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Electronic system with memristive 
synapses for pattern recognition
Sangsu Park1, †, Myonglae Chu2, †, Jongin Kim3, Jinwoo Noh1, Moongu Jeon4,  
Byoung Hun Lee1, Hyunsang Hwang5, Boreom Lee3 & Byung-geun Lee2

Memristive synapses, the most promising passive devices for synaptic interconnections in artificial 
neural networks, are the driving force behind recent research on hardware neural networks. Despite 
significant efforts to utilize memristive synapses, progress to date has only shown the possibility 
of building a neural network system that can classify simple image patterns. In this article, we 
report a high-density cross-point memristive synapse array with improved synaptic characteristics. 
The proposed PCMO-based memristive synapse exhibits the necessary gradual and symmetrical 
conductance changes, and has been successfully adapted to a neural network system. The system 
learns, and later recognizes, the human thought pattern corresponding to three vowels, i.e. /a /, /i /, 
and /u/, using electroencephalography signals generated while a subject imagines speaking vowels. 
Our successful demonstration of a neural network system for EEG pattern recognition is likely to 
intrigue many researchers and stimulate a new research direction.

Artificial neural networks (ANNs) that utilize parallel computing are known to be an effective method 
of processing large datasets, such as for pattern recognition, classification, and clustering. In such fields, 
software-realized ANNs have already been developed for commercial use, but their operating speed is 
generally insufficient for increasingly complex networks. The alternative approach of a hardware neural 
network (HNN) has been studied for some time, with analogue and digital techniques that implement 
artificial neurons and synapses1–6 having a clear speed advantage over software-based ANNs7–9. However, 
synaptic devices that use analogue circuits require too much power, whereas digital approaches use 
too many transistors in a single synaptic device. Hence, their current functionality limits the ability of 
HNNs to replace their software counterparts. The problem of integrating a synaptic device into a small 
chip without burning too much power is one of the major obstacles in developing advanced HNNs. To 
enable their use in HNNs, synaptic devices must satisfy two conditions. First, they should have a sim-
ple, two-terminal architecture, allowing high integration density to be achieved via a cross-point array. 
Second, the weight of the devices should change gradually with the bias voltage, and the rate at which 
the weight increases and decreases should be symmetric.

Ever since the concept of memristive synapses were introduced in the late 1960s, they have been con-
sidered as promising candidates for synaptic devices because of their simplicity and functional similarity 
to a synapse. Recent advances in nanoscale metal-insulator-metal devices that have memristive charac-
teristics such as phase-change memory (PRAM)10, conductive-bridge memory (CBRAM)11, and oxide 
based memory (RRAM)12 have strengthened this belief. However, the conducting filament formation of 
current memristive synapse causes significant variations in resistance, preventing the desired gradual 
and symmetric change in conductance. Although significant efforts have been made to develop HNNs 
using such devices, the memristive HNNs reported to date only show the possibility of system learning 
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using a simple crossbar array13. In this paper, we present a high-density cross-point memristive synapse 
array with improved synaptic characteristics, and describe a learning scheme to mitigate the unintended 
switching problem often encountered with cross-point arrays. The conductance of our memristive syn-
apse changes more gradually and symmetrically in the presence of voltage pulses above a certain thresh-
old voltage; otherwise, the memristive synapse retains its conductance.

We also present experimental results from a memristive HNN system that recognizes the human 
thought pattern relating to three vowels, /a/, /i/, and /u/, based on electroencephalography (EEG) sig-
nals generated while a subject imagines speaking these vowels. We believe that this is the first primitive 
prototype of an electronic system that utilizes a cross-point memristive synapse array for EEG pattern 
recognition. Our results suggest a new research direction for memristive HNNs.

