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There are many types of autoregressive patterns in financial time series, and they form a transmission
process. Here, we define autoregressive patterns quantitatively through an econometrical regression model.
We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions
between patterns as edges, and then converts the transmission process of autoregressive patterns in a time
series into a network. We utilised daily Shanghai (securities) composite index time series to study the
transmission characteristics of autoregressive patterns. We found statistically significant evidence that the
financial market is not random and that there are similar characteristics between parts and whole time
series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the
financial market. A clustering effect on fluctuations appears in the transmission process, and certain
non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different
stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not
only proposes a distinctive perspective for analysing financial time series but also provides important
information for investors.

financial market is a complex system whose behaviour is usually characterized as a financial time series’.

Therefore, we can understand the structures and characteristics of a financial market by analysing the

financial time series. Many researchers have proposed various time series models based on econometrics,
e.g., the autoregressive integrated moving average model (ARIMA)?, bilinear time series model’, autoregressive
conditional heteroskedasticity model (ARCH)?*, generalized autoregressive conditional heteroskedasticity model
(GARCH)’, threshold autoregression model® and neural network models”®. In non-linear analysis, researchers
applied wavelet transform, analytic signal approach, multiscale entropy, multifractality and recurrence quan-
tification analysis, etc., to quantify the complexity of time series, including issues such as characteristics, identi-
fications and dynamics® .

However, there is another issue with time series: the transmission of fluctuation information. Most financial
time series have the characteristic of fluctuation, and autoregressive equations can reflect the fluctuation informa-
tion. Different sub-periods of the whole time series exhibit different autoregressive sub-patterns. If a long-term
financial time series is divided into many fragments (sub-periods), the entire autoregressive pattern of the long-
term financial time series can be described by the union of all the autoregressive sub-patterns: Sub_pattern;. As the
number of fragments increases, it obtains more autoregressive sub-patterns and creates a more detailed char-
acterisation of the entire autoregressive pattern of the long-term financial time series. The evolution of the
autoregressive sub-patterns forms a time-varying process of transmission, which can help us learn the fluctuant
trend of financial time series. In the process of transmission, there are different types of autoregressive sub-
patterns that transform into each other and form a transmission complex network (TCN).

To understand the characteristics of the autoregressive sub-patterns transmission, we should analyse the TCN.
Complex network theory provides a good analysis approach. The core idea of complex network theory is to
capture the essential characteristics of a real system by analysing the network structure of the system'".
Dynamical information in time series can be identified using complex network theory. Zhang, Small and Xu
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found that the structure of the corresponding network depended on
the dynamics of the series®®*'. Researchers divided time series into
fragments with fixed sizes and then constructed a corresponding
complex network model to analyse the structure characteristics in
the time series®**. Lacasa et al. proposed the famous visibility graph
algorithm, which can map all types of time series into networks™.
Then, the Hurst exponent of fractional Brownian motion is studied
using the visibility algorithm®. Thus far, the visibility algorithm has
been used in many areas’”**. In our previous studies®*', we have
researched the transmission characteristics of correlation modes in
time series based on complex network theory. We found power law
distributions, ‘small-world’ behaviour and transmission media in the
process of the transmission.

In this paper, we investigated the transmission characteristics of
autoregressive sub-patterns in financial time series. First, we pro-
posed a new algorithm that maps the transmission of autoregressive
sub-patterns into networks. Then, we studied the distributions of
autoregressive sub-patterns, transmission pattern, the fluctuation
clustering effect and the transmission media in the process of trans-
mission, using the complex network analytical approach.

Data. The Shanghai (securities) composite index is used in this study.
The index contains 5629 data points from December 19, 1990 to
December 31, 2013 (http://app.finance.ifeng.com/hq/stock_daily.
php?code=sh000001). The Shanghai (securities) composite index
reflects the overall trend of the Shanghai stock exchange markets.

Definition of the autoregressive sub-patterns in financial time
series. To define the autoregressive sub-patterns in financial time
series, we first divided the financial time series into m dimensions.
The fluctuation of each dimension can be represented by an
autoregressive sub-pattern. Then, we defined the scale of the
dimension as . The scale is the length of the dimension, i.e., each
dimension contains w time-series data.

Yi={yiyit1>--- Yivw—1}i=12,...m, (1)
where Y; is i-th dimension. This process utilises a sliding data-
window to divide the time series into fragments. Y; , | contains
w—1
% of the information of Y;. The advantage of the sliding-

[0
window method is that it retains the feature of memory and
transitivity between dimensions®'. Thus, the number of
dimensions m = n — @ + 1 (where n = 5629 is the number of
observations).

