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Radiomic feature clusters and 
Prognostic Signatures specific for 
Lung and Head & Neck cancer
Chintan Parmar1,3,4,*, Ralph T. H. Leijenaar3,*, Patrick Grossmann1,5, Emmanuel Rios 
Velazquez1, Johan Bussink6, Derek Rietveld7, Michelle M. Rietbergen8, Benjamin Haibe-
Kains9,10, Philippe Lambin3 & Hugo J.W.L. Aerts1,2,5

Radiomics provides a comprehensive quantification of tumor phenotypes by extracting and 
mining large number of quantitative image features. To reduce the redundancy and compare the 
prognostic characteristics of radiomic features across cancer types, we investigated cancer-specific 
radiomic feature clusters in four independent Lung and Head & Neck (H&N) cancer cohorts (in total 
878 patients). Radiomic features were extracted from the pre-treatment computed tomography 
(CT) images. Consensus clustering resulted in eleven and thirteen stable radiomic feature clusters 
for Lung and H&N cancer, respectively. These clusters were validated in independent external 
validation cohorts using rand statistic (Lung RS = 0.92, p < 0.001, H&N RS = 0.92, p < 0.001). Our 
analysis indicated both common as well as cancer-specific clustering and clinical associations of 
radiomic features. Strongest associations with clinical parameters: Prognosis Lung CI = 0.60 ± 0.01, 
Prognosis H&N CI = 0.68 ± 0.01; Lung histology AUC = 0.56 ± 0.03, Lung stage AUC = 0.61 ± 0.01, 
H&N HPV AUC = 0.58 ± 0.03, H&N stage AUC = 0.77 ± 0.02. Full utilization of these cancer-specific 
characteristics of image features may further improve radiomic biomarkers, providing a non-invasive 
way of quantifying and monitoring tumor phenotypic characteristics in clinical practice.

Recent advances of medical and computational science have led to the emergence of ‘precision medicine’, 
which has revolutionized the cancer care and medical science in general. A major proportion of precision 
medicine research has centered on unveiling different molecular characteristics of the disease tissues by 
using genomic and proteomic technologies. In spite of their enormous potential, these techniques have 
found limited implementations in routine clinical practice1. A major challenge being the invasive nature, 
as biopsies, having high associated risk and cost, are often required.

Imaging on the other hand provides promising means of non-invasive tissue characterization and 
is furthermore routinely used for disease detection, diagnosis, and treatment purposes in clinical prac-
tice2–4. X-ray computed tomography (CT) is a frequently used imaging modality for oncology because it 
assesses tissue density in high resolution and exhibits strong contrasts among different tissue types. In 
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routine clinical practice, tumor response to therapy is measured by the RECIST and/or WHO criteria, 
based on CT imaging. These descriptors measure the change in size of tumors, and often do not succeed 
in predicting overall survival5,6.

“Radiomics” is an emerging field of research that aims to utilize the full potential of medical imaging. 
Radiomics focuses on extracting a large number of quantitative features from medical images, providing 
a more detailed quantification of tumor phenotypic characteristics–effectively converting medical images 
into a high dimensional minable feature space7–9. Several studies have defined and quantified various 
image descriptors and stated their significance for treatment monitoring and outcome prediction in dif-
ferent cancer types10–14. Moreover, some studies have also reported an association between radiographic 
imaging phenotypes and tumor stage, metabolism15, hypoxia, angiogenesis16 and the underlying gene 
and/or protein expression profiles17–19.

A main challenge in radiomics is to deal with feature redundancy in order to obtain a non-redundant 
set of imaging biomarkers. Consensus clustering20 could address this issue by reducing the feature space 
into several non-redundant feature clusters. In this study we identified and validated radiomic feature 
clusters in cohorts of Lung cancer and Head & Neck (H&N) cancer patients. We also evaluated the clin-
ical importance of these clusters by quantifying their association with important clinical parameters and 
patient survival. Moreover, we used the identified radiomic clusters to build cancer-specific multivariable 
radiomic signatures and tested their prognostic performance. Identification of cancer-specific radiomic 
clusters provides a crucial step towards stable and clinically relevant radiomic biomarkers, providing a 
non-invasive way of quantifying and monitoring tumor phenotypic characteristics in clinical practice.

