-PTRE), which is based on the fluctuation-decoupling 
method perturbing the spin-boson interaction in the polaron framework. This approach is capable of 
bridging the energy transfer pictures of NESB from weak to strong coupling regimes. Then, the energy 
transfer in NESB is clearly unraveled as multi-boson processes, which are classified by the odd-even 
parity, with the sequential- and co-tunneling behaviors as two lowest order contributions. To exemplify 
the power of our unified theory, we derive the analytical expression of energy flux that dissects the trans-
fer processes systematically, and show that this unified flux expression reduces to the NIBA at strong 
coupling limit and to the Redfield one at the weak coupling limit, respectively. Moreover, we investigate 
NDTC and identify its absence over wide range of the temperature bias, even in the intermediate and 
strong coupling regimes, which corrects the previous observation of NDTC under the NIBA in the 
classical limit14.

Results
Fluctuation-decoupling based quantum master equation.  Based on the canonical transforma-
tion = σ /ˆ ˆ ˆU e: i B 2z  to the NESB Hamiltonian at Eq. (1), a new transformed Hamiltonian is obtained as 
= = ′ + + ′ˆ ˆ ˆ ˆ ˆ ˆ ˆ†

H U H U H H V: S B SB0 , with the new system Hamiltonian
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renormalization factor η = B̂: cos  is specified as

Figure 1.  Schematic illustration of the nonequilibrium spin-boson model composed by central two-level 
nanodevice connecting to two separate bosonic baths with temperature TL and TR respectively. 
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where ω π λ δ ω ω( ) = ∑ ( − ),J : 4v k k v k
2  is the 1th bath spectrum and nv(ω): =  1/[exp(βvωv) −  1] denotes 

the corresponding Bose-Einstein distribution with βv =  1/kbTv the inverse temperature. Clearly, the 
renormalization factor η vanishes to 0 for the strong system-bath coupling strength but approaches to 1 
at the weak coupling limit.

Traditionally, many methods, including the NIBA28,29, directly treat the interaction 
( )σ σ= +∆ˆ ˆ ˆ ˆ ˆV B Bcos sinSB x y2

 as a perturbation. However, we note that generally V̂ SB can not behave 
as a perturbation due to the non-negligible expectation η σ= ∆ /ˆ ˆV 2SB x , expect for weak inter-site 
tunneling (Δ  →  0) or strong system-bath coupling (η →  0). Nevertheless, the fluctuation around the 
expectation value ′ = −ˆ ˆ ˆV V V:SB SB SB  may be safely treated by the second order perturbation, regard-
less of the tunneling and coupling strength. Therefore, by means of this fluctuation-decoupling scheme, 
the new system-bath interaction may be reliably perturbed regardless of the coupling strength. It should 
be acknowledged that similar schemes with the spirit of “fluctuation decoupling” were also carried out 
in other excellent works32–37. The contribution from second order terms of ′V̂ SB is found to be small 
compared to ′Ĥ S. Moreover, from the quantum dynamics, the second order perturbation of ′V̂ SB was 
excellently applicable to capture dynamical behaviors, particularly in the long time limit32,33. We would 
also like to point out that although the polaron transformation is adopted conventionally as well as in 
our present study, the fluctuation-decoupling scheme is not limited to this transformation but refers to 
general scheme that subtracts the expectation of the system-bath coupling from itself and compensates 
the expectation back to the system’s Hamiltonian so that the new system-bath interaction may be reliably 
perturbed.

In energy transfer studies, the spectrum can be usually considered as ω πα ω ω( ) = ω ω
,
− − / ,J ev v

s
c v

s1 c v 
with αv λ( ),~ k v

2  the coupling strength and ωc,v he cutoff frequency. Without loss of generality, we choose 
the typical super-Ohmic spectrum s =  3 for consideration in this paper2. Then, the renormalization fac-

tor at Eq. (4) is specified as ( )η ψ=
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, where the special function 