Second, we built a regression equation for each dimension. The
regression model of the j-th dimension can be described as follows:

li’l (ijrl) = ﬁj + O(jll’l (yj) + Sj, (2)

where y; is the j-th Shanghai (securities) composite index, f3; and «;
are the parameters of the regression and ¢ is the residual error. The
logarithmic process of y can remove the exponential trend.

We observed the autoregressive sub-patterns through the forms of
autoregression of the financial time series. Then, we utilised the most
basic and effective ordinary least squares (OLS) method to evaluate
the values of the two parameters, § and o.. Hence, we can obtain a

01,002,003+ + Ol
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combination of the two parameters involves a regression equation
that describes the autoregressive sub-pattern of a dimension with
scale o.

Third, we allocated parameters ff and o to the different intervals.
We defined 0.05 as the interval extent of parameter o and 0.1 as the
interval extent of parameter . In addition, the significance of the
regression model was tested by a Student’s test, and the autocorrela-
tion of the residual errors was tested by the Durbin-Watson (D-W)
test. If the regression model of a dimension does not pass the signifi-

series of values for parameters o and {

cance test, we marked it as ‘P’, and if the autocorrelation of the
residues in a dimension did not pass the D-W test, we marked it as
‘D’. Thus, the combination of the parameters can be allocated into
different intervals defined as autoregressive sub-patterns Sub_pattern;.
For example, the parameters of the i-th dimension are «; = 0.926, f3;
= 0.531, and the dimension passes both the significance test and the
D-W test. Thus, Sub_pattern; = ©(0.9,0.95]3(0.5,0.6] reflects the
autoregressive sub-pattern of the dimension. Several of the sub-pat-
terns are marked as ‘P’, ‘D’ or ‘PD’. The results of the significance test
depend on p-values. If the p-value is less than 5%, the model passes
the significance test. A different scale o (sample size) needs a different
D-W test standard. Here, we referenced the ‘Durbin-Watson d stat-
istic: significance points of dl and du at the 0.01 level of significance™.
This step can utilise the limited patterns to show the intrinsic trans-
mission characteristics between the continuous patterns; it is neces-
sary to construct the transmission networks.

Mapping the transmission of autoregressive sub-patterns into
complex networks. Based on the above, we obtained the sequence
of the autoregressive sub-patterns. This means that the autoregressive
sub-patterns evolve into each other over time: Sub_pattern; —
Sub_pattern, — - - - —»Sub_pattern,, (m = n — o + 1). However,
there are only a few types of autoregressive sub-patterns (the
number of types of autoregressive sub-patterns less than m).
Therefore, we defined the types of autoregressive sub-patterns as
nodes and the transmissions over time as edges. The weight of an
edge is the frequency of the transmission between two types of
autoregressive sub-patterns. Thus, we mapped the transmission of
autoregressive sub-patterns in the financial time series into a
directed and weighted transmission complex network (TCN). As
an example, we took the scale of the dimension w = 50, as shown
in Fig. 1.

Results

The TCN contains different types of autoregressive sub-patterns in
financial time series and reflects the relationships between different
sub-patterns. Each type of autoregressive sub-pattern plays a role in
the topological structure of the TCN. Thus, we can observe the trans-
mission characteristics of the fluctuation sub-patterns in financial
time series through analysis of the TCN. Complex network theory
provides many indices to identify the major autoregressive sub-
patterns, clusters and transmission media. Moreover, we can set
different scales of the dimension ® depending on the needs of the
analysis. If the goal is to study the transmission characteristics of
autoregressive sub-patterns based on short periods, scale @ can be
set to a smaller value. If the goal is to understand the transmission
characteristics based on long periods, scale @ can be set to a larger
value. With an increase in scale w, the numbers of nodes and edges in
the corresponding complex networks decrease (Fig. 2 (a)). When o
= 500 the number of nodes is only eight, and the number of nodes is
only three when @ = 1000. An increase in scale o will hide the
characteristics of diversity of the autoregressive sub-patterns. Thus,
if the value of scale w is too large, it is meaningless for studying the
transmission of the autoregressive sub-patterns in financial time
series. From Fig. 2 (b), on the one hand, when the values of scale »
are less than 100, the densities of the networks are less than 0.05.
However, the density of the networks increases quickly with an
increase in scale w; when @ = 1000, the density of the networks
reaches 1. On the another hand, the length of the average shortest
path of networks decrease with an increase in scale . If a type of sub-
pattern transforms into another, it will convert via only a few types of
sub-patterns (fewer than 5).

