
Statistical Thermodynamics of
Irreversible Aggregation: The Sol-Gel
Transition
Themis Matsoukas

Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802.

Binary aggregation is known to lead, under certain kinetic rules, to the coexistence of two populations, one
consisting of finite-size clusters (sol), and one that contains a single cluster that carries a finite fraction of the
total mass (giant component or gel). The sol-gel transition is commonly discussed as a phase transition by
qualitative analogy to vapor condensation. Here we show that the connection to thermodynamic phase
transition is rigorous. We develop the statistical thermodynamics of irreversible binary aggregation in
discrete finite systems, obtain the partition function for arbitrary kernel, and show that the emergence of the
gel cluster has all the hallmarks of a phase transition, including an unstable van der Waals loop. We
demonstrate the theory by presenting the complete pre- and post-gel solution for aggregation with the
product kernel.

A
ubiquitous problem in the physics of dispersed systems is binary aggregation: two clusters i and j merge

with probability proportional to the aggregation kernel kij, a function that characterizes the physics of i 2 j
encounters. This process describes many physical phenomena over a length scales that encompass

molecular systems, social networks, and stars1,2. Under certain kinetic rate laws that preferentially promote the
merging of large clusters, this process produces a remarkable behavior, a phase transition manifested in the
emergence of a single element that contains a finite fraction of the members of the population. This transition is
seen in experimental systems (gelation) as well in dynamic stochastic models, most notably percolation3. The
standard mathematical tool is Smoluchowski’s coagulation equation, developed nearly 100 years ago4,5. It is an
integral-differential equation that governs the evolution of the mean cluster size distribution of an infinite system
whose total mass is fixed. The Smoluchowski equation forms the basis for the quantitative study of colloids and
polymers, atmospheric aerosols, animal populations, and dispersed populations in general2,6,7 and its mathemat-
ical behavior has been studied extensively1,3,8.

The product kernel kij 5 ij is a classical example of a rate law that produces a giant cluster within finite
aggregation time1. It is a model for polymer gelation (polymerization of f-functional monomers in the limit f R
‘2,9) and for percolation on random graphs10,11. As such, it serves as the standard analytic model for the study of
the giant component. In the presence of the giant cluster (‘‘gel phase’’) the Smoluchowski equation breaks down:
the second moment of the size distribution diverges at the gel point (the divergence defines the gel point), and past
this point the first moment decays, i.e., mass is not conserved. To restore consistency one assumes the presence of
a gel phase (not predicted by the Smoluchowski equation itself) and introduces an additional assumption as to
whether the finite-size clusters (‘‘sol phase’’) interact with the gel (Flory model) or not (Stockmayer model)12.
These heuristic assumptions lead to different solutions each.

The limitation of the Smoluchowski equation arises from the fact that it reduces an inherently discrete finite
stochastic process into a single metric, the mean cluster size distribution. The need for stochastic treatments has
been raised in the literature. The discrete finite problem was originally formulated by Marcus14 and studied in
detail by Lushnikov15–17. Spouge18 and Hendriks et al.19 used a combinatorial approach to obtain solutions for
special, non-gelling cases. Other discrete, branching solutions have been implemented in closely related problems
in aggregation and fragmentation20,21, stochastic structures3, biosciences22 and astrophysics23.

These treatments offer results for a number of special cases, but are limited to non-gelling conditions and do
not provide a coherent framework for the general case. Lushnikov’s method deserves special mention because it is
the only one that is capable of obtaining solutions in the post gel region16. However, it is mathematically dense and
remains opaque to physical interpretation. The central question remains unresolved: what is the nature of sol-gel
transition and how it relates to familiar phase transitions? We are now in position to answer this question.
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Recently we developed a statistical thermodynamic formalism to
describe the behavior of generic populations13. Here we apply this
theory to irreversible aggregation, develop the thermodynamics the
discrete finite domain, and obtain the solution to the product kernel.

