
Step-by-step magic state encoding for
efficient fault-tolerant quantum
computation
Hayato Goto

Frontier Research Laboratory, Corporate Research & Development Center, Toshiba Corporation, 1, Komukai Toshiba-cho, Saiwai-
ku, Kawasaki-shi, 212-8582, Japan.

Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors
due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum
computation requires impractically large computational resources for useful applications. This is a current
major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a
standard approach to universality, consumes the most resources in fault-tolerant quantum computation.
For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum
codes, where magic states are encoded step by step from the physical level to the logical one. To manage
errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small,
it is expected that the resource overheads will become lower than previous approaches based on the
distillation at the logical level. Our simulation results suggest that the resource requirements for a logical
magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present
method opens a new possibility for efficient fault-tolerant quantum computation.

A
n arbitrarily long quantum computation can, in principle, be performed reliably even with faulty quantum
hardware with high physical error probabilities up to about 1%1–3. The fault-tolerant quantum computa-
tion is based on the use of quantum error correction4. However, it is known that the resource overheads for

fault-tolerant quantum computation become enormous for practical applications5–7, such as factoring large
integers by Shor’s algorithm8.

The most resource-intensive part in fault-tolerant quantum computation is magic state distillation5,6,9–12, the
role of which is as follows. For many quantum error-correcting codes, the basic operations called the Clifford
operations (or stabilizer operations) can be performed reliably with relatively low overheads. However, it is well
known that the Clifford operations are not only insufficient for universal quantum computation, but also can be
simulated efficiently by classical computers4,13. Thus, useful applications require at least one non-Clifford opera-
tion. Although universality can be achieved by adding a non-Clifford gate to the Clifford operations4, most
non-Clifford gates are difficult to perform reliably. Magic state distillation solves this problem as follows.
Some non-stabilizer states called magic states have a good property that they can be distilled using perfect
Clifford operations alone, where state distillation is a technique to produce high-fidelity states from more low-
fidelity states. (Non-stabilizer states are defined as states that cannot be prepared using Clifford operations alone.)
The assumption of perfect Clifford operations is valid if we use logical qubits and gates encoded with a sufficiently
large code. On the other hand, the low-fidelity magic states can be prepared by the technique called state
injection1,6. Thus, we can produce reliable magic states by combining magic state distillation with state injection,
which enable reliable non-Clifford gates9.

The magic state distillation is a standard approach to universality in fault-tolerant quantum computation. This
was first proposed by Bravyi and Kitaev9. (A similar method with equivalent performance was also proposed by
Knill independently1,14.) Since the magic state distillation assumes perfect Clifford operations, this requires many
logical qubits and gates encoded with a large code, as mentioned above. For instance, the first 15-to-1 distillation
protocol requires 15 logical ancillary magic states (ancillas) and 34 logical controlled-NOT (CNOT) gates to
obtain one high-fidelity magic state5,9. Thus, the resource overheads become enormous.

Recently, several improvements for magic state distillation have been proposed10–12. However, a recent detailed
study15 with a specific code called the surface code has shown that a state-of-the-art method12 is comparable to the
original one9. Hence, substantial reduction of resource overheads for magic state distillation has still been desired.
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(Very recently, new approaches to universality without magic state
distillation have been proposed16,17. However, they are based on the
use of inefficient quantum codes for computation, and consequently
they may not reduce resource overheads substantially.)

The previous methods9–12 of magic state distillation assume perfect
Clifford operations and therefore require many logical qubits and
gates encoded with large codes in order to utilize these methods. (For
instance, in refs 5 and 6, errors in logical Clifford operations used for
the 15-to-1 distillation9 are neglected by using sufficiently large sur-
face codes.) This may be the reason why the resource overheads have
not been reduced substantially so far. Towards the substantial reduc-
tion of the resource overheads, here we carefully treat errors in
encoded Clifford operations. As a result, we show that magic states
can be encoded step by step from the physical level to the logical one
with a concatenated Calderbank-Shor-Steane (CSS) code4. We call
this method step-by-step magic state encoding, where we carefully use
error detection. For the error detection, we introduce two new tech-
niques: magic state distillation with a Bell-state ancilla and level-
raising teleportation. Since the sizes of intermediate codes are small,
it is expected that the resource overheads will become low compared
to previous approaches based on state injection and distillation at the
logical level. Our simulation results suggest that the resource require-
ments for a logical magic state will become comparable to those for a
single logical controlled-NOT gate.

