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ImmuSort, a database on gene 
plasticity and electronic sorting for 
immune cells
Pingzhang Wang1,2,*, Yehong Yang3,*, Wenling Han1 & Dalong Ma1

Gene expression is highly dynamic and plastic. We present a new immunological database, 
ImmuSort. Unlike other gene expression databases, ImmuSort provides a convenient way to view 
global differential gene expression data across thousands of experimental conditions in immune cells. 
It enables electronic sorting, which is a bioinformatics process to retrieve cell states associated with 
specific experimental conditions that are mainly based on gene expression intensity. A comparison of 
gene expression profiles reveals other applications, such as the evaluation of immune cell biomarkers 
and cell subsets, identification of cell specific and/or disease-associated genes or transcripts, 
comparison of gene expression in different transcript variants and probe set quality evaluation. A 
plasticity score is introduced to measure gene plasticity. Average rank and marker evaluation scores 
are used to evaluate biomarkers. The current version includes 31 human and 17 mouse immune cell 
groups, comprising 10,422 and 3,929 microarrays derived from public databases, respectively. A total 
of 20,283 human and 20,963 mouse genes are available to query in the database. Examples show the 
distinct advantages of the database. The database URL is http://immusort.bjmu.edu.cn/

Gene expression profile (GEP) analysis is generally a necessary and important step for a functional gene 
study, especially for those of genes with unknown functions. Many tools and databases that are coupled 
with accumulating high-throughput data have been developed for GEP analysis. It has been revealed 
that gene expression is highly heterogeneous across various tissues and cells, and often changes during 
the course of development or under different experimental treatments. Thus, the identification of dif-
ferentially expressed genes at various biological states has been widely conducted to reveal the potential 
mechanisms involved in cellular processes. Microarray and next-generation sequencing1,2 represent two 
technologies that are widely used to detect mRNA levels and differential expression. Many gene expres-
sion databases based on these high-throughput technologies3,4 have been built to provide important 
functional clues for experimental design and gene function validation. However, the limited experiment 
conditions and cell states in these databases restricts their usefulness in illustrating the highly dynamic 
and plastic characteristics of gene expression.

The mammalian immune system is composed of dozens of immune cell groups. GEP analysis plays a 
vital role in dissecting the function of each cell group. Several immune-cell-related databases exist, such 
as RefDIC5, BloodExpress6, ImmGen7 and HemaExplorer8. Some immune cell and tissue GEP data are 
included in other general databases, such as BioGPS9. However, these databases usually provide a static 
presentation of expression data from very limited conditions and thus cannot reflect gene regulation 
properties under a wide range of factors, such as intra- or extra-cellular stimuli, which can greatly modify 
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gene expression levels. In most wet experiments conducted during gene function studies, the focus is the 
treatment conditions, disease states or cell types under which a gene is mostly up- or down-regulated. 
The highest and lowest gene expression states often suggest important functional roles during the cor-
responding biological processes. None of the above databases can quickly meet this requirement. The 
Gene Expression Omnibus (GEO) supports gene profile queries10, but the results often contain several 
hundreds to thousands of records. Sifting out meaningful results is often difficult and time-consuming. 
Expression Atlas is a recently developed database for querying differential GEPs under various exper-
imental factors (i.e., the conditions under study) for multiple organisms11. However, both GEO and 
Expression Atlas are not immune-cell-orientated and neither allow quantitative gene expression hetero-
geneity and plasticity measurements or marker gene evaluation.

We present a new immunological database, ImmuSort, which provides a global view of GEP under 
various experiment conditions in a cell-specific pattern. We use gene plasticity (GPL) to describe the 
expressional heterogeneity of a gene under various experimental conditions. We define it as the change 
in the expression of a gene in response to various environmental or genetic influences. ImmuSort can 
retrieve cell states or experimental conditions based on gene expression intensities, which we call elec-
tronic sorting. The database offers other functions based on GEP comparisons, such as the evaluation 
of biomarkers of immune cells and their subsets, identification of cell-specific and/or disease-associated 
genes or transcripts, comparison of gene expression in different transcript variants and quality evaluation 
of probe sets in a probe-sequence-independent manner. These features all distinguish ImmuSort from 
other GEP databases.

Results
Design and data statistics. The Affymetrix human genome U133 plus 2.0 and mouse genome 430 
2.0 arrays from the GEO database were chosen because these two platforms are currently the most pop-
ular arrays and comprise the largest human and mouse study sample sizes, respectively. A quality control 
analysis resulted in the rejection of about 12% of the original human and 16% of the original mouse 
samples. The remaining sample for gene expression analysis included 10,422 human samples (GEO sam-
ples (GSMs) or microarrays) comprising 433 GEO series (GSEs) and 3,929 mouse samples comprising 
455 GSEs. The human and mouse samples were categorised into 31 and 17 groups, respectively, based 
on cell types, tissue/cell sources, developmental stages and disease states (Table 1, Supplemental Tables 
S1 and S2).

