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Large-scale tectonic processes introduce a range of crustal lithologies into the Earth’s mantle. These
lithologies have been implicated as sources of compositional heterogeneity in mantle-derived magmas. The
model being explored here assumes the presence of widely dispersed fragments of residual eclogite (derived
from recycled oceanic crust), stretched and stirred by convection in the mantle. Here we show with an
experimental study that these residual eclogites continuously melt during upwelling of such heterogeneous
mantle and we characterize the melting reactions and compositional changes in the residue minerals. The
chemical exchange between these partial melts and more refractory peridotite leads to a variably
metasomatised mantle. Re-melting of these metasomatised peridotite lithologies at given pressures and
temperatures results in diverse melt compositions, which may contribute to the observed heterogeneity of
oceanic basalt suites. We also show that heterogeneous upwelling mantle is subject to diverse local freezing,
hybridization and carbonate-carbon-silicate redox reactions along a mantle adiabat.

T
he plate tectonic paradigm suggests that oceanic crust and underlying lithospheric mantle are recycled into
the mantle as cool, subducted slabs at convergent margins. During subduction of oceanic lithosphere,
basaltic crust reacts to form quartz/coesite eclogite at high pressure and low temperature conditions under

which partial melting is avoided or limited to low temperature melting at the wet solidus (that is the temperature
at which a silicate melt first appears in a rock in the presence of an aqueous fluid). The breakdown of hydrous
phases such as lawsonite and phengite results in the liberation of an aqueous fluid during progressive meta-
morphism but traces of water can be retained in eclogitic garnet and clinopyroxene that are nominally anhydrous
minerals (NAMs)1–5. Subducting slabs often descend to the Transition Zone, and in some cases, into the lower
mantle6,7. As such slabs are dominated by residual to refractory lithospheric peridotite (depleted lherzolite to
harzburgite), their negative buoyancy is reversed if their temperatures approach that of surrounding fertile
peridotitic mantle (‘fertile’ MORB-source mantle or ‘modern, well-mixed mantle’). Heterogeneity in the mantle
persists when subducted slabs dominated by depleted peridotite with discrete bodies of quartz/coesite eclogite
(former oceanic crust) are entrained and mixed into convecting mantle. Later sampling of such mantle domains
during partial melting is regarded as essential to the formation of some mantle-derived primitive magmas8–13. The
model being explored here postulates that subducted slabs heated to approach the intraplate geotherm will
undergo localised melting within slab heterogeneities or at slab/fertile mantle interfaces. As temperatures equi-
librate, buoyant adiabatic upwelling of heterogeneous peridotite mantle containing discrete bodies of coesite
eclogite induces local melting and possible metasomatism of surrounding ambient mantle.

Spandler et al.12 presented the melting phase relations of a model composition (GA2) representative of fertile
oceanic crust over a decompression path from ,160 km (5 GPa). A composition (Res2) of the residue after
extraction from GA22 of ,15% potassic dacitic-rhyodacitic melt at 5 GPa forms the basis of our experimental
study. It is a ‘dry’ (nominally anhydrous) coesite eclogite (Supplementary Fig. (SFig.) 1; Supplementary Table
(STable) 1). In our experiments we investigated further temperature rise at 5 GPa with consequent melting of
Res2. We also crystallised Res2 under conditions simulating further decompression melting from ,160 to
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,90 km depth (5 to 3 GPa) to examine melts and residues along an
upwelling path (STable 2). Our guiding concept is that these local
eclogite-derived melts migrate into, and react with, enclosing peri-
dotite/harzburgite.