Results
Error model and error probabilities. Before describing the present
method, we start with the error model assumed here and the basics of
quantum error correction.

All the physical operations required for quantum computation are
as follows: CNOT gates; single-qubit gates, especially Hadamard
gates (denoted by H); qubit measurements in the bases {j0æ,j1æ}
and {j1æ,j2æ} (denoted by M0/1 and M1/-, respectively), where

+j i: 0j i+ 1j iffiffiffi
2
p ; and state preparations of j0æ and j1æ. The output,

m, of M1/- is defined as m 5 0 and m 5 1 for j1æ and j2æ,
respectively.

The error model assumed here is very simple: only physical CNOT
gates are imperfect among the above physical operations7. This
assumption is valid and useful for the following reasons: (1)
CNOT gates usually have the highest error probability among the
above operations; (2) in most cases CNOT gates are used most fre-
quently among the above operations; and (3) the other operations are
almost always preceded or followed by CNOT gates and therefore we
can assume that errors of the other operations are included in those
of CNOT gates. The model for an imperfect CNOT gate is the stand-
ard one1,7: one of the 15 two-qubit Pauli errors occurs on the control
and target qubits with probability pc/15 after a perfect CNOT gate
operation. More explicitly, the density operator r for the total system
is converted by an imperfect physical CNOT gate as follows: r?

1{pcð ÞUCNOTrU{
CNOTz

pc

15

X15

n~1

PnUCNOTrU{
CNOTPn, where UCNOT

denotes the unitary operator for the perfect CNOT gate operation
and Pn denotes one of the 15 two-qubit Pauli operators (I6X, I6Y ,
I6Z, X6I, X6X, X6Y , X6Z, Y6I, Y6X, Y6Y , Y6Z, Z6I,
Z6X, Z6Y , Z6Z, where the first and second Pauli operators corre-
spond to the control and target qubits for the physical CNOT gate,
respectively). (The Pauli operators and the identity operator are
denoted by X, Y, Z, and I, respectively.)

Next, we present the basics of quantum error correction. Quantum
error correction is achieved by encoding quantum information into
physical qubits with a quantum error-correcting code. Most useful
quantum error-correcting codes are stabilizer codes4, the code space
of which is defined as a simultaneous eigenspace of a set of Pauli
products called stabilizer generators (or check operators). The eigen-
values of the stabilizer generators are called error syndromes, which

are usually set to 11 for the code space. If some syndromes are -1,
there exists at least an error.

The stabilizer codes each of whose stabilizer generators consists of
only X or only Z are called CSS codes4. For CSS codes, the encoded X
and Z operators also consist of only physical X and Z operators,
respectively. In this paper, we focus only on CSS codes.

An important quantity characterizing error-correcting codes is a
code distance. The distance of a CSS code is defined as the minimum
number of non-identity physical Pauli operators in the encoded Pauli
operators among all the possible representations. (Note that the
product of an encoded operator and a stabilizer generator gives
another representation of the encoded operator.) This is equal to
the minimum number of physical Pauli errors inducing encoded
Pauli errors.

In general, distance-d CSS codes can detect physical single-qubit
errors less than d, because such errors take a state out of the code
space and therefore are detectable by error syndromes. On the other
hand, distance-d CSS codes can also correct, in principle, physical
single-qubit errors less than t(dz1)=2s, where txs denotes the floor
function which returns the greatest integer equal to or less than x.
(See ref. 4 for details.)

The process for estimating the results at encoded qubit measure-
ments or extracting the error information from syndrome measure-
ments is called decoding. The decoding for the above error detection
is simple: unless all the syndromes are 11, the decoder indicates that
errors exist. We refer to errors undetectable by this decoding as
undetectable errors. (The others are detectable errors.) Since the
undetectable errors convert a state into another within the code
space, they are equivalent to encoded operations for the code. In this
sense, we also refer to the undetectable errors as encoded errors.
(Encoded errors for logical qubits are particularly referred to as
logical errors.) Note that encoded Pauli errors are typical such errors.
The decoding for the above error correction is much more difficult. It
is known that such an optimal decoding for error correction is com-
putationally hard for general codes. However, the optimal decoding
can be performed efficiently for concatenated quantum codes com-
posed of small codes7,18,19, which are the very ones considered in the
present work. We refer to errors uncorrectable by this optimal decod-
ing as uncorrectable errors. (The others are correctable errors.) Here
it should be noted that ‘‘undetectable’’ and ‘‘uncorrectable’’ depend
on the code used. Therefore we should clarify the code used (if it is
not obvious) in mentioning the two terms.