Results
System description.  As shown in fig.  1, the proposed system can be divided into two functional 
blocks. The first block, mainly realized in software, captures the EEG signals from a subject, and pro-
cesses them to extract the distinct features of three vowels. Each feature is converted into a series of 
32-bit binary code to be used by the 32 pre-neurons to generate a spike signal. The second block is a 
single-layer neural network that consists of 32 pre-neurons, 192 memristive synapses, and 6 post-neurons. 
The pre-neurons are hard-coded into a field-programmable gate array (FPGA), and 192 memristive 
synapses in a cross-point memristive synapse array are selected for synaptic interconnection. A leaky 
integrate-and-fire neuron is used as the post-neuron, and decision logic determines which post-neuron 
fires first based on the output signals from the post-neurons. The system’s overall control signals are also 
generated by the FPGA. Note that, to increase the system’s recognition rate, a pairwise comparison is 
performed. In other words, the post-neurons are paired into three groups, and each group compares two 
of the three vowels, i.e. /a/ vs /i/, /a/ vs /u/, and /i/ vs /u/.

The system operates in two different modes, learning and testing. In learning mode, the system’s 
learning network adjusts the conductance of memristive synapses using spike signals generated accord-
ing to the EEG signals of the pre-selected vowel. In testing mode, the subject randomly chooses and 
imagines saying one of the three vowels. The system analyses the subject’s EEG signal, and attempts to 
determine which of the three vowels was chosen.

EEG analysis of imagined speech.  The experimental paradigm for this study is described in fig. 2(a). 
The acquired EEG data are segmented according to the trial and the stimuli associated with /a/, /i/, and 

Figure 1.  Proposed memristive HNN system for EEG pattern recognition. Schematic illustrations and 
images of components for a proposed electronic system with memristive synapse. It can be categorized by 
two approaches: EEG preprocessing and implement of memristive hardware neural network.



www.nature.com/scientificreports/

3Scientific Reports | 5:10123 | DOI: 10.1038/srep10123

/u/ (Fig. 2(b), top left). The segmented data are then analysed to identify the distinct features of the three 
experimental conditions (/a/, /i/, and /u/).

Initially, continuous raw EEG data are segmented into each condition, with artifact rejection used to 
counter the low signal-to-noise ratio of EEG data. To estimate the activity evoked by the speech imagery 
data, we averaged the EEG data over all trials for each condition, a process known as time-lock analy-
sis. A time-frequency analysis was then conducted using the Morlet wavelet. As shown in the top right 
panel of fig. 2(b), the alpha band (8–12 Hz) activities of each vowel are distinct. To identify the current 
sources of the speech imagery EEG data, we conducted source localization using a Laplacian-weighted 
current density estimator. As shown on the right of the second row in fig. 2(b), the current sources of 
speech imagery EEG data were located close to Broca’s and Wernicke’s areas, as well as the primary and 
secondary cortex. Broca’s area and Wernicke’s area are closely related to speech production and percep-
tion, respectively.

Based on these results, we extracted the features needed to classify speech imagery EEG data for each 
vowel. First, we applied an IIR band-pass filter (Butterworth order: 5, bandwidth: 8–30 Hz) and baseline 
correction using pre-stimulus data to eliminate residual noise. We then used independent component 
analysis to eliminate artefacts, and decomposed the EEG data into intrinsic mode functions (IMFs) using 
multivariate empirical mode decomposition (MEMD). After MEMD, the dominant alpha-band IMF was 
extracted based on the time-frequency analysis. To enhance the classification performance, we applied 
a common spatial pattern filter that maximizes the variance between groups. Finally, we binarized the 
extracted features for input to the hardware.

Considerations for implementing a cross-point memristive synapse array.  To simplify the 
architecture of HNN, memristive synapses with advanced synaptic behavior should use identical pulses 
and a simple cross-array structure with two terminals. Advanced synaptic behavior implies not only 
gradual, but also symmetric responses in both potentiation and depression. The asymmetric I-V char-
acteristics (|current (@ + 1 V)|<<|current (@ − 1 V)|) of a previous Al/PCMO memristive synapse14 are 
shown in fig.  3(a). The Al/PCMO memristive synapse has an inhomogeneous barrier at the interface 
between the Al (reactive metal) and PCMO (p-type semiconductor)15. Because the conductance of the 
memristive synapse must be simultaneously updated in the HNN, the asymmetric conductance response 
(Fig. 3(b)) from identical pulses limits the overall accuracy of recognition16. Advanced synaptic behavior 
also requires the conductance to vary continuously when a relatively large voltage bias is applied, but 
the conductance should remain constant when a smaller or no bias is applied. This characteristic is vital 
for the nondestructive read/write scheme that eliminates the unintended switching issue, as explained in 
detail below. A simple, two-terminal cross array structure is necessary for the practical implementation 
of high-density HNN17.