We took the scale of the dimension @ = 50 as an example, and the
entire financial time series is divided into m = n — » + 1 = 5580
dimensions. Then, we constructed the regression equations of the
dimension and corresponding model tests 5580 times. The propor-
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Figure 1| Transmission complex network of autoregressive sub-patterns in Shanghai (securities) composite index time series. (The scale of dimension
= 50, with different colours representing different clusters. For details, please see analysis of clustering effect).

tion of the dimensions that passes both the significance test and the
D-W test is 94.01%, which also ensures the effectiveness of the study.
After defining the autoregressive sub-patterns, we obtained 5580
autoregressive sub-patterns. However, only 106 types of sub-patterns
appear in the TCN.

Major autoregressive sub-patterns in the transmission process
(nodes). We identified the major autoregressive sub-patterns
through the transmission ability of the autoregressive sub-patterns,
which can be measured by the weighted out-degree of the nodes. The
weighted out-degree is a comprehensive indicator of the local
information for a node; it considers not only the number of
neighbouring nodes but also the weight between neighbours. The
weighted out-degree of node w? is defined as

i

W?ut = ZjeN; Wij> (3)

where N; is the set of neighbours of node i, and w;; is the weight from
node i to node j. Nodes with greater out-degree weights are shown
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larger in Fig. 1 and have corresponding autoregressive sub-patterns
with greater transmission abilities.

The weighted out-degree of a node in TCN follows a power-law
distribution p(w*“') ~w*"", as shown in Fig. 3 (a). From Fig. 3 (b),
we see that 14.28% of the autoregressive sub-patterns (15 types)
shoulder 80.21% of the transmission ability in the TCN. This implies
that a few types of autoregressive sub-patterns play a major role in the
process of the transmission and that Shanghai securities market is
statistically significantly not random under. A few types of autore-
gressive sub-patterns drive the oscillations of the financial market.

Moreover, to look further into the parts of the studied time series,
we evenly divided the whole studied time series into two parts; the
first part is from December 19, 1990 to July 2, 2002, and the second
part is from July 3, 2002 to December 31, 2013. We found that both
distributions of the transmission ability follow power-law distri-
bution p(w’) ~ wo"" as shown in Fig. 3 (c) and (d). The distribu-
tions of transmission ability between parts and whole have similar
characteristics.
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Figure 2 | Sensitivity analysis on w. (a) Number of nodes and edges for different values of scale . (b) Density of networks and average shortest path for

different values of scale w.
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Transmission patterns (edges). From the process above, we
analysed the major autoregressive sub-patterns in the transmission
process from the perspective of nodes. We also focused on
transmission patterns between any two autoregressive sub-patterns
(edges). The dualistic transmission pattern is defined as two nodes
and the edge between them, i.e. Sub_pattern; — Sub_pattern;. There
are 106 types of autoregressive sub-patterns in the TCN. Thus,
theoretically, there are 106> = 11,236 types of transmission pat-
terns between two autoregressive sub-patterns but only 590
directed and weighted edges in the TCN. This means that 590
types of transmission patterns are present in the transmission
process. From Fig. 4, we see that the distributions of the weights of
the whole and the parts follow the power-law distribution
p(wij) ~ w,-ﬂfi. The result shows that there are just a few types of
major transmission patterns.

Although there are hundreds of types of autoregressive sub-pat-
terns (106 nodes) and transmission patterns (590 edges), the major
transmission patterns concentrate in a small area, as shown in Fig. 5
(). Thus, there are significant laws and features in the transmission
process of autoregressive sub-patterns in financial time series. In
Shanghai stock exchange markets, the autoregressive sub-patterns
do not transmit to others randomly. Rather, the transmission of
fluctuation information is controlled by a few types of transmission
patterns. In particular, certain autoregressive sub-patterns transmit
into themselves. For example, transmission patterns (0.9,0.95]
B(0.4,0.5] — ©(0.9,0.95]B(0.4,0.5], 1(0.95,1]B(0.1,0.2] — 0.(0.95,1]
B(0.1,0.2] and 6(0.95,1]8(0.2,0.3] — (0.95,1]B(0.2,0.3].