Finally, we examine decoding error probabilities. If there exist only
independent physical single-qubit errors with probability p, the
undetectable and uncorrectable error probabilities for distance-d

codes are O(pd) and O pt(dz1)=2s
� �

, respectively, where O(f(p)) is

defined such that there exists a constant C satisfying jO(f(p))j ,

Cjf(p)j in the limit pR0. (Note that larger exponents mean lower
error probabilities assuming that p is sufficiently small.) It is notice-
able that we can also choose decoding algorithms achieving inter-
mediate performance1,7,18,19 such that the undetectable error
probability is O(px) where t(dz1)=2svxvd. To distinguish such
intermediate error detection from the above error detection, we refer
to the above error detection as full error detection. The intermediate
error detection plays an important role to reduce the resource over-
heads in the step-by-step magic state encoding.

If physical single-qubit errors in a code block are correlated, the
decoding error probabilities become higher. Therefore, it is import-
ant to retain the independence of physical single-qubit errors.
Encoded operations implemented transversally4 (by bitwise physical
operations) fulfill this condition automatically. For CSS codes, an
encoded CNOT gate, encoded Pauli gates, and encoded qubit mea-
surements (M0/1 and M1/2) can be implemented transversally.

Step-by-step magic state encoding. Here we describe the step-by-
step encoding of a level-3 magic state as a logical qubit for
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computation, which is depicted in Fig. 1. In Fig. 1 and throughout
this paper, we suppose that the concatenated code used is composed
of distance-2 CSS codes. (The generalization to distances larger than
2 is an open question.) In this case, the code distance is 2L, where L
denotes the concatenation level.

In Fig. 1, the following two points should be noted. (1) The uncor-
rectable error probability of the level-3 magic state is sufficiently
lowered to O p4

c

� �
. (Since the distance of the level-3 code is 8, we

cannot achieve, in principle, the uncorrectable error probability of
a higher order of pc.) (2) Ancillas used for the encoding of the level-3
magic state are only level-1 and level-2 ones. Hence, it is expected
that the necessary resources will become much less than those for
previous approaches based on state injection and distillation at the
logical level. (For instance, if we use the 15-to-1 protocol at the logical
level, we need 15 level-3 ancillas together with 34 level-3 encoded
CNOT gates.)

Note that such an encoding will be possible if we use full error
detection after all the encoded operations because the undetectable
error probabilities for level-L encoded qubits are of the same order of

pc, O p2L

c

� �
, as the uncorrectable error probabilities for level-(L11)

ones. (Here the encoded operations are assumed to be implemented
transversally.) However, this naı̈ve application of error detection will
lead to the substantial increase of overheads due to postselection
based on the error detection. To reduce the overheads, we use error
detection more carefully. For the error detection, we introduce the
two techniques: magic state distillation with a Bell-state ancilla and
level-raising teleportation, where the former is used for the distil-
lation steps (Steps 2 and 4 in Fig. 1) and the latter is used for the
encoding steps (Steps 3 and 5 in Fig. 1). The magic state distillation
with a Bell-state ancilla allows us to use intermediate error detection,
not full one, for the distillation. The full error detection is used only
for the level-raising teleportation, the increase of overheads for which
is not very large for small pc (see Supplementary Information). In the
following, we explain our method in detail.

First of all, we suppose that the magic state distilled is the 11
eigenstate of the Hadamard operator, jHæ 5 cos(p/8)j0æ 1 sin(p/
8)j1æ, and the distillation protocol is the 14-to-2 one with a H6 code12

(see below for the details). The magic state jH æ enables to perform a
non-Clifford gate RY(p/4), as shown in Fig. 2a, where RY(h) is defined

as RY (h)~
cos (h=2) { sin (h=2)

sin (h=2) cos (h=2)

� �
in the computational basis4.