Results of Res2 phase and melting relations at 3–5 GPa, 1200–
1500uC are presented in Figs. 1–3, and in the supplementary items
(Supplementary Notes (SNotes), SFigs. 1–11, and STables 1–4). The
initial aim of this research was to perform experiments under anhyd-
rous conditions. However, analyses of glasses from quenched melts in
several runs, especially in those with low melt fractions, often
returned very low totals (down to 92.3 wt.%; STable 3), indicative
of the possible presence of a volatile component in the quenched
liquid. Therefore, experiment Res2_19 containing 99% melt was sub-
ject to quantitative Fourier-transform infrared spectroscopy (FTIR)
analysis, and ,0.27 wt% H2O was detected (SFig. 2; STable 4).
Hence, the Res2 starting composition is expected to contain
,0.26 wt.% of H2O. This water content is of the order that may be
contained in nominally anhydrous (‘dry’) residual eclogite2, but its
presence demonstrates that hydrogen could not be entirely eliminated
from the experiments and must be considered during interpretation
of the results, as the presence of water may lower solidus tempera-
tures relative to truly anhydrous runs. Subsolidus phases for Res2 are
garnet, omphacitic clinopyroxene and quartz/coesite (Fig. 1a; SFigs. 3
& 4; STables 2 & 3; SNotes). The Res2 solidus is located at 1210 6

15uC at 3 GPa, 1375 6 25uC at 4 GPa, and 1410 6 15uC at 5 GPa
(Fig. 1; STable 2). At very low degree (incipient) melting, liquids

appeared mainly at triple grain boundaries as tiny (#5 mm), partly
connected pools of quenched glass in assemblages where quartz/coe-
site is present (SFig. 3; STable 2). As in previous studies12–15, quartz
(#3.0% at 3 GPa) or coesite (,1% at 5 GPa) is a residual phase in
association with a eutectic-like incipient (#5%), dacitic and sodic
melt near the solidus over a temperature interval of up to 100uC at
3 GPa, but ,50uC at 5 GPa (Fig. 1; SFigs. 3–6; STable 2). As quartz/
coesite is melted out, the melt fraction increases, the Mg# [100 3 Mg/
(Mg 1 SFe)] of garnet and clinopyroxene increases, and the melt
compositions move along garnet-clinopyroxene cotectics, becoming
progressively less siliceous and less sodic (Fig. 1; SFigs. 3–9; STables 2
& 3). The clinopyroxene/garnet ratio of the residues decreases with
increasing melt fraction until clinopyroxene is exhausted, leaving
garnet as the sole liquidus phase (Fig. 1a; SFig. 4; STable 2).

Residual garnet and clinopyroxene solid solutions are similar to
those from other experimental studies of quartz/coesite-eclogite12–16

(SFigs. 6–9; SNotes). Significantly, clinopyroxene contains a substan-
tial Ca-eskolaite component as a consequence of reaction between
excess SiO2 (quartz/coesite, or SiO2-rich melt) and Ca-Tschermaks
solid solution in clinopyroxene12–17 (Fig. 2; SFig. 9; STable 4; reaction
1).

2Ca0:5½ �0:5AlSi2O6~CaAlAlSiO6z3SiO2 ð1Þ

Ca{eskolaite~Ca{tschermakszmelt=quartz=coesite,

where ‘‘&’’ represents a vacancy on the M2-site.

Figure 1 | (a) Pressure-Temperature-grid of experimentally-determined melting and phase relations of Res2. (b) Comparison of Res2 solidus surface and

its (incipient) melting regime with solidii of other experimentally determined mantle lithologies. (a) See explanations within text. Yellow circles – Res2 at

3 GPa, orange circles – Res2 at 4 GPa, red circles – Res2 at 5 GPa. The symbols ‘1’ and ‘-’ indicate the presence of quartz/coesite and absence of

clinopyroxene, respectively, as residual phases. Solid and dashed white lines are determined and inferred phase boundaries, respectively. The quartz-

coesite transition is taken from Bose & Ganguly44; qtz, quartz; coe, coesite; grt, garnet; cpx, clinopyroxene. (b) The Res2 solidus lies between the ‘dry’

lherzolite solidus29,45, and GA2 eclogite12 and volatile-bearing lherzolite (i.e. peridotite 1 H2O 6 CO2) solidus26,29,30–32. The light red shaded area adjacent

to Res2 solidus is the incipient melting regime with garnet 1 clinopyroxene 1 quartz/coesite residue. Predicted mantle Tp’s range from 1280–1600uC46–48

but for illustrative purposes, we chose a mantle adiabat of Tp < 1360uC so that the solidus of Res2 intersects the adiabat at 5 GPa at ,1410uC, initiating

melting. Using other adiabats will simply shift the pressure of the onset of melting of various lithologies by ,1 GPa per 100uC12. Although such changes

would not alter the principles of the scenarios12, they would substantially influence the composition of melts and solid residues of mantle lithologies at the

onset of melting, and thus, would also influence any associated mantle metasomatism.
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The high temperature decrease in Ca-eskolaite (Fig. 2) corre-
sponds to a decrease of silica activity towards higher temperature
as soon as quartz/coesite is melted out, driving reaction 1 to the right.
However, as long as the activity of silica is unity, i.e. as long as quartz/
coesite is present, this reaction will move to the left.