Methods
Radiomic features.  We defined 440 radiomic image features that quantify tumor characteristics. 
These features were divided in four groups: I) tumor intensity, II) shape, III) texture and IV) wave-
let features. Tumor intensity based features, which are defined using first order statistics of the inten-
sity histogram, quantified the density of the tumor region on CT image. Shape features described the 
3D geometric properties of the tumor, whereas textural features quantified intra-tumor heterogeneity. 
Textural features were computed by analyzing the spatial distribution of voxel intensities in thirteen 
directions. These features are derived from gray level co-occurrence (GLCM)21 and run length matrices 
(GLRLM)22 and were computed by averaging their values over all thirteen directions. Wavelet features are 
the transformed domain representations of the intensity and textural features. These features were com-
puted on different wavelet decompositions of the original image using a coiflet wavelet transformation. 
All image analysis was performed in Matlab R2012b (The Mathworks, Natick, MA) using an adapted 
version of CERR (Computational Environment for Radiotherapy Research)23 and features were automat-
ically extracted with in-house developed radiomics image analysis software. Mathematical definitions of 
all radiomic features as well as the extraction methods were previously described18.

Datasets.  Briefly, we considered four image datasets (see overview in Figure 1) for this study, from 
different institutes in the Netherlands: (1) Lung1: 422 NSCLC patients treated at MAASTRO Clinic in 
Maastricht. (2) Lung2: 225 NSCLC patients treated at Radboud University Medical Center in Nijmegen. 
(3) HN1: 136 head and neck squamous cell carcinoma (HNSCC) patients treated at MAASTRO Clinic in 
Maastricht and (4) HN2: 95 HNSCC patients treated at the VU University Medical Center in Amsterdam. 
CT-scans, manual delineations and clinical data were available for all included patients. More details on 
the included datasets have been described earlier18.

Data analysis.  Comparison of the prognostic performance of radiomic features in Lung and H&N can-
cer.  In order to compare the prognostic utility of radiomic features across Lung and H&N cancer, for 
each feature, we computed and compared the concordance index (CI)24, which is the generalization 
of area under ROC curve. R package survcomp was used for the analysis25. P-values are corrected for 
multiple testing (FDR 5%).

Consensus clustering.  We used consensus clustering to cluster the radiomic features extracted from the 
training cohorts Lung1 and HN1. Consensus clustering is a resampling based clustering methodology, 
which quantifies the consensus between several clustering iterations and provides means to estimate the 
number of clusters that best fit the data20. We estimated the range for the appropriate number of clusters 
from the delta area plots (supplementary figure S1). From this range, we chose the number of clusters 
which gave the highest median cluster consensus over all clusters. Cluster consensus was defined as the 
average consensus between all pairs of features belonging to the same cluster. Cluster consensus (range 
[0–1]) indicates the robustness (stability) of a cluster over resampling. We also computed the mean pair-
wise correlation (range [0–1]) between features of a cluster, which is a measure of the cluster compact-
ness (similarity of features within the cluster). Qualitative categorization of cluster stability was defined 
as; consensus <  0.5, poor stability; 0.5 ≤  consensus <  0.75, moderate stability; and consensus ≥  0.75, high 
stability. Cluster compactness was also assessed using the same qualitative categorization. We applied 
hierarchical clustering with agglomerative ward linkage, a Pearson correlation based dissimilarity meas-
ure (1 −  r) and 10,000 resampling iterations. Consensus clustering was performed using the R package 
ConsensusClusterPlus26.
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Radiomic cluster validation.  Radiomic feature clusters obtained on the training cohorts, Lung1 and 
HN1, were considered as the reference Lung and H&N clusters. For cluster validation, we clustered the 
Lung and H&N validation cohorts, Lung2 and HN2, using the same hierarchical clustering algorithm 
and the same number of clusters as for the corresponding training cohort. Rand Statistic (RS)27 was 
used to assess the agreement between each reference clustering (P) and the clustering obtained for its 
respective validation cohort (C) and was defined as:

=
+

+ + + ( )
RS

SS DD
SS SD DS DD 1

where |SS| is the number of feature pairs that cluster together in both C and P, |SD| is the number of fea-
ture pairs that cluster together in C but not in P, |DS| is the number of feature pairs that cluster together 
in P, but not in C and |DD| is the number of feature pairs that do not cluster together in both C and P. 
Significance of RS was determined by a random permutation test using 1000 iterations.