Note that jHæ is expressed as jHæ 5 RY(p/4)j0æ.
The first step (Step 1 in Fig. 1) is the encoding of a magic state into

physical qubits with a code. This can be done easily by an encoder of
the code. Since physical CNOT gates in the encoder induce corre-

lated errors in the code block, the undetectable error probability is
O(pc), not O p2

c

� �
, as shown in Fig. 1.

The second step (Step 2 in Fig. 1) is the distillation, the role of
which is the reduction of the undetectable error probability, as shown
in Fig. 1. Since this step is very similar to Step 4 in Fig. 1, here we
explain both together.

As mentioned above, we use the 14-to-2 distillation protocol with
a H6 code. The H6 code encodes two qubits into six qubits and has
distance 2. This also has a good property that the encoded Hadamard
gate can be implemented transversally. The H6 code used here is
defined as follows: the stabilizer generators are XXXXII, IIXXXX,
ZZZZII, and IIZZZZ; the encoded Pauli operators are XIXIXI and
ZIZIZI for the first encoded qubit, and IXIXIX and IZIZIZ for the
second encoded qubit.

The quantum circuit for the 14-to-2 protocol is shown in Fig. 2c,
where the controlled-Hadamard gates are implemented as shown in
Fig. 2b and each RY(p/4) in Fig. 2b is performed with an imperfect jHæ,

as shown in Fig. 2a. Importantly, we use a Bell state
0j i 0j iz 1j i 1j iffiffiffi

2
p as

an ancilla, instead of j1æ, unlike ref. 12. This change is essential for
the successful distillation with imperfect Clifford operations, as dis-
cussed later.

The encoded operations in Figs. 2a–2c are implemented as follows.
In Figs. 2a–2c, all the encoded CNOT and Hadamard gates are
implemented by transversal physical ones. (The transversality of
the Hadamard gate is not necessary but assumed for simplicity.)
As shown in Fig. 2c, the H6 encoder and the controlled-Hadamard
gates are followed by blockwise error-detecting teleportations
(EDTs)1,7, which convert independent physical errors due to trans-
versal gates into encoded Pauli errors. The role of the EDTs is not
only to reduce error probabilities but also to simplify the error ana-
lysis of the distillation, as discussed later. At the encoded qubit mea-
surements, we also perform error detection. The distillation is
repeated until no error is detected and all the measurement results
in Fig. 2c become zero.

The decoding algorithms used for the EDTs and the encoded qubit
measurements are such that the undetectable error probabilities for
independent physical errors due to transversal gates are O p2

c

� �
and

O p3
c

� �
in Steps 2 and 4, respectively. In Step 4, we use not full error

detection but intermediate one to reduce the overheads due to the
repetition, as mentioned above.

Here we explain how the distillation achieves the desired reduction
of the undetectable error probabilities shown in Fig. 1. Since the
EDTs and the encoded qubit measurements convert independent
physical errors due to transversal gates into encoded errors, the

Figure 1 | Step-by-stem magic state encoding. This illustrates the step-by-step encoding of a level-3 magic state as a logical qubit for computation. The

circles represent physical or encoded qubits, the larger sizes of which correspond to the higher levels of concatenation. The rows labeled ‘‘Uncorrectable’’

and ‘‘Undetectable’’ show the uncorrectable and undetectable error probabilities, respectively, for the concatenated code at each position, where pc

denotes the error probability per physical CNOT gate. Distillation and encoding are performed by magic state distillation with a Bell-state ancilla (Fig. 2c)

and level-raising teleportation (Fig. 2d), respectively.
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following reduced error model based on encoded errors is valid for
the present error analysis: encoded errors occur on the input states
(jHæ, j0æ, and j1æ) with probabilities O(pc) and O p2

c

� �
in Steps 2 and

4, respectively; encoded two-qubit errors occur on the control and
target qubits of encoded CNOT gates with probabilities O p2

c

� �
and

O p3
c

� �
in Steps 2 and 4, respectively, with the exception that in Step 4,

encoded errors on the outputs of the distillation induced by the
encoded CNOT gates in the H6 decoder occur with probability
O p4

c

� �
, not O p3

c

� �
, because of the level-raising teleportation with full

error detection (see below). Since the probabilities that two of the
above encoded errors occur are O p2

c

� �
and O p4

c

� �
in Steps 2 and 4,

respectively, it is sufficient for the desired result to show that if only
one of the above encoded errors occurs, this can be detected. This is
shown as follows.