Figure 2.  EEG analysis and processing. (a) Experimental paradigm for EEG study consists of four parts. 
(b) EEG data analysis. (c) Signal processing.
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In this work, we have enhanced the synaptic behavior without a complicated programming scheme by 
engineering a PCMO-based memristive synapse. We optimized the nitrogen concentration during TiNx 
deposition (Fig.  3(c)) to minimize the inhomogeneous barrier between the top electrode(TE)–PCMO 
interface18. This allowed us to obtain symmetric responses for the I-V and conductance characteristics 
(Fig.  3(d),(e)). We also developed a 200 mm wafer-scale PCMO-based memristive synapse (Fig.  3(f)) 
that exhibits excellent switching uniformity and analogue memory behaviour (see Supplementary Fig. 
S1 online). Figure 3(g) shows a typical scanning electron microscope (SEM) image of a 32 × 6 array (192 
cells) of the proposed PCMO-based memristive synapse. (Although memristive synapse arrays can be 
fabricated up to a size of 11 kbit, our memristive HNN allows only 32 × 6 arrays because of the limited 
switch logic.) If the memristive synapse and CMOS circuits are integrated in a single chip, there is no 
critical need for high-density memristive HNN. Figure  3(h) shows a TEM image of our PCMO-based 
memristive synapse fabricated using the 200 mm wafer process. It consists of active Pt/AlOx/TiNx/
Pr0.7Ca0.3MnO3/Pt (from top to bottom) devices (see methods part for details).

Memristive HNN learning.  To classify feature code by using memristive HNN, we require a learning 
algorithm. We propose a modified learning algorithm based on a conventional and widely used super-
vised learning algorithm19. In conventional supervised learning, feature codes and label data are required. 
The firing neuron is predetermined by the label data and synaptic weights are updated by feature codes, 
allowing the predetermined neuron to fire. To apply this algorithm to memristive HNN, the unintended 
switching problem must be carefully handled.

In the learning mode(rather than testing mode), the unintended switching issue causes non-linear con-
ductance changes of unwanted memristive synapses. Generally, in memory applications20, this problem 

Figure 3.  Considerations for a memristive synapse implementation in cross-point array. (a) The 
asymmetric I-V characteristics of Al/PCMO structure. (b) The asymmetric conductance response of Al/
PCMO memristive synapse in identical pulse scheme. (c) By optimizing nitrogen concentration during 
TiNx deposition. (d) Symmetric I-V characteristics of AlOx/TiNx/PCMO structure. (e) The symmetric 
conductance response of AlOx/TiNx/PCMO memristive synapse in identical pulse scheme. (f) A Photograph 
of a memristive synapse array in 8 inch wafer. (g) A SEM view image of the cross-point memristive synapse 
array. (h) A TEM view image of the cross-point memristive synapse array.
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is easily solved using the half-bias scheme. However, it is not so simple in memristive HNN, because 
multiple memristive synapses must be updated at the same time (see Supplementary Fig. S2 online).

To overcome this problem, the conventional half-bias scheme was modified to enable its application to 
memristive HNN. The proposed learning requires two operation phases for a given feature code, potenti-
ation and depression. The spike signals applied to the top electrode (TE) and bottom electrode (BE) are 
determined according to label data and feature codes. Note that when the pulse amplitude between the 
TE and BE is in the range |V|<VR  ≈ 1 V (where VR is the read voltage), the state changes are negligible. 
To update the memristive synapse conductance, the training voltage (|VT| > VR) should be supplied to the 
target cell by applying VH (or VL) and VL (or VH) to the TE and BE of the cross-point array, respectively. 
As shown in fig. 4, the proposed learning algorithm for a single feature code can be easily explained with 
simple memristive HNN (4 pre-neurons & 2 post-neurons) and detail of the circuit implementation are 
presented in the bottom-left of fig. 5.

