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Periodic almost-Schrödinger 
equation for quasicrystals
Igor V. Blinov

A new method for finding electronic structure and wavefunctions of electrons in quasiperiodic 
potential is introduced. To obtain results it uses slightly modified Schrödinger equation in spaces of 
dimensionality higher than physical space. It enables to get exact results for quasicrystals without 
expensive non-exact calculations.

Quasicrystals after Dan Shechtman’s1 discovery became that missing link between periodic crystals and 
amorphous solids. The new state of matter was in focus of particular interest because of the interesting 
electronic2, magnetic3, and elastic properties. Just as periodic crystals, quasicrystals have discrete dif-
fraction pattern1, though it combined with the lack of periodicity1,4, which allows quasicrystals to have 
forbidden for periodic crystals symmetries.

An obvious idea for describing quasiperiodic crystals is to use so called crystalline approximants - 
periodic structure with a very large unit cell which emulates a quasiperiodic structure.

Another idea was developed in work of KKL5 where they used normalization method for a 
one-dimensional crystal and obtained first exact result for quasiperiodic structures. Unfortunately, there 
are no exact results for higher dimensional quasicrystals.

Another obvious idea for solving the electronic structure of quasicrystals is to use quasiperiodic func-
tions. Or, more precisely, their periodic images embedded in higher-dimensional spaces.

This idea follows from the fact that qusiperiodic functions satisfy the desired properties: they are 
non-periodic and their diffraction pattern is discrete6,7.

This approach has a number of advantages:

1. both numerical and analytical calculations are almost as easy as for periodic structures.
2. errors of numerical calculations are related only to machine precision.

There were several successful attempts to use this method for different purposes (for exam-
ple8–10, and more recent11). While other methods using slicing procedure applicable only to 
one-dimensional quasicrystals or to specific potentials, this article suggests completely general 
method for any physical space (1,2 or 3-dimensional) and any smooth potential. Proof of the 
method is also presented.

In this work I have tried to suggest completely multidimensional description for electrons in quasipe-
riodic potentional. This work hopefully will put a foundation for stable quasicrystals structure prediction.

Quasiperiodic functions
Firstly, let me introduce a mathematical apparatus used in this work. Continuous quasiperiodic functions 
might be presented in Fourier series:

∑( ) = ( )κ
Λκf x A e 1i x

where Λκ, called Fourier indexes are real. Unlike periodic functions, where these numbers are integers, 
in almost periodic functions they might be even dense. And
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(see Ref. 6 or 7).
It is widely known, that these functions are images of periodic functions on the space of higher 

dimension. For example, we may take simple quasiperiodic 1-dimensional function with two quasipe-
riods (Fig. 1)

( ) = ( ) + ( ) ( )f x sin x cos x2 3

and, with transformation =y x2  perform it as periodic in 2-dimensional space (Fig. 2).

Physical Intuition
As it was said, we can embed a quasiperiodic one-dimensional function with two incommensu-
rate periods in a two-dimensional space with transformation y =  τx, where τ is a ratio of qua-
siperiods. Geometrical sense of τ is a tangent of the angle between x-axis and slicing line 
(Fig. 2). So, our transformation (x ×  y) →  x looks like moving along the line y =  τx and “meas-
uring” value of our function. If we will try to imagine, how it looks in a unit cell, this should 
be moving along family of lines y =  τx + η. The exact position on fixed line will be given by 
ξ = +

τ
x y .

The same “measuring” of a value of potential is what actually electron do. Embedded in a unit cell 
[− a, a] ×  [− b, b], its movement may look like going from (0, 0) along the line y =  τx, then, on the top 
border y =  b (if τ > b

a
), it will jump to the bottom border without changing x. After that, it will start 

going by another line and so on (see Fig. 2).
So, it might be reasonable to look for an equation connecting a two-dimensional image 

of one-dimensional wave function and periodic image of our quasiperiodic potential, in a 
form of

ξ
ψ ξ η ξ η ψ ξ η

∂

∂
( , ) + ⋅ ( − ( , )) ( , ) = ,

( )
C E V 0

4

2

2

where E is the energy, C is some unknown constant, ξ and η are equal to +
τ

x y  and −
τ

x y  respectively.

Mathematical proof
Quasiperiodic and periodic functions both might be expanded in Fourier series. Using this fact, we 
will prove an equivalence between (4) and one-dimensional Schrödinger equation with quasiperiodic 
potential.

Figure 1. Quasiperiodic function ( ) = ( ) + ( )f x x x2sin cos .
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In one-dimensional space. Acting like in Bloch theorem, substitute ψ ( ) = ( ) ⋅x u x eiKx, where u(x) 
is quasiperiodic with quasiperiods the same as potential has, then from ordinary Schrödinger equation 
we may obtain an equation for u(x):

∂

∂
( ) +

∂
∂
( ) + ( − − ) ( ) =

( )x
u x i K

x
u x E V K u x2 0 5

2

2
2

Now expand V(x)

∑( ) = ( )τ( + )V x b e 6lm
i l m x

and u(x) as quasiperiodic functions. Using previously defined scalar product (2), we finally get:

∑α τβ− ( + + ) − = ,

( )

αβ
α
β

+ =
+ =

a K E a b[ ]

7
l m
n k

lm nk
2

where coefficients alm and bnk refer to u(x) and V(x) respectively.