The Cluster Ensemble
We cast the problem in the theory of the cluster ensemble13, which we
briefly summarize here. We consider a population of M individuals
(‘‘monomers’’) that form N clusters and construct the microcanoni-
cal ensemble of all possible distributions n~ n1,n2, � � �ð Þ, where ni is
the number of clusters with i monomers. All distributions of the (M,
N) ensemble satisfy the two constraintsP

ni~N,
P

ini~M: ð1Þ

When two clusters in distribution n merge, the outcome is a new
distribution in the ensemble (M, N 2 1) of the next generation. We
formally define generation g 5 M 2 N 1 1 such that g 5 1 refers to
fully dispersed monomers and g 5 M to a fully gelled state. These
parent-offspring relationships produce a directed graph that repre-
sents the phase space of discrete binary aggregation (Fig. 1).
Following13, we express the probability of distribution n in the (M,
N) ensemble as

P nð Þ~n!W nð Þ=VM,N , ð2Þ

where n!~N!=n1!n2! � � � is the multinomial coefficient, VM,N is the
partition function, and W(n) is the bias of distribution, a functional
of n that is determined by the physics of the problem, here, by kij. The
most probable distribution (MPD) in the thermodynamic limit max-
imizes VM,N, and is given by

~ni

N
~~wi

e{bi

q
, ð3Þ

where b, log q and log ~wi are given by the partial derivatives,

b~
L logVM,N

LM

� �
N

, ð4Þ

log q~
L logVM,N

LN

� �
M

, ð5Þ

log ~wi~
L log W ~nð Þ

L~ni

� �
~nj

: ð6Þ

These general results, established in Ref. 13, describe the thermodyn-
amic state of a generic population in terms of of the selection bias
W(n). We now proceed to derive the selection bias and partition
function for the specific problem of interest, the discrete binary
aggregation process depicted in Fig. 1.

Aggregation in Discrete Finite Systems
The probability P(n) of distribution n propagates from parents to
offsprings according to equation

P nð Þ~
X
n’?n

P n’ð ÞPn’?n, ð7Þ

where n9 is the parent that produces n by merging cluster sizes i 2 j
and j, and Pn’?n is the transition probability for the aggregation event
(i) 1 (j) R (i 1 j). The parent distribution n9 is transformed into the
offspring distribution n via the aggregation of cluster masses i and j.
The probability for this process is proportional to the number of
(unordered) i 2 j pairs and the aggregation kernel kij:

Pn’?n!
n’i{j n’j{di{j,j

� �
1zdi{j,j

ki{j,j, ð8Þ

where dij is Kronecker’s delta. Normalizing overall all pairs in n9, the
transition probability becomes

Pn’?n~
2

N Nz1ð Þ�kn’

n’i{j n’j{di{j,j
� �

1zdi{j,j
ki{j,j, ð9Þ

where �kn’ is the mean aggregation kernel among all pairs in parent n9

(see Supplementary Information for details),
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Figure 1 | The ensemble of discrete binary aggregation graphs (M 5 1 through 12 shown). Each graph starts with M unattached monomers at the top

and ends with a single cluster at the bottom. The graph M 5 6 is shown in detail on the right. Nodes represent distributions; arrows point from the parent

distribution to the offspring and are labelled by the sizes of the two clusters whose merging produces the offspring. All distributions at fixed N constitute

the (M, N) ensemble. The giant component (highlighted) is identified as the cluster in the size region i . (M 2 N 1 1)/2 1 1. At most one cluster can exist

in the giant region13.
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�kn’~
1

N Nz1ð Þ
X?
i~1

X?
j~1

n’i n’j{dij
� �

kij: ð10Þ

Combining (2), (9) and (7), we obtain the recursion

VM,Nz1

VM,N
~

M{N
N

1
kM,Nz1h i

kM,Nz1h i
M{N

X?
i~2

ni

Xi{1

j~1

ki{j,j

�kn’

W n’ð Þ
W nð Þ

( )
,ð11Þ

where kM,Nz1h i~
X

P n’ð Þ�kn’ is the ensemble average kernel over
all distributions of the parent ensemble. Equation (11) applies to all
distributions n of the (M, N) ensemble, and since the left-hand side is
strictly a function of M and N, the same must be true for the right-
hand side: the quantity in braces must be independent of n. We
further require homogeneous behavior in the thermodynamic limit,
such that log ~wi is an intensive function of M/N. This condition fixes
the quantity in braces to be 1 and breaks equation (11) into two
separate recursions, one for V and one for W(n). The first recursion
is (see Supplementary Information for details)