First, encoded errors on the first set of the six EDTs, which are
induced by the input states and the encoded CNOT gates for the H6

encoder, are divided into undetectable and detectable errors for the
H6 code. The undetectable errors for the H6 code induce a phase flip
in the Bell-state ancilla via the controlled-Hadamard gates12. This can
be detected by the ancilla measurements. On the other hand, any
detectable error for the H6 code can be detected by the measurements
after the H6 decoder. (These correspond to the syndrome measure-
ments of the H6 code).

Second, encoded errors on the Bell-state ancilla can be detected by
the ancilla measurements. Note that both encoded X and Z errors are
detectable, unlike the case of the j1æ ancilla used in ref. 12. This is
important because the encoded X errors on the ancilla induce an
undetectable error for the H6 code via the controlled-Hadamard

gates and consequently lead to the failure of the distillation. This is
the reason why we use a Bell state as the ancilla.

Third, encoded errors on the second set of the six EDTs, which are
induced by the controlled-Hadamard gates, can be detected by the
syndrome measurements of the H6 code (the measurements after the
H6 decoder). (Here we can assume that the encoded errors due to the
controlled-Hadamard gates are independent because their correla-
tion comes only from the ancilla and the encoded errors on the
ancilla can be detected and removed as explained above.)

Fourth and finally, encoded errors due to the encoded CNOT gates
in the H6 decoder, which induce flips of the results of the measure-
ments after the H6 decoder, can be detected because we know that the
measurement results should be zero. (It is unnecessary to consider
errors on the outputs because of the level-raising teleportation with
full error detection.)

Thus, we obtain the desired result: the distillation with a Bell-state
ancilla can achieve the reductions of the undetectable error probabil-
ities shown in Fig. 1 even with imperfect encoded Clifford operations.

Finally, we describe Steps 3 and 5 in Fig. 1, the role of which is to
reduce the uncorrectable error probabilities by raising the concat-
enation levels. Note that for this purpose, we cannot use direct enco-
ders because such encoders convert uncorrectable errors for level L
into uncorrectable ones for level (L11). To achieve the reductions of
the uncorrectable error probabilities, we introduce the level-raising
teleportation, which is depicted in Fig. 2d.

For the conversion of jyæL into jyæL11 (the subscripts represent the
concatenation levels), we first prepare a level-(L11) Bell state. Since
the Bell state is a stabilizer state, this can be prepared using Clifford
operations alone1. Next, the first qubit of the Bell state is converted

Figure 2 | Magic state distillation with a Bell-state ancilla and level-raising teleportation. (a) Non-Clifford gate RY(p/4) with a magic state

| Hæ 5 RY(p/4) | 0æ. m denotes the measurement result. (b) Implementation of the controlled-Hadamard gate, where the upper and lower lines represent

the control and target qubits, respectively. (c) Quantum circuit for magic state distillation with a Bell-state ancilla, which is used in the distillation

steps in the step-by-step magic state encoding (Steps 2 and 4 in Fig. 1). ‘‘EDT’’ represents error-detecting teleportation. (d) Level-raising teleportation.

This is used in the encoding steps in the step-by-step magic state encoding (Steps 3 and 5 in Fig. 1).
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into the level-L one, where this conversion can also be performed
using Clifford operations alone1. (This conversion is the inversion of
the encoding, and therefore also called ‘‘decoding.’’) We obtain
jyæL11 at the second qubit of the Bell state by quantum teleportation
with the Bell state, as shown in Fig. 2d, where the CNOT gate and the
qubit measurements for the Bell measurement are implemented by
transversal physical ones. At the encoded qubit measurement, we
perform full error detection. The undetectable error probabilities
are O p2

c

� �
and O p4

c

� �
for L 5 1 and L 5 2, respectively. Since the

second qubit of the Bell state is a higher-level encoded qubit by one
than the input qubit, its initial uncorrectable error probability is
sufficiently low (O p2

c

� �
and O p4

c

� �
for level 2 and level 3, respect-

ively). Thus, the desired result has been shown. We confirmed the
validity of this discussion by numerical simulations. The simulation
results also show that the increase of overheads due to the full error
detection is not large for small pc. See Supplementary Information.