The human cell types in ImmuSort include T cells, B cells, plasma cells, natural killer (NK) cells, 
peripheral blood lymphocytes (PBLs), monocytes, macrophages, dendritic cells (DCs), polymorpho-
nuclear leukocytes (PMNs) or neutrophils, mononuclear cells and haematopoietic stem cells (HSCs) 
(Table 1). An important principle during the sample grouping for these cell types was the requirement 
of a suitable sample size. Immune cells without enough samples, such as NK T cells and mast cells, were 
excluded. In contrast, some cell types, such as B cells, T cells, DCs, HSCs, macrophages and peripheral 
blood mononuclear cells (PBMCs), comprised a great number of samples, which generally allowed for 
a more subtle division. For example, B cells from patients with acute lymphoblastic leukaemia (ALL), 
patients with chronic lymphoid leukaemia (CLL) and other patients were grouped separately. T cells were 
grouped into those from CD4+ and CD8+ T cell mixtures, those from CD4 single positive T cells alone 
and those from CD8 single positive T cells alone. Mixed T cell samples from ALL patients were also 
grouped separately. Due to the relatively large sample size, CD4+CD25+ regulatory T (Treg) cells, which 
represent an important subset of helper T cells that modulate the immune system12, were separated 
from the CD4+ T cells. Data sets describing other CD4+ T cell subsets, such as Th1, Th2 and Th17, still 
await collection. Similarly, PBMCs were divided into seven groups based on several disease states and 
the remaining PBMCs were grouped together. DCs, macrophages and HSCs were divided into different 
groups according to their tissue or cell sources (Table 1).

The mouse cell types in ImmuSort include B cells, T cells, NKs, DCs, HSCs, macrophages, splenocytes 
and thymocytes. Similarly to the human T cell group, the mouse T cell group is also a mixture of CD4+ 
and CD8+ T cells. As enough samples were available, lineage negative Sca-1 positive Kit positive cells 
and B cell precursors were separated from mouse HSCs and B cells, respectively. Although the human 
and mouse CD4+ T cell samples were both large, no suitable grouping factors (such as developmental 
stages, phenotypes or disease states) underlying the category could be found. Human CD4+ T cells were 
generally isolated from PBMCs. Mouse CD4+ T cells were often isolated from the immune organ spleen. 
If additional samples become available, these cells may be divided into groups such as naïve or memory 
CD4+ T cells.

Query. ImmuSort supports gene symbol or alias (e.g., CCL20 or MIP-3-alpha), Entrez gene ID (e.g., 
6364) and probe set ID (e.g., 205476_at) requests as the initial search term. It provides the user with a 
quick global view of cell-specific gene expression patterns across samples from thousands of experimen-
tal conditions (Supplemental Tables S1 and S2). Fig. 1 shows CCL20 used as an example to navigate the 
database.

In total, 20,283 human and 20,963 mouse genes are currently available for query for each human and 
mouse cell group. Probe sets without a unique or gene annotation were discarded. A total of 41,477 and 
38,544 probe sets for human and mouse, respectively, are available in ImmuSort. Detailed information 
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Species Cell type Group
Sample 

size

GEO 
series 

number Note

Human

B cell B cell (ALL) 314 9
CD19+ B cells from patients 

with acute lymphoblastic 
leukaemia (ALL)

B cell (CLL) 767 16
CD19+ B cells from patients 

with chronic lymphoid 
leukaemia (CLL)

B cell 464 45 The rest of the CD19+ B 
cells

T cell CD4+ T cell 619 55

CD8+ T cell 189 29

T cell 231 30 Mixture of CD4+ and CD8+ 
T cells

T cell (ALL) 230 3 T cells from patients with 
ALL

Treg 72 10 Regulatory T cells (Tregs)

Jurkat 131 22 Acute T cell leukaemia 
cell line

NK NK 149 15 Natural killer cells (NKs)

PBL PBL 175 3 Peripheral blood 
lymphocytes (PBLs)

Monocyte Monocyte 462 48

THP-1 164 26 Acute monocytic leukaemia 
cell line

DC DC (monocyte-derived dendritic cell, 
MDDC) 334 25 Monocyte-derived dendritic 

cells (MDDCs)

DC (tissue resident) 77 9

Dendritic cells (DCs) from 
cord blood, peripheral blood 

and skin, among others. 
Plasmacytoid DCs are also 

included in this group.