ψ ( ) = ∑ =
∞

( + )
x n n x1 0

1
2  is the trigamma function. It should be noted that if we select the bosonic baths as 

the Ohmic case s =  1, the renormalization factor expressed at Eq. (4) will always approach to zero regard-
less of the system-bath coupling strength, and the expectation of the system-bath interaction at Eq. (3) 
′ =V̂ 0SB . As such, the NE-PTRE based on the fluctuation-decoupling scheme, will be equivalent to the 

nonequilibrium NIBA28,29.
Fluctuation-decoupling is the key step, based on which we are able to apply various perturbative 

methods to proceed. Here, we adopt the nonequilibrium polaron-transformed Redfield equation and 
obtain (see the Method):
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where ρ̂S is the reduced density matrix for the TLS in the polaron framework, ε ηΛ = + ∆0
2 2 2  is the 

energy gap of the renormalized TLS in its eigenspace, and ω( )( )P̂e o  is the measuring projector in the 
eigen-basis obtained from the evolution of spin matrices σ τ ω(− ) = ∑ ( )ω

ωτ
( ) = ,±Λ ( )ˆ P̂ ex y e o

i
0 . The sub-

script e(o) denotes the even (odd) parity of transfer dynamics. Γ l(ω) with l =  e, o has the meaning of 
transition rate that we will discuss later in detail.

Parity classified transfer processes.  As the crucial observation, the transition rates are expressed 
as ∫ω τ γ τΓ ( ) = ( ) ( )η ωτ
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0
 (see the Method), where the correlation functions are specified by
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The boson propagator τ τ( ) = ∑ ( )= ,Q Qv L R v  with ∫τ ω( ) =
ω
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i  describes the bosonic absorptions and emissions that constitute the 
energy transfer. Clearly, the multi-boson processes are classified by the odd and even propagators, with 
each order fully captured by the corresponding Taylor expansion systematically.
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Specifically, γo(τ) describes the processes involving odd boson numbers. The lowest order contribu-
tion is the sequential-tunneling [see Fig.  2(a)], expressed by ω ω ωΓ ( ) = ( ( ) + ( ))η( ) ( ∆) Q Qo L R

1
8

2
12,14,16, 

with ∫ω τ τ( ) = ( )ωτ
−∞

∞Q d e Qv
i

v  and ω ε η= ± + ∆40
2 2 2 . This means that the relaxation and excita-

tion of the TLS is influenced by the L and R baths separately, i.e., additively. Further, the higher order, 
called as “tri-tunneling” [Fig.  2(b)], is exhibited as ( )ωΓ ( ) = η

π
( ) ∆
o
2

4

2
 

∫ ∫ ω ω ω ω ω ω ω∑ ( ) ( ) ( − − )d d Q Q Qv v v v1 2 1 2 1 2 , with = ( )v L R  for v =  R(L), where the baths act 
non-additively and off-resonantly. This highly non-trivial term explicitly demonstrates the collective 
transfer process with different contributions from two baths.

Correspondingly, γe(τ) describes processes of even boson number participating in the energy transfer 
processes. The lowest order includes the co-tunneling effect38 [see Fig. 2(c)]. It contributes to the transi-
tion rate as ∫ ω ω ωΓ ( ) = ( ) (− )η

π
( ) ( ∆) ∞ d Q Q0e L R
1

8 0 1 1 1
2

. This implies that when the left bath releases energy 
ω1, the right bath absorbs the same quanta simultaneously, leaving the TLS unchanged. Clearly, two baths 
are involved non-additively. The corresponding higher order term can also be obtained systematically 
[see Fig.  2(d)]. As a result, we can dissect the contribution of each order of boson excitations to the 
energy transfer based on the expansions, and the underlying multi-boson transfer mechanism can be 
systematically exploited.

Unified energy flux from weak to strong couplings.  To exploit the dynamical processes corre-
sponding to the correlation functions in Eq. (6), we introduce the rate ∫φ ω τ γ τ( ) = ( )ωτ

( ) −∞

∞
( )d ee o

i
e o  in 

the frequency domain. As such, when rewriting ∫φ ω ω ω ω( ) = ′ ( , ′)
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, we are able to 
extract the corresponding kernel functions
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where ∫ω τ( ′) = ω τ τ±
−∞

∞ ′ ± ( )C d ev
i Qv  describes the rate density of the vth bath absorbing (emitting) energy 

ω (− ω), obeying the detailed balance relation as ω ω( ′)/ (− ′) = β ω± ± ′C C ev v
v .