Similarity between Lung and H&N clusters.  Cluster overlap between the individual feature clusters of 
Lung and H&N radiomic cohorts were assessed using the Jaccard index27, which is defined as:

∩
∪

( , ) =
( )
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L H
L H 2

where L and H are any feature clusters of Lung and H&N cohorts. Qualitative categorization of clus-
ter overlap was defined as; Jaccard <  0.5, poor overlap; 0.5 ≤  Jaccard <  0.75, moderate overlap; and 
Jaccard ≥  0.75 high overlap.

Figure 1.  (a) Radiomic analysis overview: For both Lung and H&N cancer datasets, we extracted radiomic 
features from pre-treatment CT images. Cluster analysis was performed on the feature data. (b) Datasets 
overview: Four independent radiomic cohorts of Lung and Head & Neck cancer were included in the 
analysis. Lung1 and HN1 were used for training; Lung2 and HN2 were used for validation.
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Clinical relevance of radiomic clusters.  In order to quantify the association between radiomic feature 
clusters and patient survival, we used the concordance index (CI), whereas the association between a 
feature cluster and a categorical clinical parameter (i.e. Lung cancer histology, H&N HPV status or Lung/
H&N tumor stage) was quantified using the area under the ROC curve (AUC). For clinical parameters 
having more than two categorical levels, a multi-class AUC was computed using a pairwise approach. 
Univariable CI and AUC were computed for each feature. A cluster’s association with patient survival 
and clinical parameters was then quantified as the mean CI and mean AUC over all contained features. 
Significance was estimated using a random permutation test with 1000 iterations. R package survcomp25 
and pROC28 was used for this analysis. Qualitative categorization of the prognostic or predictive per-
formance was defined as poor (CI or AUC <  0.6), moderate (0.6 ≤  CI or AUC <  0.75) and high (CI or 
AUC ≥  0.75).

Multivariable clinical relevance.  In order to select non-redundant imaging biomarkers, cancer-specific 
radiomic signatures were built using the medoids of the obtained clusters of Lung1 and HN1 cohorts. 
The medoid is a single representative feature, which has the highest average pairwise correlation within 
a cluster. To investigate the multivariable prognostic utility of these selected radiomic features, a mul-
tivariable Cox proportional hazards model was fitted on each training cohort (i.e. Lung1 and HN1) 
and their prognostic performance was tested on validation cohorts (i.e. Lung2 and HN2) using the CI. 
R package survcomp25 was used for this analysis. For the prediction of categorical clinical parameters, 
we built multivariable classifiers on each training cohort (i.e. Lung1 or HN1) using logistic regression, 
with the medoids as independent variables. The predictive performance of a classifier was evaluated on 
the corresponding validation cohort (Lung2 or HN2) using AUC. For clinical parameters having more 
than two categorical levels, logistic regression was fitted using a pairwise approach and performance was 
evaluated using multiclass AUC29. R package VGAM30 was used for this analysis.

Results
In order to investigate radiomic features in Lung and H&N cancer cohorts, a total of 440 radiomic fea-
tures were extracted from the segmented tumor regions of the pre-treatment CT images of Lung and 
Head and Neck cancer cohorts. In our analysis, we used datasets Lung1 (n =  422) and HN1 (n =  136) as 
training datasets, and Lung2 (n =  225) and HN2 (n =  95) as validation datasets (Fig. 1).

Comparison of the prognostic performance of radiomic features in Lung and H&N can-
cer.  The prognostic utility of the radiomic features was assessed using the concordance index (CI). 
Figure  2 depicts a CI heatmap of radiomic features in the validation cohorts (Lung2 and HN2). We 
observed that 143 features had significant prognostic performance (CI >  0.5, p <  0.05 FDR corrected) 
in both the cancer types whereas 212 features (190 features in Lung and 22 features in H&N) showed 
significant prognosis only in one of the two cancer types. Eighty-five features turned out not to be sig-
nificantly prognostic in either of the two cancer types.