Macrophage Monocyte-derived macrophage (MDM) 253 23

Macrophage (lung) 132 7 Alveolar macrophages

Haematopoietic stem cell Haematopoietic stem cell (blood) 198 24 CD34+ cells from cord 
blood or peripheral blood

Haematopoietic stem cell (MDS,bone 
marrow) 195 3

CD34+ cells from the bone 
marrow of patients with 

myelodysplastic syndromes 
(MDS)

Haematopoietic stem cell (bone marrow) 97 12
CD34+ cells from the bone 

marrow of individuals 
without MDS

Mononuclear cell Bone marrow mononuclear cell 
(BMMC) 791 11

Bone marrow mononuclear 
cells (BMMCs) from 

patients with acute myeloid 
leukaemia (AML)

PBMC (breast cancer) 87 2
Peripheral blood 

mononuclear cells (PBMCs) 
from patients with breast 

cancer

PBMC (CLL) 77 2 PBMCs from patients with 
CLL

PBMC (COPD) 94 1
PBMCs from patients 

with chronic obstructive 
pulmonary disease (COPD)

PBMC (JIA) 278 11
PBMCs from patients with 
juvenile idiopathic arthritis 

(JIA)

PBMC (transplant) 150 3 PBMCs from recipients after 
kidney or liver transplant

PBMC (MS) 250 2 PBMCs from patients with 
multiple sclerosis (MS)

Continued
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regarding the probe sets, gene symbols, Entrez Gene IDs and gene aliases are provided in Supplemental 
Tables S3 (human) and S4 (mouse).

Features and applications. ImmuSort provides convenient analyses of cell-specific GEPs at the gene 
or probe set level. It enables the analysis of GPL, evaluation of biomarkers of immune cells and their 
subsets, gene expression comparisons and other such analyses. Several features and example applications 
are described below.

GPL analysis. The rank-based gene expression (RBE) curve can directly illustrate GPL. The GPL 
score represents the plasticity level. High plasticity indicates that it is common for gene expression to be 
variable under diverse circumstances and is accompanied by a wide RBE curve. Low plasticity suggests 
relatively stable expression and is accompanied by a narrow curve. For example, as shown in Fig. 1B and 

Species Cell type Group
Sample 

size

GEO 
series 

number Note

PBMC (miscellaneous) 650 40
PBMCs from miscellaneous 

and other experimental 
conditions

PBMC (normal) 564 39 PBMCs from healthy 
individuals

Plasma cell Plasma cell 1771 18 Mainly from patients with 
multiple myeloma

Neutrophil PMN/neutrophil 457 21
Polymorphonuclear 
leukocytes (PMNs), 

neutrophils

Mouse

B cell B cell 404 60 CD19+ B cells

B cell precursor 149 20 Including pre-B, pro-B and 
other B cell precursors

T cell CD4+ T cell 652 107

CD8+ T cell 318 41

T cell 110 22 Mixture of CD4+ and CD8+ 
T cells

Treg 176 42

Thymocyte 267 24

Thymocytes are white blood 
cells situated in the thymus. 

They are generally T cells 
with distinct maturational 

stages based on the 
expression of the CD4 and 
CD8 cell surface markers.

NK NK 85 20

DC DC (bone marrow) 147 20 DCs from bone marrow

DC (spleen) 135 23 DCs from the spleen

DC (other) 130 12 Primary DCs from other 
tissue

Haematopoietic stem cell Haematopoietic stem cell (LSK) 249 43 CD34+ haematopoietic 
stem cells

Haematopoietic stem cell (LSK) 208 46 Lineage negative Sca-1 
positive Kit positive HSCs

Macrophage Macrophage (bone marrow) 571 38 Macrophages derived from 
bone marrow

Macrophage (peritoneal) 95 15 Macrophages from the 
peritoneal

Macrophage (other) 111 20 Macrophages from other 
tissue

Splenocyte Splenocyte 122 8
Splenocytes are a mixture 
of different white blood 
cell types situated in the 
immune organ spleen.

Table 1. Immune cells and sample sizes in the current version of the ImmuSort database
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Figure 1. An example illustrating ImmuSort database browsing. (A) Search with the gene symbol ‘CCL20’ 
in human PMNs/neutrophils. (B) The query output. The RBE curve indicates the CCL20 GEP and its sample 
distribution across various experimental conditions. The x-axis represents the percentile rank score that 
reflects the gene expression intensity. The y-axis represents the sample ratio at an indicated rank score. The 
button ‘Show Detail’ links to further electronic sorting analysis. The lower table-format panel shows brief 
information about the queried probe sets. (C) A novel RBE curve for CCL20 in B cells is added. The added 
probe set information is shown in the lower table-format panel in an ordered fashion (see red arrows). (D) 
The GEP is shown in an interactive fashion after finishing the probe set selection and clicking on the ‘Show 
Detail’ button. Two modes are available to allow users to retrieve or conduct electronic sorting of the cell 
states (or experiment conditions) that are associated with a bin by clicking it. A bin range is selected by 
clicking and holding the mouse cursor on a column in the left side and releasing it over another column. 
In the GSM mode (E), all of the cells (GEO samples/GSMs) that are associated with rank scores from 95 
to 100 for CCL20 and a brief description of the sample are listed. In the GSE mode (F), a list of all of the 
GSEs containing the cells/GSMs within the selected bin that range from 95 to 100 are shown. The right cell 
snapshots provide further links to the sample information associated with the GSEs, such as GSE39889 (G). 
In E and G, the signal values, rank score and p values to evaluate the difference between the PM and MM 
probe values are shown. The items in red (G) indicate the samples that are associated with the clicked bin or 
selected bin range. An online help page on the ImmuSort website also provides operational details.
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Fig. 1C, CCL20 is highly plastic in PMNs with a GPL score of 77, but weakly plastic in B cells with a 
GPL score of 11.