These kernel functions provide the other way of understanding the odd-even parity assisted energy 
tunneling processes that incorporate two baths non-additively. Physically, Ce(o)(ω, ω′ ) describes that when 
the TLS releases energy  ω by relaxing from the excited state to the ground one, the right bath absorbs 
energy ω′  and the left one obtains the left ω −  ω′  if ω > ω′  or supply the compensation if ω < ω′ . And 
Ce(o)(− ω, ω′ ) describes similar dynamical processes for the TLS jumping from the ground state to the 
exciting one. While φe(o)(ω) is the summation behavior of these corresponding microscopic processes.

In many energy transfer studies, the resonant case (ε =  0) is of prime interest. The steady state popu-
lations can be obtained in the local basis as P11 =  P00 =  1/2, and the coherence is

Figure 2.  Representative processes in multi-boson assisted energy transfer: (a) single boson involved 
sequential process; (b) three-boson involved “tri-tunneling” process; (c) two-boson “cotunneling” process; 
(d) four-boson involved collective process.
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with the energy gap  Λ  =  ηΔ  and ρ ∞= ( )ˆP i jij . Combined with the the counting field16,29,39, we 
obtain the energy flux as
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It is interesting to find that in the odd parity subspace, as the TLS relaxes energy Λ , the baths show 
collective contribution Co(− Λ , ω) to the flux with the weight φ φ σ(Λ)/∑ ( Λ)σ=±o o . Similarly, when the 
TLS is excited by an energy Λ , Co(Λ , ω) is contributed to the flux with the corresponding subspace 
weight as φ φ σ(−Λ)/∑ ( Λ)σ=±o o . While for the even parity subspace, the TLS energy is unchanged, with 
the contribution Ce(0, ω) to the flux. This unified energy flux expression clearly uncovers that two 
parity-classified sub-processes both contribute to the energy transfer, whereas the Redfield approach 
merely includes the lowest odd order and the NIBA only considers the even order. More details are 
analytically discussed in the following:

In the weak coupling limit, one only needs to keep the leading order of the correlation function as O(αv) 
so that the renormalization factor is simplified to η ≈  1 and Λ  =  Δ . Hence, the kernel function with even 
parity Ce (0, ω) =  0 and the odd one becomes ω(±∆, )Co  π δ ω δ ω= (±∆ − ) (±∆) + ( ) (±∆)Q Q2 [ ]R L . 
The unified energy flux reduces to the resonant energy transfer

=
∆ (∆) (∆)( − )

(∆)( + ) + (∆)( + )
,
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

J J n n
J n J n2 1 2 1 2 11w

L R L R

L L R R

with nv =  nv(Δ ), which is consistent with previous results of Redfield approach12,16. While in the strong 
coupling limit, multiple bosons are excited from baths, and both the renormalization factor η and the 
eigen-energy gap of the TLS Λ  become zero. Hence, two subspace kernel functions at Eq. (7) show equal 
weight. The energy flux can be finally expressed as

∫π
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with the probability density of the vth bath
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which correctly recovers the nonequilibrium NIBA result14,28. It should be noted that in the strong inter-
action regime, η →  0, and we have η →− ( )e 0Q t2  that is independent of time t. However, η2eQ(t) keeps 
finite positive. This directly results in the vanishing transition rate Γ 0(0) =  0 and a finite transition rate 

∫ ω ωΓ ( ) = (− ) ( )
π

(∆ / )

−∞

∞ C C0e L R
2

2

2
, which means that only even number of phonon scattering pro-

cesses contributed to the energy transfer. This clearly shows that nonequilibrium NIBA method contains 
the even parity of the energy transfer process but misses the odd order.

Next, we plot the energy flux of Eq. (10) in Fig. 3, which first shows linear increase with the system-bath 
coupling at weak regime, consistent with the Redfield. After reaching a maximum, the energy flux 
decreases monotonically in the strong coupling regime, of which the profile coincide with the NIBA. The 
discrepancy of the NIBA and our NE-PTRE is due to the improper ignorance of quantum coherence σx  
of the TLS in NIBA (see also Eq. (2), in which the term containing σx is absent in the NIBA method). 
This coherence term describes the effective tunneling within TLS so that it enhances the energy transfer 
compared to the NIBA that ignores it.