Figure 2.  Heatmap showing the prognostic performance of radiomic features in Lung2 and HN2 
cohorts. Prognostic performance was evaluated using the concordance index (CI). Note that a large number 
of features are prognostic in both cancer types. However, also a large number of features are cancer-type 
specific, e.g. prognostic only in Lung or only in H&N cancer.
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Identification and validation of radiomic feature clusters in Lung cancer.  In order to iden-
tify stable clusters of radiomic features, consensus clustering procedure was applied on Lung1 training 
cohort. We obtained eleven distinct clusters (size: 16 to 65 features per cluster). Heatmaps in Figure 3 
depict the consensus maps (Fig.  3a) and normalized expression levels (Fig.  3c) of the obtained Lung 
radiomic feature clusters in Lung1 training cohort. These clusters were validated in the Lung2 validation 
cohort (RS =  0.92, permutation test p-value <  0.001). We observed that four clusters (LCL-4, LCL-6, 
LCL-7, LCL-11) had a high cluster consensus (consensus ≥  0.75) and within cluster correlation (cor-
relation ≥  0.75), whereas six clusters (LCL-1, LCL-2, LCL-3, LCL-5, LCL-8, LCL-10) showed high clus-
ter consensus (consensus ≥  0.75) but moderate within cluster correlation (0.5 ≤  correlation <  0.75). For 
cluster LCL-9, both the cluster consensus and within cluster correlation were poor (consensus =  0.41, 
correlation =  0.14). Details regarding the cluster size, associated feature categories, cluster consensus and 
within cluster correlation can be obtained from Table 1.

Figure 3.  Heatmaps for radiomic features of Lung and H&N training cohorts ordered with respect to 
the obtained Lung and H&N clusters. (a–b) Cluster consensus maps of Lung cancer (11 clusters) and H&N 
cancer (13 clusters) cohorts. (c–d) Radiomic feature expressions of Lung and H&N radiomic clusters. (e–f) 
Clinical relevance (CI & AUC) of radiomic clusters of Lung and H&N cancer.
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Identification and validation of radiomic feature clusters in HN cancer.  Consensus clustering 
in HN1 training cohort resulted in thirteen distinct radiomic feature clusters (size: 8 to 93 features 
per cluster), which were validated in independent HN2 validation cohort (RS =  0.92, permutation test 
p-value <  0.001). Heatmaps in Figure  3b and 3d show the consensus maps and normalized expression 
levels of the obtained radiomic feature clusters in HN1 training cohort. Six clusters (HNCL-1, HNCL-
2, HNCL-6, HNCL-7, HNCL-12, HNCL-13) had high cluster consensus (consensus ≥  0.75) and within 
cluster correlation (correlation ≥  0.75), whereas five other clusters (HNCL-4, HNCL-5, HNCL-8, HNCL-
9, HNCL-11) showed high cluster consensus (consensus ≥  0.75) but moderate within cluster correlation 
(0.5 ≤  correlation <  0.75). Cluster HNCL-10 had moderate cluster consensus (consensus =  0.65) and 
poor cluster correlation (correlation =  0.04), whereas clusters HNCL-3 showed poor cluster consensus 
(consensus =  0.41) and correlation (correlation =  0.12) (see Table 2).

Similarity between Lung and H&N clusters.  In order to assess the overlap between individual 
Lung and H&N radiomic clusters, we compared the Lung and H&N clusters, pairwise, using the Jaccard 
index. We observed that Lung cluster LCL-6 and H&N cluster HNCL-7 had high overlap (Jaccard =  0.98). 
Cluster pairs LCL-7 & HNCL-2 (Jaccard =  0.65), LCL-8 & HNCL-4 (Jaccard =  0.66) and LCL-5 & 
HNCL-11 (Jaccard =  0.66) and LCL-3 & HNCL-8 (Jaccard =  0.66) showed moderate overlap, whereas 
the remaining pairs had poor overlap (Jaccard <  0.5) (see Fig. 4).

Clinical relevance of radiomic clusters.  Mean CI and mean AUC values for the obtained Lung and 
H&N clusters are depicted in Table  1 & Table 2. All eleven Lung clusters had a significant prognostic 
association with patient survival. However, only four Lung clusters (LCL-1, LCL-4, LCL-5 and LCL-
6) had a mean CI higher or equal to 0.58. Two Lung clusters (LCL-9 and LCL-10) were significantly 

Cluster
no 

Cluster size 
(Intensity stats 

+ Shape + 
Texture + 
Wavelet 
features) 

Within 
cluster

correlation 
Cluster 

consensus CI Histology 
AUC Stage AUC Cluster medoid 

LCL-1 65 (3+2+13+47) 0.62 ± 0.21 0.92 ± 0.12 *0.58 ± 0.02 0.54 ± 0.02 *0.60 ± 0.03 Wavelet_HLL_glcm_i
nvDiffnorm 