Moreover, each type of autoregressive sub-pattern has many dif-
ferent transmission objects, but only a few types of autoregressive
sub-patterns can be transferred with higher probability. The trans-
mission probabilities of the major autoregressive sub-patterns (the
top 5) are shown in Fig. 5 (b). Thus, the transmission patterns of
major autoregressive sub-patterns are relatively stable in the trans-
mission process.

Clustering effect on fluctuation in the transmission process. The
analysis of clusters in the TCN can help us to understand the
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fluctuation clustering effect in the transmission process. The
clustering effect on fluctuation is that some autoregressive sub-
patterns transfer into each other more frequently rather than
transferring into others in the process of the transmission; i.e., a
type of autoregressive sub-pattern usually accompanies certain
autoregressive sub-patterns. There are high transmission prob-
abilities between these sub-patterns, and these sub-patterns form a
sub-network. A sub-network is defined as a group of nodes that have
a high density of edges within them but a lower density of edges
between groups™. Blondel** provided an algorithm to divide the
TCN into clusters accurately and efficiently. The algorithm is
based on modularity in the networks. (For details on the algorithm
of dividing clusters, please see Ref. [25].)

The results show that there are five clusters in the TCN (Fig. 1
shows different colours representing different clusters; 1-green, 2-
yellow, 3-purple, 4-red and 5-blue). Fig. 6 (a) indicates that there is a
relatively negative correlation between the number of types and the
sum of the weighted out-degree of clusters. Thus, the cluster has
strong transmission ability with only a few types of autoregressive
sub-patterns.

There are three major clusters in the TCN, clusters 2, 3 and 4,
which have 85.30% transmission ability. The appearance of major
clusters can imply a stable signal in the fluctuation of the financial
time series and can provide investors with the important information
that the financial time series fluctuates around a certain major cluster
for a period. For example, although the Shanghai (securities) com-
posite index time series experienced periods of sharp increase and
sharp decline from 2006 to 2008 (time = 3691 to 4247), the auto-
regressive sub-patterns were relatively stable. In particular, cluster 2
shows an obvious clustering effect on fluctuation (see Fig. 6 (b)).
However, clusters 1 and 5 contain 59.43% of the types of autoregres-
sive sub-patterns, and the sum of weighted out-degree only accounts
for 14.70% in the TCN. The appearance of clusters 1 or 5 can reflect
an unstable signal for investors, implying that the autoregressive sub-
patterns vary during corresponding periods. For example, at the
beginning of the Shanghai securities market, the stock market mech-
anism was not perfect. Regulation with respect to daily price limits
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Figure 3 | Distributions of the weighted out-degree of node. (a) Double-logarithmic plot between the weighted out-degree of node w{** and p(w?™“) (the
whole time series). (b) Cumulative distribution of the weighted out-degree of the node (sorted by the value of the weight out-degree of the nodes in
descending order, N = 1,2,...,106). (c) Double-logarithmic plot between the weighted out-degree of node w?* and p(w{*) (the first part of the time

series). (d) Double-logarithmic plot between the weighted out-degree of node w'
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out ) (the second part of the time series).
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Figure 4 | Distributions of the weights of edges in TCN. (a) Double-logarithmic plot between weights of the edges w;;and p(w;;) (the whole time series).
(b) Double-logarithmic plot between weights of the edges w; ;and p(w; ;) (the first part of the time series). (c) Double-logarithmic plot between weights of

the edges w;jand p(w;;) (the second part of the time series).

was in abeyance on May 21, 1992. Thus, the stock price was guided by
the markets, and in only 5 days, the Shanghai (securities) composite
index increased from 616.99 to 1421.57 (increasing as much as
130.40%). This turbulent period is marked by cluster 1 (the green
areas in Fig. 6 (b)).

Moreover, different clusters have different autoregressive sub-
patterns. The primary autoregressive sub-patterns of the three major
clusters are 0.(0.95,1]$(0,0.4] (cluster 2), 2(0.9,0.95]$(0.4,0.7] (clus-
ter 3) and 2(0.85,0.9]8(0.7,1] (cluster 4).Thus, investors can ref-
erence different autoregressive sub-patterns in different periods
with a corresponding fluctuation clustering effect.

Transmission abilities differ between different clusters. The trans-
mission ability T, 5 between cluster A and cluster B is defined as

Tap= ZieA,jeB Wij» (4)

where w;; is the weight from node i to node j, node i belongs to cluster
A and node j belongs to cluster B.