Therefore, we conclude that the unified energy flux expression of Eq. (10) provides a comprehensive 
interpretation for energy transfer in NESB, because the fluctuation-decoupling scheme not only describes 
the coherent system-bath coupling from weak to strong regimes, but also correctly captures the coher-
ence within the TLS.

Absence of negative differential thermal conductance.  NDTC, a typical feature in energy trans-
port, has been extensively studied in phononic devices5. In particular, NDTC has also been exploited in 
molecular junctions, represented by the NESB. By adopting nonequilibrium NIBA in the Marcus limit, 
i.e. high temperature baths, it was reported that NDTC is absent in the weak coupling but emerges in 
the strong coupling regime14. However, what happens at the intermediate coupling regime is unclear. 
Moreover, it is questionable that whether NDTC is still presented in the comparatively low temperature 
regime.
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Marcus theory was originally proposed to study semi-classical electron transfer rates in the 
donor-acceptor species2,40. In previous works of energy transport17,28,29, the system dynamics with the 
Marcus limit is described by the rate equation based on the nonequilibrium NIBA, i.e. Eq. (3) in Ref. 29. 
In the high temperature limit, it is known that nv(ω) ≈  1/(βvω) and the low frequency domain of bosonic 
baths dominates the evolution, which corresponds to the short-time expansion 1 −  cosωτ ≈  ω2τ2/2 and 
sinωτ ≈  ωτ12,14,29. Thus the Gaussian decay of the the probability density is given by 
( ) = 


−





πβ β ω

Γ

( − Γ )
Γ

C t expv 4
v

v

v v

v

2
, which is as the same as derived from Eq. (13) even under biased con-

dition. The renormalized coupling strength is ∫ ω λ ωΓ = = ∑ /
ω
πω

∞ ( )
,d 4v

J
K k v k0

2v . Hence, the energy 
flux can be obtained accordingly with the help of counting field29. However, this limiting picture may be 
modified if the temperatures of bosonic baths become low, when the quantum effect will be included to 
make the probability density non-Gaussian.

Therefore, we re-examine the NDTC by the NE-PTRE in Fig.  4(a–c). In the intermediate coupling 
regime (α =  1), the energy flux increases monotonically by enlarging the temperature bias (Δ T =  TL −  TR), 
both for the NE-PTRE and the NIBA of the classical (Marcus) limit. As the coupling is strengthened 
further into the strong coupling regime (i.e. α =  3 and α =  5), NDTC was found to be apparent upon 
the Marcus limit14. However, no turnover signal is found based on the NE-PTRE. In the strong coupling 
limit, η →  0 so that our method reduces to the NIBA, thus the discrepancy comes from the Marcus 
approximation. It should be noted that from Fig.  4(b,c), the qualitative deviation occurs at the large 
temperature bias. This means that the temperature of the right bath is rather low, and quantum effect as 
such low temperatures may change behaviors of the correlation functions. To further clarify the absence 
of NDTC at the deep strong coupling regime, the birdeye view contours of energy flux are compared 
with and without Marcus limit [see Fig. 4(d,e)]. It is shown that the turnover behavior appears within 
the Marcus framework, by tuning either TL or TR (see Fig. 4(d)), whereas it never emerges with rigorous 
calculations [see Fig. 4(e)]. In fact, this result clearly demonstrates that the NDTC in the Marcus limit 
occurs at large temperature bias Δ T =  TL −  TR with either TR or TL at very low temperature, where the 
high temperature precondition of the Marcus framework may break down. Thus the NDTC observed in 
the NIBA scheme with Marcus assumption is merely an artifact.

Hence, we conclude that by tuning one bath temperature, NDTC is absent across a wide range of the 
temperature bias in the NESB model even in the strong system-bath coupling limit. Finally, we would 
like to note if we allow to change two temperatures simultaneously, NDTC can still occur in NESB. Also, 
NDTC is not exclusive to the strong coupling limit generally, but can even exist in the weak coupling 
regime if the system is hybridized with fermion-spin-boson couplings21,41.