GPL has cell- and gene-specificity, which forms the basis of comparison between GEPs. Different RBE 
curves can be illustrated on the same graph, which allows GEPs from the same gene in different immune 
cells, or from different genes in the same cell type or group, to be compared. Some applications based on 
profile comparisons are also available.

(1) Evaluation of immune cell biomarkers and their subsets. The term ‘marker’ implies homo-
geneity and stability (although these qualifications are relative), whereas the term ‘plasticity’ represents 
heterogeneity and variability. Therefore, marker molecules for a cell type should have low plasticity. 
In contrast, specificity should be observed in a cell type when compared with other cells. ImmuSort 
provides a direct graphical view of gene expression under varying experimental conditions, allowing 
marker qualifications to be easily evaluated. Quantitative indices, such as the GPL, average rank score 
(ARS) and marker evaluation score (MES) can be used in combination to evaluate biomarkers. The GPL 
score reflects intra-cellular variability. The MES reflects inter-cellular variability. Our unpublished work 
reveals that a relationship exists between the GPL score and ARS: genes with a small or large ARS often 
show relatively low plasticity. Genes with a very small or large ARS are therefore likely to have less gene 
expression variation under diverse conditions, so can be used as marker candidates.

Low plasticity is insufficient for selecting a marker gene; a gene must also have specificity. The MES 
is used to describe the potential of a marker molecule because it reflects the variability between cell 
types. In general, if a gene has low plasticity, the larger the absolute MES value, the better specificity 
the marker candidate has. For example, CD3Z (CD3-zeta, also known as CD247) is a component of the 
TCR-CD3 complex that is widely expressed on the surface of T cells. As shown in Fig. 2A, it is highly 
expressed and has low plasticity in CD4+ T cells and NK cells, according to a previous report13. However, 
it tends to have high plasticity and lower expression in other cell types, such as monocyte-derived den-
dritic cells (MDDCs) and B cells. Human CD4+ T cells, MDDCs and B cells have CD247 MES values 
of 133.25, –29.58 and –32.08, respectively (Supplemental Table S3). The same cells have CD247 ARS 
values of 96.72, 50.93 and 53.33, respectively (Supplemental Table S5). Similarly, mouse CD247 is highly 
expressed in CD4+ T cells with a MES of 146.22 and an ARS of 96.16, but is weakly expressed in B cells 
(MES =  − 43.81, ARS =  38.14) and bone-marrow-derived macrophages (MES =  − 107.21, ARS  =  30.40) 
(Supplemental Tables S4 and S6).

As shown in Fig. 2B, CD19 and B-cell linker (BLNK) are highly expressed in B cells under various 
experimental conditions, whereas CD4 and CD56 are highly plastic and weakly expressed in B cells in 
general. CD19 is a well-known B cell marker, whereas CD4 and CD56 are key markers of CD4+ T cells 
and NK cells, respectively. BLNK is an essential component of the BCR signalling pathways and plays a 
critical role in B cell development and function14.

The complete MESs and ARSs of the 20,283 human and 20,963 mouse genes are listed in Supplemental 
Tables S3 and S5 (human) and S4 and S6 (mouse), respectively. The combination of MES and ARS will 
no doubt contribute to the discovery of novel marker genes. Potential differentially expressed genes can 
also be identified through these Supplemental Tables and used for further analyses, such as experimental 
validation and functional enrichment analysis.

(2) Identification of cell-specific and/or disease-associated genes or transcripts. Cell-specific 
genes or transcripts indicate that they are widely expressed under various conditions in a cell-type-specific 
manner. As marker molecules can be effectively evaluated, cell-specific genes or transcripts can also be 
identified via the database using the MES and ARS. For example, MDDCs highly express genes such as 
CD209 (MES =  190.74, ARS =  95.67), transforming growth factor-beta-induced protein (TGFBI, MES =  
138.49, ARS =  99.26), chemokine C-C motif ligand 22 (CCL22, MES =  178.38, ARS =  95.16), transcrip-
tion factor EC (TFEC, MES =  165.99, ARS =  97.52), CD86 (MES =  182.02, ARS =  98.81) and phospho-
lipase A2, group VII (PLA2G7, MES =  166.16, ARS =  97.99) (Supplemental Table S3 and S5). These are 
all potential marker molecules.