LCL-2 16 (3+0+5+8) 0.70 ± 0.23 0.97 ± 0.03 *0.54 ± 0.02 0.51 ± 0.02 *0.59 ± 0.03 GLCM_clusTend 

LCL-3 31 (1+2+1+27) 0.50 ± 0.26 0.85 ± 0.17 *0.55 ± 0.03 0.54 ± 0.03 *0.59 ± 0.03 
Wavelet_LHH_rlgl_lo
wGrayLevelRunEmp

hasis 

LCL-4 41 (2+1+8+30) 0.78 ±0.12 0.91 ± 0.09 *0.59 ± 0.01 0.52 ± 0.01 *0.61 ± 0.02 GLCM_diffEntro 

LCL-5 54 (2+0+4+48) 0.70 ± 0.15 0.91 ± 0.12 *0.58± 0.01 0.55 ± 0.02 *0.60 ± 0.02 Wavelet_LHL_stats_
uniformity 

LCL-6 39 (2+3+2+32) 0.78 ± 0.16 1 ± 0 *0.60 ± 0.01 0.52 ± 0.01 *0.61 ± 0.01 RLGL_runLengthNon
uniformity 

LCL-7 46 (2+0+0+44) 0.86 ± 0.07 1 ± 0 *0.56 ± 0.01 0.55 ± 0.01 *0.58 ± 0.01 Wavelet_HLL_glcm_
sumAvg 

LCL-8 61 (0+0+0+61) 0.71 ± 0.15 0.79 ± 0.17 *0.57 ± 0.01 0.55 ± 0.02 *0.58 ± 0.02 Wavelet_HLH_glcm_
diffEntro 

LCL-9 30 (0+0+0+30) 0.14 ± 0.30 0.41 ± 0.36 *0.54 ± 0.02 *0.55 ± 0.03 *0.54 ± 0.03 Wavelet_HHH_stats_
min 

LCL-10 33 (0+0+0+33) 0.66 ± 0.19 0.95 ± 0.08 *0.57 ± 0.02 *0.56 ± 0.03 *0.58 ± 0.03 
Wavelet_LHL_rlgl_lo
ngRunHighGrayLevE

mpha 

LCL-11 24 (0+0+0+24) 0.75 ± 0.17 0.96 ± 0.04 *0.55 ± 0.02 0.55 ± 0.02 *0.59 ± 0.02 Wavelet_HLH_stats_
std 

�Table 1.   Cluster table describing cluster size, size of each feature category, within cluster correlation, 
cluster consensus, average CI and AUC and selected representative features in Lung cancer. Bold values 
with an asterisk indicate the significant clinical relevance of a cluster.
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associated with tumor histology. All Lung clusters had significant association with tumor stage (see 
Table 1). For H&N cancer, six clusters (HNCL-1, HNCL-2, HNCL-6, HNCL-7, HNCL-8 and HNCL-12) 
were significantly associated with patient survival. We did not observe any association between the H&N 
clusters and HPV status. However, except for the three H&N clusters (HNCL-4, HNCL-10, HNCL-13), 
all the other H&N clusters were significantly associated with tumor stage (see Table 2). Univariable CI 
and AUC values of radiomic features in Lung1 and HN1 cohorts are represented by heatmaps in Fig. 3e,f, 
respectively.

Multivariable clinical relevance.  We built two radiomic signatures, one each for Lung and H&N 
cohort, using the medoids of the obtained Lung and H&N radiomic feature clusters, respectively. To 
evaluate the multivariate prognostic performance, we trained a multivariable Cox proportional hazards 
model on both training cohorts (Lung1 and HN1). Prognostic performance of each model was externally 
tested on validation cohorts (Lung2 and HN2). We observed that the prognostic performance of Lung 
based multivariable model (CI =  0.61) was higher than the H&N model (CI =  0.56) in Lung2 valida-
tion cohort, whereas for HN2 validation cohort, H&N based multivariable model (CI =  0.63) performed 
better than the Lung model (CI =  0.57). We also used the cluster medoids for the prediction of clinical 
parameters. We trained classifiers on training cohort (i.e. Lung1 or HN1) using logistic regression and 

Cluster
no 

Cluster size 
(Intensity 

stats + Shape 
+ Texture + 

Wavelet 
features) 

Within 
cluster

correlation 
Cluster 

consensus CI HPV status 
AUC Stage AUC Cluster medoid 

HNCL-1 18 (0+0+8+10) 0.80 ± 0.25 1 ± 0.21 *0.64 ± 0.03 0.52 ± 0.03 *0.62 ± 0.02 Wavelet_LLL_glcm_
sumAvg 

