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The modeling and analysis of the dynamics of complex systems often requires to employ non-Markovian
stochastic processes. While there is a clear and well-established mathematical definition for
non-Markovianity in the case of classical systems, the extension to the quantum regime recently caused a
vivid debate, leading to many different proposals for the characterization and quantification of memory
effects in the dynamics of open quantum systems. Here, we derive a mathematical representation for the
non-Markovianity measure based on the exchange of information between the open system and its
environment, which reveals the locality and universality of non-Markovianity in the quantum state space
and substantially simplifies its numerical and experimental determination. We further illustrate the
application of this representation by means of an all-optical experiment which allows the measurement of
the degree of memory effects in a photonic quantum process with high accuracy.

I
n recent years the problem of characterizing non-Markovian dynamics in the quantum regime has initiated an
intense debate. A series of diverse definitions along with measures of quantum memory effects have been
proposed, invoking many different mathematical and physical concepts and techniques. Examples are char-

acterizations of non-Markovianity in terms of deviations from a Lindblad semigroup1, of the divisibility of the
dynamical map2, of the dynamics of entanglement2 and correlations3 with an ancilla system, and of the Fisher
information4.

In this work we focus on the measure of non-Markovianity introduced in Refs. [5, 6] which characterizes non-
Markovianity in terms of the information exchanged between an open system and its environment. To quantify

this information one uses the trace distanceD r1,r2ð Þ~ 1
2

Tr r1{r2j j between two quantum states represented by

density matrices r1 and r2, which provides a measure for the distinguishability of these states7–9. The dynamics of
an open quantum system can be described formally by means of a dynamical map Wt which maps any initial state
r(0) to its time-evolved state r(t) 5 Wtr(0) at time t10. The time evolution over some (finite or infinite) time
interval [0, T] is then described by the one-parameter family W 5 {Wt j 0 # t # T, W0 5 I} of dynamical maps. A
quantum process given by such a family of dynamical maps is said to be Markovian if for all pairs of initial states
the trace distanceD r1 tð Þ,r2 tð Þð Þ is a monotonically decreasing function of time. In physical terms this means that
the distinguishability between the states decreases monotonically which can be interpreted as a continuous flow of
information from the open system to the environment. Conversely, a quantum process is non-Markovian if there
is an initial pair of states for which the trace distance increases over certain time intervals. During these time
intervals the distinguishability of the states thus increases, which corresponds to a flow of information from the
environment back into the open system signifying quantum memory effects.

The above characterization of quantum non-Markovianity leads to a measure for the degree of non-
Markovianity which is defined by

N Wð Þ~ max
r1\r2

ð
sw0

dt s t,r1,r2ð Þ, ð1Þ

where

s t,r1,r2ð Þ: d
dt
D Wt r1ð Þ,Wt r2ð Þð Þ ð2Þ
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denotes the time derivative of the trace distance between the pair of
states at time t. In Eq. (1) the time integral is extended over all time
intervals in which this derivative is positive, and the maximum is
taken over all pairs of orthogonal initial states r1 H r2. Thus, the
measure accumulates the total increase of the distinguishability
occurring in the time evolution of two initially orthogonal quantum
states. We recall that two quantum states r1 and r2 are said to be
orthogonal if their supports, i.e. the subspaces spanned by their
nonzero eigenvalues, are orthogonal which is equivalent to
D r1,r2ð Þ~1. This implies that optimal state pairs exhibiting a max-
imal backflow of information during their time evolution are initially
distinguishable with certainty, and thus represent a maximal initial
information content.

This measure for non-Markovianity was originally defined in Ref.
[5] in terms of a maximization over all pairs of quantum states.
However, as demonstrated in Ref. [11] the maximization can be
restricted to pairs of orthogonal initial states. Although this result
greatly simplifies the mathematical representation of the non-
Markovianity measure, its determination still requires the maximiza-
tion over pairs of quantum states. Here, we derive a much simpler
representation for the measure which is particularly relevant for its
experimental realization since it only requires a local maximization
over single quantum states, the second state being an arbitrary fixed
reference state taken from the interior of the state space. This rep-
resentation will further be employed in an all-optical experimental
setup for the measurement of the non-Markovianity of a photonic
quantum process.