QO

20
40

Fig. 6 (c) shows that there are three levels in the distribution of the
transmission ability between clusters. The first level is that high
transmission ability occurs in the interior of a cluster, which also
proves that the cluster partition is effective. The second level of
transmission ability occurs between clusters 2 and 3, clusters 3 and
4, and clusters 4 and 5. This means that the changing of autoregres-
sive sub-patterns in the transmission process mainly occurs in three
cases: cluster 2 <> cluster 3, cluster 3 <> cluster 4 and cluster 4 <>
cluster 5. In the third level, the transmission ability is weak between
these clusters. For example, cluster 1, 2 or 3 is difficult to transmit to
cluster 5, and cluster 5 is difficult to transmit to cluster 1, 2 or 3. Thus,
there are transmission media between the clusters that enable one
autoregressive sub-pattern to transmit to another autoregressive sub-
pattern.

Transmission media. If an autoregressive sub-pattern stands in the

shortest path between two patterns, it plays the role of transmission
media in the transmission process. The level of the transmission
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Figure 5 | Transmission ability between autoregressive sub-patterns. (a) Distributions of the transmission ability between two autoregressive sub-

patterns. The transmission direction is from autoregressive sub-pattern ito j (i, j = 1,2,...,

sub-patterns (with a weighted out-degree of no less than 380).

106). (b) The transmission probabilities of the major fluctuant
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media effect can reflect the ability to control information in the
transmission process. Only by transmitting through these media
can certain autoregressive sub-patterns transmit to others. The
transmission media play an important role in the topological
structure of complex networks®. In the TCN, especially, the
transmission media between fluctuation clusters are the necessary
conditions for the significant changing of autoregressive sub-
patterns, which can provide investors with important information
on likely future changes. Thus, we can evaluate the normalised
betweenness centralities of nodes that can denote the media ability
of each autoregressive sub-pattern in the TCN*. The normalised
betweenness centrality BC; of node i can be defined as

_ X Xign(i)/gi

BG;
! n2—3n+2

LjEkAL j<k, ()
where gj(i) is the number of shortest paths between nodes j and k
that pass node i. gj is the total number of shortest paths between
nodes j and k. For higher normalised betweenness centralities, the

media ability is stronger.

Fig. 7 (a) indicates that 25.47% of the autoregressive sub-patterns
(21 types) shoulder 70.62% of the media ability, and the top 3 auto-
regressive sub-patterns shoulder 16.57% of the media ability in TCN.
Thus, these autoregressive sub-patterns with high media abilities are
significant for information changing and transmission in the
Shanghai securities market. Autoregressive sub-patterns with high
media ability play an important role in controlling information. In
particular, the autoregressive sub-pattern 0(0.95,1]$(0.1,0.2] (BC =
0.196, w** = 434) has the highest media ability and third transmis-
sion ability in the TCN, occupying an important position in the
transmission process. We also found that certain lower-weighted
out-degree autoregressive sub-patterns have higher media ability.
Thus, although these autoregressive sub-patterns are not major fac-
tors in the financial market, they are important in mediating roles in
the transmission process (see Fig. 7 (b)), e.g., (0.8,0.85]3(1.1,1.2]
(BC = 0.163, w** = 88) and (0.75,0.8] B(1.5,1.6] (BC = 0.161, w*“
= 51). From the perspective of betweenness centrality of the net-
work, these autoregressive sub-patterns imply a precursor to market
changes. We should pay attention to these autoregressive sub-
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patterns. Moreover, the fluctuation of financial markets is not an
uncorrelated random process. The law of fluctuation of financial
time series is better understood by identifying the media in the trans-
mission process of autoregressive sub-patterns.

Moreover, the media abilities of the whole and parts time series
also have some similar features. A minority of types of sub-patterns
shoulder the majority of the media ability. In the first part of the time
series, 27.65% of the autoregressive sub-patterns (26 types) shoulder
71.17% of the media ability (see Fig. 7 (¢c)), and in the second part of
the time series, 26.31% of the autoregressive sub-patterns (15 types)
shoulder 71.07% of the media ability (see Fig. 7 (d)).