Magic state emulation. To investigate the performance of the step-
by-step magic state encoding more quantitatively, we performed
numerical simulations with the level-3 C4/C6 code1,7 (also see
Methods and Supplementary Information). Since the exact simu-
lation of magic state encoding requires full quantum simulation,
large-scale simulation is computationally hard. To overcome the
difficulty, here we use j1æ 5 RY(p/2)j0æ instead of jHæ 5 RY(p/4)j0æ.
The stabilizer state j1æ can be used for a Clifford gate RY(p/2), as

shown in Fig. 3a. The step-by-step encoding of j1æ can be performed
in a similar manner to that of jHæ by replacing jHæ with j1æ and
using Xm for RY(p/2) instead of Hm for RY(p/4) (compare Fig. 3a with
Fig. 2a). The simulation of the step-by-step encoding of j1æ can be
performed efficiently.

Although this magic state emulation with j1æ is not the exact
simulation of the encoding of jHæ, this is useful as an approximation.
First, as to the error probability, the above detailed discussion of the
step-by-step encoding using Fig. 1 guarantees that the final uncor-
rectable error probability becomes O p4

c

� �
. Therefore, the difference

from the exact one is only in the proportionality factor for this. This
factor will be estimated approximately by the magic state emulation.
Second, as to the resource requirements, the resources for the encod-
ing of jHæ can be evaluated exactly by the magic state emulation in the
limit pcR0. Thus, the difference from the exact one is only in the
increasing factor for the overheads due to the error detection. This
factor will also be estimated approximately by the magic state emu-
lation. These approximations are expected to be good because the
positions and number of physical CNOT gates, which are the only
error sources in our error model, for the encoding of j1æ are exactly
the same as those for jHæ.

The quantum circuits used for the simulation are shown in
Figs 3b–3g. Figure 3b is the encoder of C4, which is used at Step 1
in Fig. 1. Figures 3c and 3d are the encoders for j0æ and j1æ, respect-
ively, at level 1, which are used at Step 2 in Fig. 1. Figure 3e is the

Figure 3 | Quantum circuits for the magic state emulation with the C4/C6 code. (a) Clifford gate RY(p/2) with | 1æ 5 RY(p/2) | 0æ. (b) Encoder

for C4, which is used in Step 1 in Fig. 1. (c) and (d) are the simplified encoders for level-1 | 0æ and | 1æ, respectively, which are used in Step 2 in Fig. 1.

(e) Decoder for C6, which is used for the level-raising teleportation (Steps 3 and 5 in Fig. 1). (f) and (g) are the simplified encoders for level-2 | 0æ and | 1æ,
respectively, which are used in Step 4 in Fig. 1.
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decoder of C6, which is used for the level-raising teleportation (Steps
3 and 5 in Fig. 1). Figures 3f and 3g are the encoders for j0æ and j1æ,
respectively, at level 2, which are used at Step 4 in Fig. 1.

The simulation results are shown in Figs 4a and 4b. The error
probability (4a) and the resource requirements (4b) for a logical
j1æ prepared by step-by-step encoding (circles) are compared with
those for a logical CNOT gate (squares) and those for a logical j1æ
prepared by state injection and distillation at the logical level (trian-
gles). The state injection used here is the one using a logical Bell state
proposed in ref. 1 and the distillation protocol is the 15-to-1 one5,9

(See Methods and Supplementary Information for the details). The
resource requirements are evaluated by the total number of physical
qubits including the effect of the repetition due to error detection.

Discussion
Here we discuss the results shown in Figs. 4a and 4b.

First, from Fig. 4a, the error probability of j1æ prepared by step-
by-step encoding is lower than not only that of j1æ prepared by state
injection and distillation, but also that of a logical CNOT gate. This is
remarkable because no approach based on state injection and distil-
lation at the logical level can achieve the error probability less than
that of a logical CNOT gate.

Next, all the plots in Fig. 4a are well fitted by ap4
c , where a is a fitting

parameter. This means that the error probabilities are O p4
c

� �
, as

expected.
Finally, we discuss the resource requirements shown in Fig. 4b.

The resource required for the step-by-step encoding of j1æ is not
only much less than that for j1æ prepared by state injection and
distillation, but also comparable to that for a single logical CNOT
gate. This is also remarkable because no approach based on state
injection and distillation at the logical level can achieve the resource
requirements comparable to a single logical CNOT gate.