Discussion
Steady state energy transfer in nonequilibrium spin boson systems has been studied both theoretically 
and numerically by various approaches (e.g. Redfield, noneuqilibrium NIBA, MCTDH). However, until 
the present work there is no existing analytically unified theory to explicitly unravel the underlying 
physics, especially for the expression of energy flux, which may be directly measured by practical exper-
iments. In particular, the novel role of parity to the detailed transfer process has not been exposed before.

Figure 3.  The energy flux and quantum coherence represented by 〈σx〉, as functions of the coupling 
strength. The solid black line is from the NE-PTRE, which unifies the Redfield result at the weak coupling 
(the red dashed line) and the NIBA result at the strong coupling (the dot-dashed blue line). The deviation of 
the unified energy flux from the NIBA result at small α is characterized by the quantum coherence σx  
(inset). Parameters are given by ε0 =  0,  Δ  =  5.22 meV, ωc =  26.1 meV, TL =  150 K and TR =  90 K.
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Hence, we apply the nonequilibrium polaron-transformed Redfield equation based on fluctuation decou-
pling to exploit the unified energy transfer theory. It should be noted that polaron-transformation-based 
quantum master equation has been previously proposed by R. J. Silbey et al.34,35 in the equilibrium 
spin-boson model with only a single bath under the Born-Markov approximation. Then, it was extended 
to study the non-Markovian dynamics32 and include the correlated bath effect36. Recently, it was con-
firmed both from the equilibrium statistics and quantum dynamics that the Markovian master equa-
tion combined with the polaron transformation can be accurately utilized in the fast bath regime33,37. 
However, the nonequilibrium energy transfer with thermodynamic bias has never been touched within 
polaron framework, mainly lack of flux counting tool (e.g. full counting statistics). In this paper we focus 
on the nonequilibrium transport in fast bath regime. The Markovian master equation is believed to be 
applicable, and will be proved in future numerical exact work.

In conclusion, we have unified the energy transfer mechanisms in the nonequilibrium spin-boson 
model from weak to strong coupling regimes. Specifically, we have characterized energy transfer as 
multi-boson processes that are classified by the odd-even parity. We have analytically obtained the energy 
flux expression in Eq. (10), which explicitly unifies the analytic results from the weak-coupling Redfield 
scheme and the strong-coupling NIBA scheme. Moreover, enhancement of the energy flux at the inter-
mediate coupling regime has been identified, which results from the persistence of coherent tunneling 

Figure 4.  Energy flux in the intermediate and strong system-bath coupling regimes by tuning the right 
bath temperature in (a–c), and the birdeye view of the energy flux by varying the two bath temperatures in 
(d–e). The parameters are given by Δ  =  10 meV,  ε0 =  10 meV, ωc =  26.1 meV, TL =  300 K and TR =  TL −  Δ T.
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within the TLS but is unexpectedly ignored in the nonequilibrium NIBA. Other relevant controversial 
problems of energy transfer in NESB have also been systematically resolved. We believe our results pro-
vide a comprehensive interpretation of previous works and can have broad implications for smart control 
of energy and information in low-dimensional nanodevices.

Methods
Nonequilibrium polaron-transformed Redfield equation.  The model of a TLS interacting with 
two separate baths after polaron transformation is described by

∑= ′ + + ′ ,
( )

ˆ ˆ ˆ ˆH H H V
14S

v
B
v

SB

where ′Ĥ S denotes the system Hamiltonian at Eq. (2), Ĥ B
v
 models the v bath, and ′V̂ SB is the interaction 

between the system and the bosonic baths, as shown at Eq. (3). Assuming the strength of the system-bath 
coupling is weak compared to the intrinsic energy scale of the system, people usually apply Born-Markov 
approximation to derive the second-order master equation2

∫
ρ

ρ τ τ ρ ρ
∂ ( )
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
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t

t i
H t d Tr V V t1 [ ]

15
S
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where ρ̂S is the reduced system’s density operator,ρ = /β−∑ˆ ˆe ZB
Hv v B

v

 is the canonical distribution of the 
baths, and ⋅Tr { }B  traces off the degree of freedom of baths. As the bias is applied on two baths, the 
quantum system is driven from the equilibrium state to the nonequilibrium steady state, which sponta-
neously generates the energy or particle flux.