The increased Ca-eskolaite component in clinopyroxene at greater
mantle depths causes melting to occur over a much smaller temper-
ature interval in association with coesite at 5 GPa than with quartz at
3 GPa (Figs. 1 & 2; SFig. 4). In addition, towards higher pressures the
grossular component in garnet and the jadeite component in clin-
opyroxene are stabilized, whereas the Ca-Tschermaks (Ca-Al-rich)
component and the Al-buffonite (Ti-rich) component of clinopyr-
oxene are destabilized (SFigs. 7–9).

During upwelling of heterogeneous mantle along an adiabatic
path, residual eclogite Res2 starts to melt at much higher pressure
than surrounding ‘dry’ peridotite, as has been also suggested
for other nominally anhydrous eclogite compositions8,10,12–14,18,19

(Fig. 1b). Taking the potential temperature (Tp) of the upwelling
mantle to be 1360uC, incipient melting of Res2 begins at 5 GPa
(,160 km depths) at 1410 6 15uC (Fig. 1b), consistent within
experimental error with derivation of the Res2 composition by
extraction of ,15% melt from GA2 at 1380uC at 5 GPa. The relative
slopes (dT/dP) of the adiabat and the Res2 solidus (dT/dP 5 ,30–
40uC/GPa from 5 to 4 GPa, and dT/dP 5 ,160–170uC/GPa from 4
to 3 GPa) ensure that adiabatic upwelling of Res2 leads to a self-
fluxing, continuous melting process (Fig. 1b). This is because adia-
batic ascent of Res2 from ,160 to ,120 km depths (5 to 4 GPa)
results in the continuous breakdown of Ca-eskolaite solid solution in
clinopyroxene, causing exsolution of SiO2 as both coesite and SiO2-
rich melt fractions, and relative increase of Ca-tschermakite solid
solution in residual clinopyroxene (reaction 1; Figs. 1 & 2; SFigs. 8
& 9; STable 3). Consequently the solidus and melt compositions
remain at the garnet 1 clinopyroxene 1 coesite eutectic-like field
with continuous production of highly siliceous, incipient melt frac-
tions (reaction 1; Figs. 1 & 2; SFigs. 5 & 6).

This distinctive style of self-fluxed, eutectic-like melting rapidly
increases during further adiabatic ascent of Res2 from ,120 to

,90 km (4 to 3 GPa), due to the sharp increase in exsolution of
coesite/quartz from Ca-eskolaite-bearing clinopyroxene, which
causes steepening of the Res2 solidus slope, enhancing melt produc-
tion (Figs. 1 & 2; SFig. 4). Melting at 3 GPa therefore occurs at lower
temperature and yields much higher fractions of less siliceous melt
than at deeper mantle levels (5–4 GPa) along the adiabatic path
(,5–10% at 4 GPa to ,35% at 3 GPa) (Fig. 1; SFigs. 4–6).

The destabilisation of Ca-Eskolaite, jadeite, and grossular but sta-
bilisation of Ca-Tschermaks and Al-buffonite during mantle upwel-
ling causes decreased partitioning of Na and Al but increased
partitioning of Ca and Ti into clinopyroxene and decreased parti-
tioning of Ca into garnet relative to melt (SFigs. 7–10; STable 3).
Higher Res2 melt fractions (.15–20%) formed at 3 GPa are there-
fore more sodic and aluminous, but less siliceous and titanifereous
than incipient Res2 melts formed at 4–5 GPa along the chosen adia-
bat (Fig. 1; SFigs. 5 & 6). Consequently, as the residues of Res2
melting at 3 GPa lose ,15 to #35% melt, they become bimineralic
eclogite (residual garnet and clinopyroxene only) with relatively high
Mg#. Clinopyroxene is characterised by high Ca-tschermaks and
diopside, and relatively low Ca-eskolaite and jadeite components,