VM,Nz1

VM,N
~

M{N
N

1
KM,Nz1h i ð12Þ

and is readily inverted to produce

VM,N~
M{1

N{1

� �
P
M

L~Nz1
KM,Lh i: ð13Þ

Thus we have the partition function in terms of M, N, and the prod-
uct of all ÆKæ from generation 1 up to the parent of the current
generation. We note that the binomial factor is the total number of
ordered partitions of integer M into N24, also equal to the number of
distributions in the (M, N) ensemble, each counted n! times. The
second recursion gives the selection bias W(n) in terms of the bias of
all parents n9 of distribution n (see Supplementary Information for
details):

W nð Þ~ kM,Nz1h i
M{N

X?
i~2

ni

Xi{1

j~1

ki{j,j

�kn’
W n’ð Þ: ð14Þ

Starting with W 5 1 in generation 1 we may obtain, in principle, the
bias of any distribution in the phase space. Returning to equation
(12), we recognize the right-hand side as q, which produces the path
equation of the process:

q~
M{N

N
1

kM,Nz1h i : ð15Þ

Equations (13) and (14), along with (3)–(6) constitute a closed set of
equations for the MPD in the thermodynamic limit.

Product Kernel
We now apply the theory to obtain the solution to the product kernel
kij 5 ij. In the thermodynamic limit, kM,Nh i?�kn? M=Nð Þ2. With
this result and Eqs. (4)–(5) we obtain the parameters of the sol (see
Supplementary Information for details):

b~2h{log h, ð16Þ

q~h 1{hð Þ, ð17Þ

~wi~2
2ið Þi{2

i!
, ð18Þ

with h 5 1 2 N/M. The MPD follows from equation (3):

~ni

N
~

2h

1{h

2hkð Þk{2

k!
e{2hk: ð19Þ

The MPD of the sol satisfies the extremum condition d log VM,N 5 0,
but for the state to be stable we must also have d2 log VM,N # 0, or (h
log q/hN)M # 0. Applying this stability condition to equation (17) we
conclude that the range of stability is 0 # h , 1/2 and that phase
splitting must occur at N* 5 M/2. This is the same as the gel point in
the Smoluchowski equation with monodisperse conditions. We now
proceed to obtain solutions in the post-gel region. Consider a two-
phase system that contains mass Msol in the sol, and Mgel 5 M 2 Msol

in the gel (Ngel 5 1, Nsol 5 N 2 113). As an equilibrium phase, the sol
maximizes VMsol,N{1<VMsol,N . Its distribution, therefore, is given by
equation (3) with h replaced by hsol 5 1 2 N/Msol. To determine Msol

we recall that equation (17) must be satisfied, at all times. Since
stability requires N # M/2, we must have Msol 5 MN/(M 2 N).
Finally, the gel fraction is wgel 5 (M 2 Msol)/M, or

wgel~2{1=h, h§1=2ð Þ: ð20Þ

Thus we have the complete solution: in the pre-gel region (h # 1/2)
the sol is given by equation (19); in the post-gel region (h $ 1/2) it
given by the same equation with h replaced by hsol 5 1 2 h, and the
gel fraction is obtained from equation (20).

We illustrate the theory with a numerical calculation for M 5 40.
This value is sufficiently small that we may enumerate all distribu-
tions on the aggregation graph and perform an exact calculation of
the entire ensemble, yet large enough that the thermodynamic limit is
approached to satisfactory degree (the phase space contains 37338
distributions). As a further test we conduct Monte Carlo (MC) simu-
lations by the constant-volume algorithm described in Ref. 25. The
simulations sample the vicinity of the MPD (not the MPD itself)
from which the mean distribution is calculated. The exact calculation
is done on the entire graph as follows. Starting with W 5 1 in
generation g 5 1, we apply equation (14) to obtain the bias of all
distributions in the next generation until the entire graph is com-
puted. Next we calculate the partition function in each generation
from the normalization condition V~

X
n!W nð Þ, and the prob-

ability of distribution from equation (2). With all probabilities
known, the mean distribution and the ensemble average kernel are
readily calculated, and the MPD is identified by locating the max-
imum P(n). As a check, we calculate the partition function from
equation (13) and confirm that for pre-gel states it agrees with the
result from the normalization condition.