Results
Local representation of quantum non-Markovianity. In the
following we denote the Hilbert space of the open quantum
system by H (assumed to be finite-dimensional to simplify the
presentation) and the corresponding state space, given by the
convex set of density matrices with unit trace, by S Hð Þ. To

formulate our main theoretical result we define S
0
Hð Þ to be the

interior of the state space, i.e. the set of all quantum states r0 for
which there is an e . 0 such that all Hermitian operators r with
unit trace satisfying D r,r0ð Þƒ" belong to S Hð Þ. We further
define

E0 Hð Þ~ A A=0, A~A{, Tr A~0
��� �

ð3Þ

to be the set of all nonzero, Hermitian and traceless operators on

H. Considering any fixed reference state r0 [S
0
Hð Þ we can now

introduce a particular class of subsets of the state space: A set
LU r0ð Þ5S Hð Þ not containing r0 is called an enclosing surface
of r0 if and only if for any operator A [ E0 Hð Þ there exists a real
number l . 0 such that

r0zlA [ LU r0ð Þ: ð4Þ

Note that by definition r0 itself is not contained in hU(r0) and
that the full set hU(r0) is part of the state space. It can be easily
seen that any state from the interior of the state space has an
enclosing surface. For example, since r0 is an interior point of
the state space there is an e . 0 such that the set of states r
defined by D r,r0ð Þ~" represents a spherical enclosing surface
with center r0. However, an enclosing surface hU(r0) can have
an arbitrary geometrical shape, the only requirement being that it
encloses the reference state in all directions of state space. An
example is shown in Fig. 1(a). Using these definitions, we can
now state our central result.

Theorem. Let r0 [ S
0
Hð Þ be any fixed state of the interior of the state

space and hU(r0) an arbitrary enclosing surface of r0. For any
dynamical process W, the measure for quantum non-Markovianity
defined by Eq. (1) is then given by

N Wð Þ~ max
r[LU r0ð Þ

ð
�sw0

dt �s t,r,r0ð Þ, ð5Þ

where

�s t,r,r0ð Þ:
d
dtD Wt rð Þ,Wt r0ð Þð Þ

D r,r0ð Þ ð6Þ

is the derivative of the trace distance at time t divided by the initial
trace distance.

Proof. Let r g hU(r0). Applying the Jordan-Hahn decomposition9

to the operator r 2 r0 one concludes that there exists an orthogonal
pair of states r1 and r2 such that

r1{r2~
r{r0

D r,r0ð Þ , ð7Þ

and, hence, we have

D Wt r1ð Þ,Wt r2ð Þð Þ~D Wt rð Þ,Wt r0ð Þð Þ
D r,r0ð Þ , ð8Þ

by the linearity of the dynamical maps and the homogeneity of the
trace distance. This shows that s t,r1,r2ð Þ~�s t,r,r0ð Þ. It follows that
the right-hand side of Eq. (5) is smaller than or equal to N Wð Þ as
defined by Eq. (1). Conversely, suppose r1, r2 are two orthogonal
states. Since r1{r2 [ E0 Hð Þ, there exists l . 0 such that r ; r0 1

l(r1 2 r2) g hU(r0), by definition of an enclosing surface. Thus,
one obtains r1 2 r2 5 (r 2 r0)/l. Since r1 H r2 we find
D r,r0ð Þ=l~D r1,r2ð Þ~1 and, hence, l~D r,r0ð Þ. Thus, we are
again led to Eq. (7) and to s t,r1,r2ð Þ~�s t,r,r0ð Þ. This shows that
the measureN Wð Þ as defined by Eq. (1) is smaller than or equal to the
right-hand side of Eq. (5) which thus concludes the proof.

The statement of the theorem can be easily understood for the case
of a qubit, representing the corresponding state space by means of the
Bloch ball. The representation (1) requires to perform a maximiza-
tion over all pairs of orthogonal quantum states, i.e. over all pairs of
antipodal points on the surface of the Bloch ball. The theorem states
that this maximization can also be carried out in the following equi-
valent way. Choose a fixed point r0 in the interior of the Bloch ball
and a small surface hU(r0) which encloses r0, and take the maximum
over all points r g hU(r0). To see the equivalence, consider the
straight line joining r0 with r. This line can be moved by parallel
translation (without changing the trace distance) in such a way that it
is centered at the origin of the Bloch ball (maximally mixed state).
Stretching the line by an appropriate scaling factor (which is equal to
the inverse of the trace distance between r0 and r) its endpoints
become antipodal points of the Bloch ball. Conversely, any pair of
antipodal points on the surface of the Bloch ball corresponds in this

Figure 1 | Illustration of an enclosing surface LU r0ð Þ (a) and of a
hemispherical enclosing surface L~U r0ð Þ with disconnected boundary (b)
for an interior point r0 of the state space S Hð Þ.
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way to a point r belonging to hU(r0), which leads to the theorem for
the particular case of a qubit.