Disease-associated cell states are also provided in ImmuSort, such as B cells from ALL and CLL 
patients, and can be used to identify disease-associated genes or transcripts. For example, our data 
show that both membrane metallo-endopeptidase (MME or CD10) and DNA nucleotidylexotransferase 
(DNTT, also known as terminal deoxynucleotidyl transferase) have distinctively high expression in B 
cells from ALL patients, but low expression in B cells from CLL patients (Fig. 2C). Indeed, both MME 
and DNTT are widely used biomarkers for ALL15–17. A further comparison of the expression patterns 
for these two markers in the B cells from ALL patients reveals that DNTT is a relatively more stable 
marker based on either the expressional intensity or sample proportion because the DNTT peak is higher 
than the MME peak (Fig.  2C). The ARS and MES of DNTT in the B cells from the ALL patients are 
97.3 and 163.13, respectively. The corresponding values for MME are 84.24 (ARS) and 105.26 (MES) 
(Supplemental Table S3 and S5).

(3) Transcript variant GEP comparison. For Affymetrix arrays, such as the human genome U133 
plus 2.0 and mouse genome 430 2.0 arrays, one gene often corresponds to multiple probe sets. These 
probe sets may reflect different transcript variants. Thus, the expression profiles of these variants can 
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be directly illustrated and compared. For example, human serine/threonine-protein kinase A-Raf 
(ARAF) has two probe sets, 201895_at and 230652_at. The former corresponds to ARAF transcript var-
iants 1 (NM_001654) and 2 (NM_001256196). The latter corresponds to ARAF transcript variant 3 
(NM_001256197), which results from an alternative intronic polyadenylation site18. As shown in Fig. 2D, 
the transcript variant 3 expression level is low in MDDCs under certain experimental conditions.

(4) Probe set quality evaluation based on GEP. Probe set quality evaluation is usually performed 
using sequence analysis. Poorly designed probes will produce no or low hybridisation signals. ImmuSort 
allows the probe quality to be evaluated independently of the probe sequence. For example, CD4 has two 
probe sets. The transcript related to probe set 203547_at is highly expressed in CD4+ T cells. However, 
the expression profile from the other probe set, 216424_at, is more unstable (as reflected by the GPL 
score) and is expressed at a low level (Fig.  2E), calling into question the quality of the probe. In fact, 
the 216424_at probe set does not match a true transcript, but instead matches an untranscribed intronic 
region (Supplementary Fig. S1). Similarly, CD8B, a component of the CD8 heterodimer, has three probe 
sets. These include 230037_at, which corresponds to the opposite strand of the CD8B transcript and pro-
duces no specific hybrid signals, and 215332_s_at and 207979_s_at, which both produce strong signals 

Figure 2. GEP comparison example. (A) CD247 is highly expressed and shows low plasticity in CD4+ T 
cells and NK cells. It is weakly expressed and has high plasticity in B cells and MDDCs. (B) BLNK and 
CD19 are strongly expressed and have low plasticity in B cells, whereas CD4 and CD56 are highly plastic 
and show weak expression in B cells. (C) DNTT and MME differential expression in B cells from ALL and 
CLL patients. (D) ARAF transcript variant differential expression in human MDDCs. (E) The differential 
expression of target transcripts that are related to two CD4 probe sets in CD4+ T cells reveals a problem 
with the quality of one of the probe sets. (F) The differential expression of target transcripts related to three 
CD8B probe sets in CD8+ T cells reveals a problem with the quality of one of the probe sets.
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in CD8+ T cells (Fig. 2F). The target transcripts of 207979_s_at include M1 and M2 transcript variants 
of the CD8 molecule. Those of 215332_s_at are associated with M3 and M4 transcript variants. Across 
all CD8+ T cells, the M1 variant mRNA levels are the most predominant19.

Electronic sorting of cell states based on gene expression intensity. Cell states correspond-
ing to very high or low gene expression intensities often indicate that a gene has a role in the cellular 
functions and processes for that cell state. ImmuSort comprises thousands of experimental conditions 
(Supplemental Tables S1 and S2). These conditions are heterogeneous across sample sources, such as 
different individuals with unperturbed, perturbed or disease states, and experimental treatments, such 
as the stimuli and infections that occur during in vitro experiments. ImmuSort can guide users to trace 
experimental conditions based on gene expression intensity, which is called electronic sorting. We define 
electronic sorting as a bioinformatics process to retrieve cell states or experimental conditions based on 
gene expression intensity and annotated sample information. ImmuSort provides an easy way to sort 
cells based on rank scores, which are calculated from gene expression data. The sorted cells, via the rank 
scores, represent a set of experiments, the cells of which may be derived from normal individuals or 
patients with certain diseases, or from specific treatments during in vitro experiments. Electronic sorting 
may hint at functional clues for a queried gene.