All the resources increase as pc becomes larger. This increase is
caused by the repetition due to error detection. Although the increase
for the step-by-step encoding is faster than the other two, this dif-
ference is almost negligible as long as pc is sufficiently small, e.g.,
smaller than 0.002.

This increasing factor will, of course, become larger rapidly as the
code size becomes larger. Therefore, the present method can be
applied only to concatenated codes of moderate size, such as the
level-3 C4/C6 code. Nevertheless, this will be useful for first applica-

tions of quantum computers to some problems of small size. (This
‘‘small size’’ is not very small in the sense that from Fig. 4a, 108 logical
gates can be used when pc is as small as 0.001.)

In summary, we have proposed step-by-step magic state encoding
for concatenated CSS codes. We have used error detection carefully
and have introduced two new techniques: magic state distillation
with a Bell-state ancilla and level-raising teleportation. The error
probability of a logical magic state is sufficiently lowered only with
ancillas of lower concatenation levels. Thus, the resource require-
ments will be substantially reduced. We have performed numerical
simulations with a stabilizer state instead of a magic state, which we
call magic state emulation. The simulation results strongly support
our conclusion. The present results suggest that it may be possible to
perform reliable non-Clifford gates with resources comparable to
Clifford gates in the case of concatenated codes of moderate size.
Thus, the step-by-step magic state encoding opens a new possibility
for efficient fault-tolerant quantum computation.

Methods
Modified C4/C6 code. The C4/C6 code proposed in ref. 1 is a CSS code concatenating
two distance-2 codes, C4 and C6 (also see ref. 7). In the present work, we modified the
definition of C6 such that encoded Hadamard and phase gates4 can be implemented
transversally. Thus, all the Clifford gates can be implemented transversally for the
modified C6, like the Steane code4. The stabilizer generators for this C6 are the same as
the original ones, but the encoded Pauli operators are redefined by XIXIXI and ZIZIZI
for the first qubit and by IXIXIX and IZIZIZ for the second qubit. See Supplementary
Information for the detailed difference between the original and modified ones. (This
modification is not for improvement of performance but for simplification of code
properties.)

Simulation methods. The stabilizer simulator and the error-vector simulator used in
this work are the same as ref. 7. Since all the simulations are Monte-Carlo ones, the
quantities to be estimated are obtained by averaging the results of many trials. In the
following, each trial in the simulations for Figs. 4a and 4b is briefly described. (See
Supplementary Information for the detailed description.)

The procedure for the step-by-step encoding of j1æ is almost the same as that for
jHæ, which has been described in detail. To check whether logical errors have occurred
on the output or not, the output is finally measured, where optimal decoding for error
correction7 is used.

In the simulation for the logical CNOT gate, the gate is performed repeatedly ten
times on the first logical qubits of two error-free logical Bell states. (The reason for the
ten times repetition is to estimate the error probability during computation. See ref.
1.) After that, the Bell states are disentangled by error-free operations. Finally, the
logical qubits are measured with optimal decoding for error correction7 to check
whether logical errors have occurred or not. See Supplementary Information for the
details on the simulation and the implementation of the logical CNOT gate.

Figure 4 | Results for the magic state emulation with the C4/C6 code. (a) Log-log plot of the simulation results for error probabilities. (b) Semilog plot of

the simulation results for resource requirements (the total number of physical qubits). The circles (‘‘Step-by-step’’) are the results for a logical | 1æ
prepared by step-by-step encoding. The squares (‘‘Logical CNOT’’) are the results for a logical CNOT gate. The triangles (‘‘15-to-1’’) are the results for a

logical | 1æ prepared by the state injection with a logical Bell state1 and the 15-to-1 distillation protocol5,9. The straight lines in (a) are obtained by fitting

ap4
c to the plots, where a is a fitting parameter. The lines in (b) are just eye guides.
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In the simulation for j1æ prepared by state injection and distillation at the logical
level, we first estimated the error probability and the resource requirements for a
noisy logical j1æ prepared by the state injection with a logical Bell state1 (see
Supplementary Information for details). Using this result together with that of the
logical CNOT gate, we simulated the situation where 15 physical qubits in j1æ with
the same error probability as the noisy logical j1æ are distilled by the 15-to-1 distil-
lation protocol5,9 using 34 physical CNOT gates with the same error probability as the
logical CNOT gate. The results shown in Figs. 4a and 4b are estimated from this
simulation. See Supplementary Information for the details.
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