Experimental realization. We have used Eq. (5) to develop an
experimental scheme for the determination of the degree of non-
Markovianity in a photonic quantum process. In the experiment the
open quantum system is given by the polarization degree of freedom of
a single photon coupled to the frequency degree of freedom
representing the environment. While in many system-environment
models the system and its environment are represented by different
physical entities, the present situation in which system and
environment are formed by different degrees of freedom of the same
particle is not uncommon in the theory of open system. A typical
example in this context are experiments on trapped ions where also
the internal electronic degree of freedom couples to the motional
degree of freedom of the ion12. In our experiment the decoherence of
the polarization degree of freedom is due to birefringent quartz plates
in the optical path of the photon which induce a coupling between the
polarization and frequency degrees of freedom and lead to dephasing
of superpositions of vertical and horizontal polarization states. This
dephasing strongly depends on the structure of the frequency
spectrum which can be efficiently controlled by the tilt angle of a
Fabry-Pérot cavity, producing a bimodal spectrum. Hence, the non-

Markovianity in our experiment is due to the presence of a structured
environment which is a typical cause for memory effects.

The experimental setup is depicted in Fig. 2. With the help of a
frequency doubler a mode-locked Ti:sapphire laser (central wavelength
780 nm) is used to pump two 1 mm thick BBO crystals to gene-
rate the maximally entangled two-qubit state H,Vj i{ V ,Hj ið Þ=

ffiffiffi
2
p

with jHæ and jVæ denoting the horizontal and vertical polarization
states, respectively13. A fused silica plate (0.1 mm thick and coated with
a partial reflecting coating, with approximately 80% reflectivity at
780 nm) serves as a Fabry-Pérot cavity (FP) which in addition can
be tilted to generate different dynamical behavior14. The cavity and a
consecutively placed interference filter (IF) (FWHM about 3 nm) sin-
gle out two peaks near 780 nm of width s 5 7.7 3 1011 Hz each which
are separated by Dv 5 7.2 3 1012 Hz. The relative amplitude Aa of the
two peaks depends strongly on the tilt angle a whereas the other
quantities are almost constant. A polarizing beamsplitter (PBS)
together with a half-wave plate (HWP) and a quarter-wave plate
(QWP) are used as a photon state analyzer15.

Photon 1 is directly detected in a single photon detector at the end of
arm 1 as a trigger for photon 2. The optical setup in part a, b and c (see
Fig. 2) is used to prepare arbitrary quantum states of photon 2 needed
for the sampling process16. This set-up conveniently allows to prepare
any single pure photon polarization state (in arm 2c) and reference
states (2a along with 2b) together with arbitrary enclosing surfaces
which can be controlled by changing the relative amplitudes of the
attenuators built in in each arm. The path difference between each arm
is about 25 mm to ensure that the mixture of the three parts is classical.

After the preparation photon 2 passes through birefringent quartz
plates of variable thickness which couple the polarization and fre-
quency degree of freedom and lead to the decoherence of superposi-
tions of polarization states. The birefringence is given by Dn 5 8.9 3

1023 at 780 nm. The thickness of the quartz plates simulating differ-
ent evolution times ranges from 75l to 318l in units of the central
wavelength of the FP cavity.

Employing the Bloch vector representation, the set of polarization
states can be conveniently parametrized by means of spherical coor-

Figure 2 | Experimental setup. Key to the components: HWP – half-wave

plate, QWP – quarter-wave plate, FP – Fabry-Pérot cavity, IF – interference

filter, QP – quartz plate, (P)BS – (polarizing) beamsplitter, SPD – single

photon detector.

Figure 3 | Experimental results for the increase of the trace distance
between 175l and 318l for Aa 5 0.64 for states on the enclosing surface of
reference state r1

0 (a), r2
0 (b) and pairs of orthogonal states (c). The

corresponding wloc-averaged increase with respect to local spherical

coordinates is shown in (d), (e) and (f). Error bars show the standard

deviations.

Figure 4 | The same as Fig. 3 for Aa 5 0.22.

Figure 5 | The same as Fig. 3 for Aa 5 0.01.
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dinates r 5 (r, h, w). We apply the local representation to two ref-
erence states to determine experimentally the degree of non-
Markovianity for three dynamics characterized by the relative ampli-
tudes Aa 5 0.64, 0.22 and 0.01, ranging from non-Markovian to
Markovian evolutions, and compare the results with the outcome
for pairs of orthogonal initial states. The reference states r1

0 and r2
0

used in the experiment are given by

r1
0~ 0:20,

1
2

p,
13
50

p

� �
, r2

0~ 0:88,
8

50
p,

13
50

p

� �
: ð9Þ

Reference state r1
0 is thus located inside the equatorial plane, whereas

the second reference state lies in the northern hemisphere close to the
boundary. The enclosing surfaces are determined by the convex
combination 0:3:r1,2

0 z0:7:r of the reference states and any pure
state prepared in arm 2c. These sets thus contain only mixed states.
We measured a total of 5000 states on the surface for each reference
state which are characterized by the azimuthal and polar angles of the
pure states. The associated angles h and w are located on a lattice with
equal spacing of 2p/100.