For example, Fig.  1B shows two peaks in the human CCL20 RBE curve in PMNs/neutrophils. The 
right peak indicates cell states or experimental conditions with high CCL20 expression levels. Similar 
peaks can be observed in the CCL20 RBE curves in other myeloid cells, including macrophages, mono-
cytes and DCs. Further electronic sorting of these cell states with high CCL20 expression levels reveals 
that CCL20 expression is substantially induced by inflammatory stimuli, such as lipopolysaccharides and 
Mycobacterium abscessus strains, which is supported by a large number of GSEs (Supplemental Table S7). 
CCL20-bright myeloid cells therefore may represent an important functional state during inflammation.

Another example is electronic sorting of cell states with high human C-type lectin domain family 
4, member C (CLEC4C, also known as blood dendritic cell antigen 2 (BDCA2) or CD303) expression 
levels. Fig. 3 shows that BDCA2 is greatly up-regulated in plasmacytoid DCs. However, no rank scores 
larger than 70 are observed in MDDCs (Supplementary Fig. S2). BDCA2 is a type II C-type lectin recep-
tor and is a highly specific plasmacytoid DC marker20,21.

Multiple genes cannot be simultaneously queried for electronic sorting in the current version of 
ImmuSort. However, gene expression data can be downloaded via probe set links in the RBE curve 
results page, allowing cell states to be systematically traced before electronic sorting. Additionally, 
downloaded gene expression data can be used for other analyses, such as co-expression analysis in a 
cell-specific pattern.

Discussion
An immune cell database was successfully built in this study. To our knowledge, this is the first database 
describing GPL and electronic sorting (two major distinctive characteristics of the ImmuSort database). 
The database gives an overview of global cell-specific GEPs in whole cell populations derived under 
different experiment conditions. Wet experiments usually use over-expression/knock-in, knock-down, 
knock-out and induction of gene expression to study gene function. Very high or low/no expressional 
levels of a gene under various pathophysiologic states often indicate potential gene behaviour during the 
corresponding pathophysiologic processes. The GPL analysis and electronic sorting that are provided by 
ImmuSort allow users to easily discover under what treatment conditions or disease states, or in what 
cell types, a gene shows the highest or lowest expression. This is greatly superior to GEO profile analysis 
because no effective measures are currently available to perform such functions across hundreds and 
thousands of GEO data sets. However, the GEO database does allow the identification of differentially 
expressed genes within the same GSE.

Expressional heterogeneity in different cells and plasticity under different experimental conditions 
provide the basis for GEP comparisons and electronic sorting. GEP comparisons can be used for appli-
cations such as biomarker evaluation, cell-specific and/or disease-associated gene or transcript identifi-
cation, gene expression intensity comparison between different transcript variants and probe set quality 
evaluation. Electronic sorting allows associations between cell phenotypes and experimental conditions 
to be traced. It can also help in the discovery of novel marker molecules and immune cell subpopulations.

We evaluated detection calls (present/P, absent/A, marginal/M) based on rank scores. The detection 
call evaluations in all immune cells revealed that ≥99% of the probe sets were identified as absent if the 
rank scores were less than 25 for human or 21 for mouse (Supplemental Table S8, Supplemental Fig. 
S3), suggesting that gene expression was not detected. As microarrays are insensitive to genes with low 
expression levels, a rank score of 25 (human) or 21 (mouse) can be used as a cut-off for no or undetect-
able expression, indicating that the signals with lower rank scores may be due to technical noise during 
DNA hybridisation. If a probe set has a small ARS, it is likely to have very low or no expression under 
general experimental conditions.

Some cell groups (e.g., PBMCs, PBLs and splenocytes) in ImmuSort are obviously heterogeneous 
populations. For example, the PBMCs that are widely used in experimental studies are composed of 
many cell types, including T cells, B cells, NKs, monocytes and a very small portion of DCs. Therefore, 
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the high or low expression states observed during electronic sorting may be due to either changes in gene 
regulation (or expressional plasticity) within a given cell type or changes in the relative abundance of dif-
ferent cell types. Electronic sorting does not resolve the contribution of different cell types to the global 
gene expression level in a mixed cell population. Expression deconvolution methods, such as CellMix22, 
can address this problem to some extent. However, computational deconvolution relies on marker gene 
expression of multiple cell types. We have established effective methods to evaluate quantitative bio-
markers for human and mouse immune cells. This will no doubt contribute to deconvolution analysis.