Discussion and Conclusions

We used 23 years of daily financial time series to study the features of
transmission of the autoregressive sub-patterns. This study is differ-
ent from other studies because researchers usually analyze the fluc-
tuation of financial time series; however, our research focuses on the
transmission of fluctuation, which is hidden in the fluctuation pro-
cess of financial time series. Hence, we used an econometrical regres-
sion model to define the autoregressive sub-patterns quantitatively.
Then, we contributed a directed and weighted transmission complex
network from the financial time series.

We found that a few types of autoregressive sub-patterns drive the
oscillations of the financial market. A few types of major transmis-
sion sub-patterns concentrate in a small area. The major autoregres-
sive sub-patterns have stable transmission sub-patterns. There is a
fluctuation clustering effect in the transmission process of autore-
gressive sub-patterns, and three levels exist in the distribution of
transmission ability between clusters. The conversion of fluctuation
clustering has three cases: cluster 2 <> cluster 3, cluster 3 <> cluster 4
and cluster 4 <> cluster 5. Other cases need transmission media to
transmit, and the autoregressive sub-patterns that control the fluc-
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tuation transmission information in the financial time series can be
identified by measuring the media abilities. Certain non-major auto-
regressive sub-patterns have high media abilities that play an import-
ant role in the transmission process. There are similar characteristic
of the distributions of the transmission ability, the weights of edges
and the normalised betweenness centrality of nodes between parts
and whole.

These results show that the financial market is statistically signifi-
cantly not random and provides important information for inves-
tors. First, investors should refer to different autoregressive
parameters according to their terms of investment. Different obser-
vation periods lengths have different autoregressive sub-patterns.
For example, for 50-day investment decisions, 2(0.9,0.95]p(0.4,0.5]
is the most important autoregressive sub-pattern. However, for 100-
day investment decisions, investors should refer to a different auto-
regressive sub-pattern, because (0.95,1]3(0.1,0.2] is the most
important autoregressive sub-pattern (Table S1). Second, based on
the present sub-pattern, investors could determine the probability
and range of the next sub-pattern according to the results of the
transmission pattern, clustering effect, and media ability. For
example, if the present sub-pattern is in cluster 5, the next sub-
pattern may be in cluster 5 or cluster 4 (see Fig. 6 (c)).

Moreover, we selected three other major stock indexes to study the
transmission characteristics of the autoregressive sub-patterns (see
Fig. 8). The three major stock indexes were the Deutscher
Aktienindex Germany daily data (DAX), the Dow Jones Industrial
Average Index (DJI) and the Financial Times Stock Exchange Index
(FTSE), which contain 5696 (from July 1, 1991 to December 30,
2013), 5968 (from April 25, 1990 to December 31, 2013) and 5462
(from May 20, 1992 to December 31, 2013) data points, respectively.
All of the distributions of the weighted out-degree of nodes and the
weights of edges follow power law distribution. The power exponents
of the distributions of the weighted out-degree are approximately 0.3,
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Figure 7 | Distributions of the normalised betweenness centrality in TCN. (a) Cumulative distribution of the normalised betweenness centrality of node
(sort by value of the normalised betweenness centrality of nodes in descending order, N = 1,2,...,106, the whole time series). (b) Distribution between
weighted out-degree and normalised betweenness centrality. (¢) Cumulative distribution of the normalised betweenness centrality of node (sort by value
of the normalised betweenness centrality of nodes in descending order, N = 1,2,...,94, the first part of the time series). (d) Cumulative distribution of the
normalised betweenness centrality of node (sort by value of the normalised betweenness centrality of nodes in descending order, N = 1,2,...,57, the

second part of the time series).
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Figure 8 | Distributions of weighted out-degree of nodes, weights of edges and cumulative distribution of normalised betweenness centrality of nodes
of three different stock indexes: DAX, DJI and FTSE. (a), (b) and (c) are the distributions of the weighted out-degree of nodes. (d), (e) and (f) are the
distributions of the weights of edges. (g), (h) and (i) are the cumulative distribution of the normalised betweenness centrality of nodes.

and the power exponents of the distributions of the weights of edges
are approximately 1.0. Approximately 35% of the sub-patterns
shoulder more than 80% of the media ability. These results indicate
that these stock indexes exhibit similar transmission characteristics
with the fluctuation information.

In this study, our primary goal was to provide an approach to
study transmission characteristics of autoregressive sub-patterns in
time series. This can help us understand different characteristics of
the transmissions based on different periods. However, financial
time series are affected by various factors. Future analyses based on
this study will consider these factors to study transmission charac-
teristics of autoregressive sub-patterns under different time scales @
and different financial time series.
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