HNCL-2 71 (2+0+1+68) 0.80 ± 0.14 1 ± 0.01 *0.65 ± 0.03 0.56 ± 0.04 *0.67 ± 0.02 Wavelet_LHH_glcm
_sumVar 

HNCL-3 23 (4+0+1+18) 0.12 ± 0.30 0.41 ± 0.27 0.54 ± 0.04 0.56 ± 0.04 *0.60 ± 0.04 Wavelet_LLL_stats_
mean 

HNCL-4 93 (4+0+7+82) 0.70 ± 0.17 0.83 ± 0.19 0.54 ± 0.03 0.56 ± 0.03 0.59 ± 0.02 Wavelet_LHL_glcm_
diffEntro 

HNCL-5 18 (2+0+5+11) 0.61± 0.19 0.96 ± 0.04 0.57 ± 0.04 0.55 ± 0.03 *0.68 ± 0.01 Wavelet_LLL_rlgl_lo
ngRunEmphasis 

HNCL-6 32 (0+0+4+28) 0.76 ± 0.13 1 ± 0.06 *0.65 ± 0.05 0.51 ± 0.05 *0.72 ± 0.03 Wavelet_LHL_glcm_
invDiffnorm 

HNCL-7 40 (2+4+2+32) 0.98 ± 0.07 1 ± 0 *0.68 ± 0.01 0.54 ± 0.03 *0.77 ± 0.02 Stats_totalenergy 

HNCL-8 32 (1+3+3+25) 0.65 ± 0.21 0.97± 0.13 *0.68 ± 0.06 0.52 ± 0.03 *0.64 ± 0.02 
Wavelet_LLH_rlgl_lo
wGrayLevelRunEmp

hasis 

HNCL-9 33 (0+0+2+31) 0.71 ± 0.18 0.95 ± 0.09 0.57 ± 0.02 0.54 ± 0.03 *0.69 ± 0.02 Wavelet_LHL_stats_
std 

HNCL-10 20 (0+1+0+19) 0.04 ± 0.26 0.65 ± 0.22 0.55 ± 0.03 0.55 ± 0.05 0.57 ± 0.03 Wavelet_HHH_glcm
_correl1 

HNCL-11 44 (0+0+0+44) 0.68 ± 0.16 0.99 ± 0.15 0.53 ± 0.02 0.58 ± 0.03 *0.62 ± 0.02 Wavelet_HHL_stats
_uniformity 

HNCL-12 8 (0+0+0+8) 0.76 ± 0.19 1 ± 0.03 *0.60 ± 0.05 0.57 ± 0.04 *0.63 ± 0.02 Wavelet_HHH_stats
_min 

HNCL-13 8 (0+0+0+8) 0.84 ± 0.15 1 ± 0 0.53 ± 0.02 0.53 ± 0.02 0.57 ± 0.01 Wavelet_HLH_stats
_std 

�Table 2.   Cluster table describing cluster size, size of each feature category, within cluster correlation, 
cluster consensus, average CI and AUC and selected representative features in H&N cancer. Bold values 
with an asterisk indicate the significant clinical relevance of a cluster.
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evaluated the predictive performance in the corresponding validation cohort (Lung2 or HN2). The Lung 
signature had a moderate performance for the prediction of tumor histology (AUC =  0.64) and tumor 
stage (AUC =  0.64). The H&N signature was highly predictive for tumor stage (AUC =  0.80) and had a 
moderate predictive performance for HPV status (AUC =  0.60).

Discussion
Medical imaging plays an important role in medical care and science due to its ability to assess tis-
sue characteristics and organ anatomy non-invasively. It is therefore widely used in disease diagnosis, 
progression assessment and treatment monitoring in clinical oncology. Radiomics, a high throughput 
approach, can quantify the differences between oncologic tissues and hence provide prognostic or pre-
dictive imaging biomarkers7,8.