GPL analysis has value for marker evaluation and prediction. Marker evaluation generally cannot be 
performed in many laboratories due to limited experimental environments and treatment conditions. As 
the current samples are from different treatment conditions, environments, individuals and cell states, 
our database provides an effective and feasible solution for bioinformatics-based evaluation and marker 
molecule prediction in immune cell subsets. For example, our unpublished work suggests that highly 
plastic genes in a cell type are more suitable as markers to label more subtle populations in cell types. A 
bioinformatics-based pre-evaluation of candidate markers can effectively improve experiments by pro-
viding better marker candidates compared with a random blind approach, saving time and money.

Each probe set in the Affymetrix 3’ expression array usually contains 11–20 probe pairs, each consist-
ing of a PM and an MM oligonucleotide. Although BLAST and BLAT23 tools are integrated in ImmuSort 
for quality probe set analysis, potential cross-hybridisation may still result from one or more probes 
within a probe set. We recommend that users make a detailed investigation of probe specificity using 
other tools, such as PLANdbAffy24, ADAPT25 and X:Map26, when an expression profile raises doubts, 

Figure 3. Electronic sorting of DCs with CLEC4C-bright expression. Top histogram indicates the expression 
profile of human CLEC4C in tissue resident DCs. Middle and bottom panels show cells (or GSM samples) 
with rank scores of 99 and 100, respectively.
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although probe sets without any annotation or annotated with different targets at the gene level have 
already been excluded.

With the accumulation of vast high-throughput data from array and next-generation sequencing 
studies in the GEO27 or ArrayExpress28 databases, new strategies for data integration are urgently needed. 
We used the strategy that expressional patterns are reflected through sample distribution based on rank 
scores. This strategy is also suitable for the analysis of other data, such as microRNA, other non-coding 
RNA and or mRNA derived from non-immune cells, although it is highly dependent on an adequate 
sample size. Tissue from different conditions, such as developmental stages and disease states, can also be 
considered. The increasingly large volumes of accumulated cellular data will facilitate cell-specific studies, 
such as cell-specific co-expression analysis of immune cells29.

An important challenge is categorising heterogeneous cells during cell-specific analyses. The devel-
opment of cell ontology30,31 will no doubt contribute to cell-specific studies. However, despite the large 
amount of public transcriptome data from immune cells, these data are largely restricted to the main 
immune cell categories, such as CD4+ T cells, B cells, monocytes and macrophages. Data sets describing 
further subsets, such as Th1, Th2 and Th17 cells, have not yet been collected. We believe that as time 
passes and publicly available data sets accumulate, more grouping factors (such as developmental stages, 
phenotypes, marker molecules and disease states) can be used for more subtle divisions of the current 
cell types.

In conclusion, this study successfully developed a web-based platform for integrated immunologi-
cal transcriptomic data analysis. We plan to integrate more data sets from other GEO platforms and 
organisms with abundant accumulated data in future versions. In the current version, electronic sorting 
is based on one GEP. In the next version, we are considering performing electronic sorting based on 
multiple genes, called multi-dimensional electronic sorting.

Methods
Data set and microarray analysis. All of the data related to the Affymetrix human genome U133 
plus 2.0 (platform no. GPL570) and mouse genome 430 2.0 (platform no. GPL1261) arrays were down-
loaded from the GEO database (http://www.ncbi.nlm.nih.gov/geo/)27. Previously described methods for 
data processing and microarray analysis were used29. The sample information, such as the sample titles, 
submission dates, sources and characteristics, was recorded in the downloaded SOFT format files. Search 
terms related to immune cells, such as ‘T cell’, ‘Th1’, ‘Th2’, ‘Th17’, ‘regulatory T cell’, ‘Treg’, ‘B cell’, ‘natural 
killer’, ‘NK cell’, ‘plasma cell’, ‘monocyte’, ‘macrophage’, ‘dendritic cell’, ‘neutrophil’, ‘polymorphonuclear 
leukocyte’, ‘mast cell’, ‘PBMC’, ‘mononuclear cell’, ‘peripheral blood lymphocyte’, ‘hematopoietic stem cell’, 
‘haematopoietic stem cell’, ‘HSC’, ‘splenocyte’ and ‘thymocyte’, were used to make an initial evaluation 
of the samples and their sizes and distributions. To avoid sample leakage, some markers (such as ‘CD4’, 
‘CD8’, ‘CD19’, ‘CD56’ and ‘CD34’) and cell name synonyms (such as ‘PBL’ and ‘DC’), were also used 
for text mining. The results were manually confirmed to avoid false hits. To categorise the immune 
cells based on experimental factors (such as disease states and tissue sources) and to exclude immune 
cell leakage, all of the downloaded sample information (not only that pertaining to immune cells) was 
exported to Microsoft Excel, and the data were scanned by eye. The final cell grouping was therefore 
performed manually. The data set was last updated on 13 November 2014.