These calculations are compared in Figure 2, which shows selected
distributions ranging from N 5 33 (early stage of mostly small clus-
ters) to N 5 6 (nearly fully gelled). Since the MPD is an actual
member of the ensemble, it contains integer numbers of clusters.
The mean distribution is a composite of the entire ensemble and is
not restricted to integer values. The giant cluster forms at N* 5 22
and its presence is seen very clearly in the MPD. The gel phase is less
prominent in the mean distribution because its peak is smeared by
lateral fluctuations. Not all distributions in the vicinity of the MPD
contain a giant cluster; as a result, the gel fraction grows smoothy at
the gel point. In the sol region 1 # (M 2 N 1 1)/2, the theoretical
distribution from equation (19) and the mean distribution are in
excellent agreement. The analytic result eventually breaks down
when N R 1 (the thermodynamic limit is violated at this point),
yet even with N as small as 6, agreement with theory remains accept-
able. The mean distribution from MC is practically indistinguishable
from that by the exact calculation. This confirms the validity of
equation (14), which forms the basis of the exact calculation.

Discussion
Our results make contact with several studies in the literature. A
recursion for the partition function that is similar to that in equation
(12) (different by a factor that is inconsequential for the statistics of
the ensemble but crucial for thermodynamics to work) was obtained
by Spouge18,26,27 by a combinatorial derivation for kernels of the form
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kij 5 a 1 b(i 1 j) 1 c(ij) in pre-gel states. We recognize equation (19)
as the classical pre-gel solution to the Smoluchowski equation1,3. We
further recognize the post-gel solution as the Flory model, which
assumes that the sol fraction continues to interact with the giant
component past the gel point12. No such a priori assumption is
required here: as long as no cluster is excluded from merging, a
condition already built into the kernel (kij ? 0 for all i, j $ 1), the
post-gel solution is the Flory solution.

We close with a final observation that points to an even closer
analogy to molecular systems. Using equation (15) to calculate q we
find

q~
M{N

N

� �
Nz1

M

� �2

, ð21Þ

whose limiting value for N?1 is the result given in equation (17).
Plotted against h 5 1 2 N/M over the full range h 5 0 to 1, this
equation shows behavior reminiscent of subcritical van der Waals
isotherms (Fig. 3) and for large M it converges to a parabola in the
region 0 # h , 1, plus a Dirac delta function at h 5 1. Stability
requires (hq/hh)M $ 0, a condition that is met in 0 # h # 1/2, but also
on the Dirac branch. When the system crosses into the unstable

region (state A in Fig. 3) it must split into two phases. The sol phase
is determined by equation (15), which produces a state on the stable
branch (h , 1/2) at the same q. Extending this line to the right we
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Figure 2 | Cluster distributions in a population with M 5 40 as a function of the number of clusters N. Shaded curve: mean distribution (exact

calculation by direct enumeration of all distributions); vertical sticks: most probable distribution (exact calculation); symbols: Monte Carlo simulation

(average of 5000 repetitions); dashed line: equation (19) (thermodynamic limit) with h 5 1 2 N/M in the pre-gel region (N $ M/2), and h 5 N/M in the

post-gel region.

Figure 3 | Graphical constructions of tie line in the sol-gel region. State A

is unstable and splits into a sol and a gel phase. All three states lie on the

same tie line.
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obtain an intersection with the Dirac delta branch, which we identify
as the equilibrium gel phase at hgel 5 1. Thus we have the tie line of
this two-phase system: it connects two equilibrium phases, with an
unstable state at the middle.

The ensemble method was applied here to binary aggregation but
can be adapted to any other growth mechanism. For example, by
reversing the arrows in Fig. 1 we obtain the graph of binary frag-
mentation; by including both directions we obtain the graph for
reversible aggregation/fragmentation (both processes share the same
trajectories in phase space as binary aggregation). In general, the
evolution of populations may be viewed as a swarm of trajectories
in the phase space of Fig. (1) under parent-offspring relationships
that must be derived for each case separately. We may draw, there-
fore, a rigorous connection between statistical thermodynamics and
population balances that offers new insights into the dynamics of
evolving populations.
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