In the potentiation phase, if the label data is ‘1’, the TE of all synapses in the first row (labelled as 
Top1) is connected to VL, then the BE of each synapse is either connected to VH for a feature code of 
‘1’, or to VCM for ‘0’. As VH and VL are 5 V and 3 V spike signals, respectively, the synapse whose BE is 
connected to VH sees a 2 V potential difference across it and increases its conductance. Whereas the 
synapses in the first row are trained, those in the second row retain their states by applying VCM to Top2. 
This guarantees that the potential difference across the synapses in the second row does not exceed VR 
and minimizes unintended switching effect.

In the depression phase, conductance of the selected synapses reduces by applying VH and VL to 
the TE and BE of the associated synapses, respectively. This process is repeated until all the memristive 
synapses are trained for all feature codes.

Notice that the initial conductance was set to a mid-value between minimum (≈1.5 nA/V) and 
maximum (≈5.5 nA/V) conductance. As shown in fig.  3(e), the change in conductance for each learn-
ing pulse depends on the current state of a memristive synapse. When a memristive synapse is in its 
low-conductance state, pulses will result in a rapid increase in conductance. The change rate is about 
0.2 ~ 0.5 nA/V for each pulse. The change rate gradually decreases to about 0.02 ~ 0.05 nA/V as the syn-
apse approaches its high-conductance state. Finally, the conductance becomes saturated.

Memristive HNN testing and classification results.  In testing mode, applied feature codes to the 
memristive HNN are recognized by the decision logics based on the output signals of the post-neurons. 
Like the learning mode, the testing mode requires two operation phases, integrating and refractory. The 
spike signals applied in these periods are shown in the bottom-right of fig.  4(b) and detail of circuit 
implementation is shown in the bottom-right of fig. 5.

A leaky integrate-and-fire neuron, including a comparator and inverting leaky integrator, is used as 
the post neuron21. Integrator output decreases as the current flowing through the memristive synapse 
accumulates on the integration capacitor during the integrating phase. If the trained conductance is large, 
we observe a large amplitude in the input current. Thus, the output voltage quickly decreases. As soon as 
the integrator output drops below a neuron’s threshold voltage (VTH = 3 V), the comparator output gener-
ates a high value (logic value of 1), and the neuron is assumed to have fired. Note that the time required 
for the integrators to reach VTH with a given feature code depends on the trained conductance of the 
memristive synapse. After the integrating phase has completed, the refractory period starts. During this 
phase, the charge on the integration capacitor needs to be fully discharged through the leaky path to 
prepare the neuron for the next feature code.

The output measured at each integrator during the testing mode is shown in fig. 6. The outputs from 
six integrators for the feature /a/ are shown in the first column. As expected, the integrators’ output drops 
almost linearly to their saturation value which depends on the conductance of the memristive synapse 
and the RC time constant of the integrator, at different rates after an initial reset (=4 V). Thus, for /a/, 
two of the six neurons generate a fire signal as the integrators’ output reaches VTH and the feature code 
applied to the system is finally recognized as /a/ through the decision logic. After the integration phase, 
all integrators’ outputs are reset to 4 V during the refractory phase. The output responses for /u/ and /i/ 
are also shown in fig. 6, which are similar results as for /a/.

Discussion
For the first time, we have developed an electronic system implemented as a memristive HNN for EEG 
pattern recognition. We engineered cross-point memristive synapse array using a 200 mm wafer scale. 
Based on the EEG results, we extracted the features for classifying speech imagery EEG data for each 
vowel. We tested the proposed memristive HNN system using preprocessed EEG feature codes, and were 
able to achieve impressive classification results (see Supplementary Fig. S3 online). This result provides 
a pathway for the future design of high density memristive HNN by overcoming the scalability, connec-
tivity, and synaptic density challenges.

Methods
EEG experiment.  This study was approved by the Institutional Review Board (IRB) of Gwangju 
Institute of Science and Technology (GIST) and all subjects provided written informed consent. The 
experiments were carried out in accordance with the approved guidelines of IRB. Six healthy subjects 
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participated in this study. None of the subjects have experienced any neurological disorders, and all 
are right-handed. A pre-test familiarization experiment was conducted for all subjects. EEG data were 
recorded at 250 samples/s using a 64-channel EEG device made by Electrical Geodesics, Inc. Electrodes 
were placed according to the international 10-20 system, and those corresponding to the sensory motor 
cortex (based on neurophysiological insight) were used for further analysis. We recorded EEG data in a 
dimly lit room. All experiments were performed in complete silence to reduce the occurrence of noise. 
During the EEG recording, subjects were seated in a comfortable armchair wearing a set of earphones 
(ER-4P, Etymotic Research). The experiments consisted of four parts, and the total length of each trial 