In two dimensions. As previously, we firstly make a substitution

ψ ξ η= ( , ) ⋅ = ( , ) ⋅ ⋅ . ( )ξ η τ+ −
u x y e u e e 8iKx iNy i P i K N

2 2

where P =  K +  τN and u(x, y) is periodic. Substituting this to (4), we obtain

ξ
ξ η

ξ
ξ η ξ η

∂

∂
( , ) +

∂
∂
( , ) +





 ( − ) −





 ( , ) = ( )

u iP u C E V P u
4

0
9

2

2

2

Then, making orthogonalization procedure with standard scalar product in L2,

∑τ− ( + + ) − ⋅ ⋅ = ⋅

( )

αβ
α
β

+ =
+ =

a l m P C E C a b[ 4 ] 4

10
l m
n k

lm nk
2

Comparing with (7) we may conclude that C must be equal to 1
4
 and, finally, our equation takes the 

form

Figure 2. Periodic image of ( ) = ( ) + ( )f x x x2sin cos . Moving along these and latter arrows 
(1 →  2 →  3 →  4 → …) quasiperiodic function might be generated. Tangent of α is equal to 2  in particular 
or τ in general case.
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and is totally equivalent to the Schrödinger equation in one-dimensional space and quasiperiodic poten-
tial.

Generalization
Using Fourier series, it is easy to generalize our equation to quasicrystals with higher dimensionality and 
arbitrary symmetries.

Firstly, let us expand our three dimensional function into series

∑ψ = ⋅ ,
( ),…,

…
( ⋅ ) ⋅( , , ) + +

−

ˆa e e
12k k

k k k k
i S H x y z iKx iNy iLz

n
n n

T T

1
1 2 1

where, indexes ki are integers corresponding to n-dimensional reciprocal vector H and Ŝ is the transfor-
mation matrix performing the slicing operation12

τ τ τ
τ τ τ
τ τ τ

=






…
…
…






Ŝ

0 0
0 0
0 0

n

n

n

11 14 1

22 24 2

33 34 3

Each line in Ŝ represents basis vector for slicing space. In other words, matrix Ŝ it is a set of vectors 
defining slicing subspace. So, the most general form of kinetic part is exactly:

∑ τ τ τ τ τ τ=
∂
∂ ∂

⋅ ( + + )
( ),

H
x x 13

kin
i j i j

i j i j i j

2

1 1 2 2 3 3

where xi are the coordinates in high-dimensional space. This equation, suitable for any quasiperiodic 
potentials is the main result of this work (Sketch of the proof one can find in Appendix).

It is easy to show that latter equation is equivalent to previously introduced one-dimensional equation 
with two quasiperiods. In that particular case slicing space is a line (Fig. 2) given by vector

τ= ( )Ŝ 1

Kinetic part of the hamiltonian will look like

τ τ=
∂

∂
+

∂
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+
∂

∂ ( )
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x x x x
2
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2

By substitution ξ = +
τ

x x
1

2  and η = −
τ

x x
1

2  we will come to (11).
Equation can be also applied to objects periodical in one or several dimensions. We just need to zero 

out corresponding elements in Ŝ. As an example, we may do it for an object that has 12-fold symmetry 
in x-y and periodic along z-axis. In this specific case12, we will have Ŝ equal to

π π

π π













1 0 0 cos
6
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3
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6
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3

0 0 1 0 0

Starting from here one may find the kinetic part of our Hamiltonian
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Real systems
Imagine we have a solid with two types of atoms with potentials f(x) and g(x) located in quasiperiodic 
order defined by ratio of periods equal to τ. Thus, the resulting potential is

∑ ∑ τ( ) = ( − ) + ( − )
( )

F x f x n g x n
16n n

This potential as it was said can be represented as a slice of periodic function

∑ ∑ τ( , ) = ( − ) + ( ( − ))
( )

F x y f x n g y m
17n m

Using this image of potential, we will be able to use previously introduced method.

Conclusions
This work proposed a new method of description quasiperiodic wave-functions of non-interacting elec-
trons.

Equation which might be used for obtaining quasicrystals spectra in periodic boundaries is derived. 
Our method gives an ability easily get all the information about non-interacting electrons in arbitrary 
quasiperiodic potential.

It is essential that with derived equation we may describe both quasiperiodic and periodic materials13. 
Interfaces between are also might be studied. Since the generalization of the method and way of appli-
cation is shown, results for real quasicrystalline materials can be obtained.

Nevertheless, I should emphasize that while the equation may clear up the picture with non-interacting 
particles, it is at least very difficult to apply it for interacting ones. Because the distance in physical 
space (on the slice) and in the “unit cell” is sufficiently different. However, very interesting case of 
weak-interacting particles with pair potential in form of V(x1, x2) =  Vδ(x1 −  x2) is one of the cases where 
one can use the method developed here.
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