The outcomes of the measurements are presented in Figs. 3, 4 and
5. The increase of the trace distance between 175l and 318l for any
state on the enclosing surface for the two reference states is shown in
Figs. 3(a)–5(a) and 3(b)–5(b) using color coding. Note, that the
colored surfaces in these figures are non-spherical and not centered
at the origin. By contrast, the ordinary Bloch spheres depicted in
Figs. 3(c)–5(c) show the measurement outcomes for pairs of ortho-
gonal initial states.

Defining spherical coordinates rloc 5 (rloc, hloc, wloc) with respect
to local coordinate systems centered at the position of the two ref-
erence states r1

0 and r2
0, one recovers the polar symmetry present for

pairs of orthogonal states, see Figs. 3(a)–(c). One may therefore
average the outcomes over the polar angle wloc along lines of latitude.
To this end, we introduced an appropriate binning on the z-axis and
determined the average increase which we then assigned to the azi-
muthal angle hloc associated to the mean z-value in the bin. In addi-
tion, we allocated the standard deviation to each of the averaged
outcomes. The resulting data are depicted in Figs. 3(d)–5(d) and
3(e)–5(e) and show the same characteristics as the w-averaged
increase of pairs of orthogonal states displayed in Figs. 3(f)–5(f).
Note that the directional dependence of the trace distance originating
from its property of depending only on the difference of two states
can be nicely seen for example in Figs. 3(d)–(f).

The maximal increase of the trace distance for the two reference
states obtained from the wloc-averaged data as well as for pairs of
orthogonal states are given in Tab. I. The experimentally determined
values are in very good agreement with the predictions of the theor-
etical model14, demonstrating the experimental feasibility and the
accuracy of the method based on the local representation (5).

Discussion
The representation of quantum non-Markovianity given by Eq. (5)
bears several important mathematical and physical consequences.
First, it demonstrates that the non-Markovianity measure can be
determined by maximization over single quantum states r taken
from an arbitrary neighborhood of a fixed state r0 in the interior

of the state space. Thus, Eq. (5) provides a local representation of
non-Markovianity, showing that quantum memory effects can be
detected locally by sampling single states from an arbitrary enclosing
surface of a fixed reference state. Note that the theorem cannot be

applied to infinite dimensional Hilbert spaces sinceS
0
Hð Þ is empty in

this case.
Second, the choice of the fixed reference state r0 is completely

arbitrary, the only condition being that it belongs to the interior of
the state space. Thus, the non-Markovianity of a dynamical process is
indeed a universal feature which appears everywhere in state space:
The information about non-Markovian behavior is contained in any
part of the state space which supports the intuitive idea that quantum
memory effects represent an intrinsic property of the dynamical pro-
cess. This fact is particularly relevant when dealing with a dynamical
process that has an invariant state in the interior of the state space. It
is then of great advantage to choose r0 as this invariant state such that
only the sampled states r g hU(r0) evolve nontrivially in time.

Third, the theorem greatly simplifies the analytical, numerical or
experimental determination of the non-Markovianity measure. In
particular, it shows that it is not necessary to scan the whole state
space in order to find an optimal pair of quantum states, but rather to
sample the states of an enclosing surface of a fixed interior point of the
state space. From the proof of the theorem we also see that it suffices if
the enclosing surface contains all directions emanating from the fixed
reference state r0 exactly once, i.e. if Eq. (4) holds for exactly one l . 0.
It is even sufficient if this equation holds for either A or 2A. Therefore,
the theorem is also valid if hU(r0) is replaced by a hemispherical
enclosing surface L~U r0ð Þ which we define as follows. A set
L~U r0ð Þ5S Hð Þ is said to be a hemispherical enclosing surface of r0

if and only if for any A [ E0 Hð Þ there exists exactly one real number l

. 0 such that either r0zlA [ L~U r0ð Þ or r0{lA [ L~U r0ð Þ. A hemi-
spherical enclosing surface thus contains all directions, given by opera-
tors A [ E0 Hð Þ, only once. Moreover, it needs neither be smooth nor
connected (see Fig. 1(b) for an example) which makes this character-
ization particularly useful for noisy experiments.

Summarizing, we have developed a representation of the measure
for quantum non-Markovianity which fully reveals the locality and
universality of memory effects in the quantum state space. These prop-
erties are clearly reflected in the results of our photonic experiment.
The experiment illustrates that the measure can be obtained efficiently
in an arbitrary neighborhood of any fixed state in the interior of the
state space, that its determination only requires a maximization over a
single input state, and that optimal quantum states featuring maximal
backflow of information can always be represented by mixed states.
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