By tracing the degrees of freedom of bosonic baths, the nonequilibrium polaron-transformed Redfield 
equation at Eq. (5) can be fully recovered. Pl(ω) is the eigen-state projector from the evolution of the 
Pauli operators as σ τ ω(− ) = ∑ ( )ω

ωτ
( ) = ,±Λ ( )P̂ ex y e o

i
0  with the energy gap ε ηΛ = + ∆0

2 2 2 , the 
eigen-states + = +θ θcos 1 Sin 02 2

, − = − +θ θsin cos 02 2
 and θ η ε= ∆/tan 0 In the 

even parity, they are specified as θτ( ) =ˆ ˆP 0 sine z, θτ(Λ) = −
ˆ ˆP cose , and θτ(−Λ) = +

ˆ ˆP cose , with 
τ = + + − − −ˆ z  and τ = ±± 

ˆ . Similarly in the odd parity, they become ( ) =P̂ 0 0o , 
τ(Λ) = −

ˆ ˆP io  and τ(−Λ) = − +
ˆ ˆP io .

Considering the expression of ′V̂ SB at Eq. (3) and the structures of system-bath interaction terms (for 
example, one of the four is ∫ τ τ ρ ρ′ ′ (− ) ⊗

∞ ˆ ˆ ˆ ˆd Tr V V{ }B SB SB S B0
), we can calculate out the transition rates 

Γ o,e mediated by the TLS and readily obtain the correlation function

γ τ η τ η τ
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The transition rates are expressed by the Fourier transform of the correlation functions: 

( ) ∫ω τ γ τΓ ( ) = ( )η ωτ
,

∆ ∞
,d eo e

i
o e2

2

0
, where the bath collective momentum operator is 

( )= ∑ −
λ

ω

λ

ω, = , , ,
,

,

,

,

ˆ ˆ ˆ† ⁎

B i b b2 k v L R k v k v
k v

k v

k v

k v
 and the boson propagator is 

∫τ ω ω ω( ) = ∑ ( ) + ( + ( ))
ω
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v

i
v

i
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Definition of the steady state energy flux.  In the Liouville space, the quantum master equation 
combined with the full counting statistics can be expressed as (see, e.g.,39,42–44)

ρ ρ( ) = − ( ) , ( )χ χ χ̂
d
dt

t t 17

with ρ ρ ρ ρ ρ( ) = 


( ) , ( ) , ( ) , ( ) 
χ χ χ χ χˆ ˆ ˆ ˆt t t t t1 1 0 0 1 0 0 1
T

 in the vector form, and χ̂  the 
super-operator. The generating function is obtained by

ρ ρ( ) = ( ) = 




( ) ,

( )χ χ
τ− χˆ ˆ ˆ

Z L{ }t Tr t T e1 0
18

where = , , ,1 [1 1 0 0], T̂  is the time-ordering operator and ρ ( )0  is the vector of density matrix of 
the initial system. Energy transfer behaviors in the long time limit are of our prime interest in the pres-
ent paper. They are controlled by the ground state of ( )χ̂ t , with the ground state energy as E0(χ) having 
the smallest real part. Hence, the generating function is simplified to χ= − ( )χ E texp[ ]0 . Then the 
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steady state cumulant generating function can be derived by χ= ( )/ = − ( )χ χ→∞G Z t t Elim lnt 0 , 
which finally generates the steady energy flux as = χ

χ
χ

∂ ( )

∂( )
=

 E
i

0

0

Alternatively, based on the Eq. (17) the steady state solution can be expressed as χΨ = ( ) Ψχ χ χ̂ E0 , 
with Ψχ  the corresponding right ground state. Taking the derivative of iχ at two sides results in

χ χ
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When χ =  0, it is known that E0 =  0, =̂1 0 and Ψ =1 1, where Ψ  is equal to the vector of the 
density matrix at steady state. As a result, 

| = | | |Ψ
χ
χ χ χ χ
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0  and the energy flux is 

re-expressed as
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