Affymetrix array quality control. Quality control included a global quality control analysis with 
the BioConductor package ‘simpleaffy’32 and the requirement of gene expression of selected marker 
genes for each cell type, as described previously in the ImmuCo database29. For additional human cell 
types in ImmuSort, the following quality control markers were used: Tregs: CD4 (203547_at) and CD25 
(211269_s_at); PBLs: CD3 (213539_at, 205456_at, 206804_at, 210031_at), CD19 (206398_s_at) and 
CD56 (212843_at); Jurkat cell lines: CD3 (213539_at, 205456_at, 206804_at, 210031_at); and THP-1 
cell lines: CD11b (205786_s_at). For additional mouse cell types in ImmuSort, the following quality 
control markers were used: B cell precursor: CD19 (1450570_a_at); Lineage negative Sca-1 positive Kit 
positive haematopoietic stem cells: Ly6e (1453304_s_at) and c-kit (1452514_a_at); and NK cells: NKp46 
(1422089_at). For mouse splenocytes, the NK cell marker NKp46 (1422089_at) was considered in addi-
tion to CD3 (1426396_at, 1422828_at, 1422105_at, 1419178_at) and CD19 (1450570_a_at).

Rank scores and RBE curves. All of the probe sets within each array were ranked in ascending order 
based on their signal intensities. The ranks ranged from 1 to 54,675 for the human genome U133 plus 2.0 
arrays and from 1 to 45,101 for the mouse genome 430 2.0 arrays, because there were 54,675 and 45,101 
probe sets in each human and mouse array, respectively. The rank order within each array was divided 
into approximately 100 equal groups. Each group contained 546 or 547 probe sets for human or 451 
probe sets for mouse. One hundred rank scores were successively assigned to each group. The probe sets 
within the same group obtained the same rank scores. The rank scores were ‘1’ and ‘100’ for the lowest 
and highest 1% of probe sets based on their expressional signal values. The rank scores for the middle 
portion of the probe sets were set from 2 to 99, in turns. The probe set ARS was the mean of all of the 
rank scores of the probe set in all of the cell group samples.

Each cell group contained many arrays or GSMs (see Table 1). Each probe set within an array had a 
rank score. All of the rank scores at the probe set level from all of the arrays within the same cell group 
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constituted a distribution. We used RBE curves to describe these distributions. The x-axis represented 
the rank score, ranging from 1 to 100. The y-axis represented the percentile ratio for each rank score. 
For example, if a cell group comprised 500 samples (or arrays) and if there were 100 samples with a rank 
score equal to 99 for the probe set 1007_s_at, the ratio was 100/500 =  0.2. Therefore, the accumulated 
square or ratio covered by the RBE curve was equal to 1.

GPL and MES. The interquartile range, which is the difference between the 1st quartile (25th percen-
tile, 1st Qu, Q1) and 3rd quartile (75th percentile, 3rd Qu, Q3) of gene rank scores at the probe set level 
across all of the samples within the same cell group, was used as the GPL measurement score.

To facilitate biomarker evaluation, we introduced the MES to quantitatively describe how good a 
marker was. A background matrix, Mbj, was produced, in which b represents all of the rank scores of a 
probe set j (therefore, j ranged from 1 to 54,675 or 45,101 for human and mouse, respectively) across all 
cell groups. The rank scores of a probe set across all of the samples within each cell group constituted 
another matrix, Mij, in which i represents the cell group (therefore, i ranged from 1 to 31 or 17 for human 
and mouse, respectively), and j represents the probe set. We used the Wilcoxon rank sum test to calculate 
the p value between Mbj and Mij. The MES was the absolute value of the base 10 logarithm of the p value. 
If the matrix Mij median was greater than or equal to that of the corresponding background matrix, 
the MES was recorded as a positive value, otherwise it was recorded as a negative value. When the p 
value was zero or the rank scores of a probe set across all of the samples were the same (211943_x_at, 
212284_x_at and 212869_x_at for human; only 1454859_a_at for mouse), the MES was recorded as ‘NA’.

The R (http://www.r-project.org/) language and software environment were used for statistical com-
puting.

Database architecture. The ImmuSort system is based on a browser and server three-tier archi-
tecture. It includes a user interface, business logic and data access. This structure reduces dependence 
between different system modules and simplifies future system upgrades. The backstage database of 
ImmuSort was developed on MySQL 5.1 with the MyISAM storage engine.
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Corrigendum: ImmuSort, a 
database on gene plasticity and 
electronic sorting for immune cells
Pingzhang Wang, Yehong Yang, Wenling Han & Dalong Ma

Scientific Reports 5:10370; doi: 10.1038/srep10370; published online 19 May 2015; updated on 15 February 2016

The original version of this Article contained typographical errors in the ImmuSort database link ‘http://immusort. 
bjmu.edu.cn/.’ which was incorrectly given as ‘http://202.85.212.211/Account/ImmuSort.html.’ These errors have 
now been corrected in the PDF and HTML versions of the Article.
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