Figure 4.  The proposed learning scheme. (a) An example of the feature code and label data to train 
memristive synapses of top1. (b) A schematic of the 4 pre-neurons and 2 post-neurons HNN according to 
operation phase.
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was 3.5 s. The first part, lasting 1 s, was the syllable cue period, in which an /a/, /i/, or /u/ sound was 
provided at random to the subjects through the earphones. The EEG data recorded during the next 
period was used for baseline correction. In the last part, subjects imagined speaking the vowel, /a/, /i/, 
or /u/, which they had heard during the syllable cue period. A fixation mark was presented on the com-
puter monitor before every syllable cue, and an imagination period lasting 250 ms allowed the subjects 
to prepare to listen or imagine the syllable.

We conducted 100 trials for each syllable; thus, a total of 300 trials per subject were recorded. The 
IIR band-pass filter was applied to the raw EEG data to eliminate residual artefacts during the analy-
sis period (Butterworth order: 5, bandwidth: 8–30 Hz). The baseline correction was conducted using 
EEG data recorded during the baseline correction period. MEMD was used to extract the task-related 
time-frequency components from the filtered EEG data. To extract more effective features, we used the 
common spatial pattern that maximized the variance between the groups (/a/, /i/, and /u/). The feature 
vectors extracted from the common spatial pattern were binarized to 32 bits. The preprocessed 32-bit 

Figure 5.  Circuit Implementation. The circuit includes a switch array, switch control logic, 32x6 cross-
point memristive synapse array and six neuron circuits. Each neuron contains OPAMP based inverting 
integrator and comparator. Also, a schematic of HNN circuit according to operation phase are shown in this 
figure.
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training patterns are shown in Supplementary Table. S1-3 online. The total number of different training 
and testing patterns are 65 and 15, respectively.

Structure and fabrication of memristive synapses.  The cross-point memristive synapse array 
consists of active Pt/AlOx/TiNx/Pr0.7Ca0.3MnO3/Pt (from top to bottom) devices with various cell num-
bers (from 192 to 11664 cells). Supplementary Fig. S4 online illustrates the cross-point region between 
the two electrodes. To fabricate this structure, a bottom electrode consisting of a 50 nm-thick Pt layer 
(deposited by electron beam evaporation) and a 20 nm-thick polycrystalline PCMO film (deposited by 
RF magnetron sputtering) were applied by conventional lithography and reactive ion etching. During the 
PCMO deposition, the substrate temperature was maintained at 600 °C. Subsequently, an 80 nm-thick 
SiNx layer was deposited by plasma enhanced chemical vapour deposition, followed by the formation 
of holes by conventional lithography and reactive ion etching. For the top electrode, 25 nm-thick TiNx 
(N2 ambient), 10 nm-thick AlOx layer (as an internal resistor), and 80 nm-thick Pt were sequentially 
deposited and patterned.

HNN circuit implementation and measurement.  Supplementary Fig. S5 online shows the 
single-layer HNN implemented on printing circuit board. The circuit includes a switch array, switch 
control logic, 32 × 6 cross-point memristive synapse array, and six neuron circuits. The cross-point 

Figure 6.  The recognition results of speech imagination. Measured output of each integrator during 
testing mode is shown. When feature code of /a/ is used as an input of memristive HNN, its results is 
shown in first column. In the cases of /u/ and /i/, its results are also shown in second and third column, 
respectively.



www.nature.com/scientificreports/

9Scientific Reports | 5:10123 | DOI: 10.1038/srep10123

memristive synapse array is fabricated in 200 mm wafer scale, and the switch control logic, which selects 
an appropriate spike signals for each operation mode based on the feature codes, is implemented in a 
field-programmable gate array. The others are implemented with commercial chip components, such as 
OPAMP and switch circuits. Also, integrators output are captured by NI data acquisition device (USB-
6281). The average power consumption of the memristive HNN system is 47.9 mW for each matching 
operation, and the input current of each perceptron is about 90 nA.
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