In this study we investigated clustering as a means to deal with the high dimensional feature space 
generated with radiomics, as well as to investigate common and cancer-type specific radiomic patterns. 
We applied consensus clustering on 440 radiomic features extracted from Lung cancer and Head & Neck 
cancer patient cohorts. Furthermore these clusters were externally validated on independent validation 
cohorts. For both cancer types, many clusters showed high cluster consensus and high within cluster cor-
relation, which indicates the high robustness (stability) and compactness of these clusters. These results 
indicate that consensus clustering could provide robust radiomic feature clusters and hence reduce the 
feature redundancy. The majority of the obtained Lung and H&N radiomic clusters were significantly 
associated with patient survival and tumor stage. Two Lung clusters also showed significant association 

Figure 4.  Heatmap depicting cluster overlap and clinical relevance (CI & AUC). Center matrix in 
green & white color represents the overlap (Jaccard index) between the clusters of Lung (rows) and H&N 
(columns) radiomic cohorts. Top and left side panels in blue & white color depicts the average CI & AUC of 
the corresponding Lung and H&N radiomic clusters.
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with tumor histology. Our multivariable analysis showed that cancer-specific multivariable radiomic sig-
natures displayed moderate or high prognostic (predictive) performance.

Comparing the individual Lung and H&N feature clusters, we observed that five cluster pairs had 
substantial overlap (Jaccard ≥  0.6) between the Lung and H&N cancer, whereas the overlap for other 
cluster pairs was poor. These results demonstrate both common as well as cancer-specific clustering 
characteristics of radiomic features.

It can be observed from our analysis that radiomic features also have cancer-specific prognostic abil-
ity. We compared the univariable CI values of radiomic features across the two cancer types and observed 
that several radiomic features have significant prognostic utility in only one of the two cancer types. 
Furthermore the multivariable radiomic signatures performed better in validation cohorts of the same 
cancer type in our multivariable analysis.

Recently, Aerts et al.18, built a radiomic signature of four features, which were selected based on their 
stability across test-retest image scans and multiple tumor delineations, as well as their prognostic per-
formance in a training dataset. However, the feature selection was only applied to one cancer type (i.e. 
lung cancer patients). The primary objective of our study was to separately investigate and compare radi-
omic feature subgroups in Lung and H&N cancer. Our analysis reveals a cancer-specific grouping and 
prognostic trends of radiomic features, which could be exploited to potentially improve the performance 
of prognostic models. In another radiomic study of Lung cancer cohorts, Balagurunathan et al.31, used 
a three step procedure to select the most reproducible, informative and non-redundant features. In this 
method, it was required to empirically choose three threshold values corresponding to the concordance 
correlation coefficient, dynamic range and pairwise correlation. On the contrary, our method of feature 
selection only depends on the number of clusters. In general, the estimation of number of clusters is 
done by a visual inspection of consensus matrices and the delta area plot20. However, we used a more 
deterministic method for the estimation of number of clusters. Overall, the parameters of consensus 
clustering procedure were carefully chosen, keeping in mind the larger applicability of the obtained 
clustering results in radiomics. However, these parameters are still just design choices and there may be 
other relevant parameter configurations, which could be tried and the resultant clustering outputs could 
be analyzed and compared. These interesting research issues do not fall within the scope of this study, 
which is primarily focused on the cancer specific comparison of radiomic features.

We expect that the obtained feature clusters of our study combined with feature stability information 
could further enhance the feature selection process, providing more reliable and prognostic radiomic sig-
natures. However, due to the unavailability of test-retest and multiple delineation H&N cancer cohorts, 
we could not compute the stability of H&N based radiomic features and hence could not include a 
cancer-specific stability analysis in our study. Machine learning based advanced feature selection meth-
ods could also enhance the radiomic biomarker selection process. Although identifying the optimal fea-
ture selection method is very important for radiomics research, it does not fit well within the clustering 
framework of this study and hence should be addressed in future studies, investigating machine learning 
methods for radiomic data.

We focused only on CT derived radiomic features in this study. However, imaging is routinely per-
formed in clinical practice using different modalities (e.g. CT, PET, MRI, etc.). An integrated radiomic 
analysis of different cancer types using multiple modalities could therefore provide even more informa-
tion to facilitate medical decision support with imaging biomarkers.

This study identified different Lung and H&N radiomic feature subgroups and quantified their clin-
ical significance. Our investigation revealed that clustering and prognostic characteristics of radiomic 
features are cancer-specific. Cancer-specific prognostic characteristics of radiomic features should be 
considered for building prognostic models, which could improve the prognosis in cancer care. In general, 
high throughput medical image data mining research like “Radiomics” can influence the cancer research 
greatly, as it provides a promising non-invasive way of quantifying and monitoring tumor phenotypic 
characteristics across different cancer types in clinical oncology.
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