Figure 3 | Hybridisation reactions between eclogitic Res2 partial melts
and peridotite in the pseudo-ternary Ol-Qtz-Grt diagram projected from
(Di 1 Jd). Dark red and dark yellow lines illustrate normative

compositions of ‘‘reaction-zone lithologies’’ (RZL) formed by reaction

between peridotite and incipient, highly siliceous (dacitic) and higher

degree, less siliceous (andesitic to basaltic) Res2 melts at 5 GPa (RZL1) and

3 GPa (RZL2), respectively. This leads to a higher normative garnet/

orthopyroxene ratio and more Cr-rich clinopyroxene in RZL2, as 3 GPa

Res2 melts are less siliceous and more sodic than 5 GPa Res2 melts (see

text; SFigs. 5–6, 10; reactions 1–2; reactions 1–3 in SNotes). The

compositional variations within the orthopyroxene RZLs formed at

different pressures along an adiabat lie on the Hy-Grt thermal divide and

lead to corresponding compositional variations in the transition zone

layers (TZ1 and TZ2, i.e. the olivine orthopyroxenite/garnet websterite

boundaries that mark the silica-undersaturated reaction zone boundaries

between peridotite [harzburgite/lherzolite] and the orthopyroxene-rich

RZLs). The resulting melt-depleted residual eclogite zones vary

considerably in composition over the pressure and temperature range of

interest. The dark grey line expresses the hybridisation reaction of incipient

melts of peridotite (1H2O) with solid ‘dry’ residual eclogite Res2. This join

Grt-Hy represents a thermal divide of garnet-pyroxene13. Ol, olivine; Qtz,

quartz; Coe, coesite; Grt, garnet; Hy, hypersthene; Di, diospide; Jd, jadeite;

ss, solid solution; P, peridotite; M, eclogitic melt; RZL, orthopyroxene-rich

reaction zone layer; TZ, transition zone layer (i.e. the contact between

peridotite and orthopyroxene-rich RZL).

Figure 2 | Ca-eskolaite component in experimentally crystallised
clinopyroxene from Res2 and GA2 as a function of pressure and
temperature. The symbol ‘1’ indicates the presence of quartz/coesite as

residual phase. At a given pressure, both below and above quartz/coesite

out, Ca-eskolaite first increases and then decreases with increasing

temperature. Although melting residues of Res2 lose siliceous melt

fractions and become increasingly depleted in Ca-eskolaite, they still retain

their SiO2–saturated character (as will their resulting melt fractions), and

are not exhausted in Ca-eskolaite during continuous melt extraction on

adiabatic ascent (this Fig., SFig. 6; STable 3). Thus, in contrast to previous

predictions20, melting residues of initial coesite/quartz-bearing or

bimineralic eclogite with Ca-Eskolaite component in clinopyroxene

present never become SiO2-deficient (in terms of high pressure normative

components) along adiabatic paths, and remain on the SiO2-excess side of

the thermal divide in SFig. 6.

www.nature.com/scientificreports
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relative to clinopyroxene from coesite-eclogite residues of Res2 melt-
ing at 5–4 GPa with #5% melt loss during adiabatic upwelling
(Fig. 2; SFigs. 8–9; STable 3). Residual garnet at 3 GPa has a higher
pyrope and lower almandine and grossular components with respect
to residual garnet at 5 GPa (SFig. 7).

During adiabatic upwelling of heterogeneous mantle from 5 to
3 GPa, ambient peridotitic mantle will be metasomatised by (highly)
siliceous melt fractions continuously extracted from Res2 eclogite.
These melt fractions will react with peridotite mineral phases
(mainly olivine but also pyroxene and garnet), and thus, freeze into
the ambient mantle, producing an orthopyroxene-rich reaction zone
layer (RZL) with garnet and minor clinopyroxene lying on the ther-
mal divide13 (Fig. 3; reaction 2; reactions 1–3 in SNotes). Mineral
compositions and proportions of the newly formed RZL’s will reflect
some admixtures of peridotite and varying siliceous and sodic melt
compositions produced by continuous melting of Res2 during adia-
batic ascent (Fig. 3). This process therefore adds eclogite derived
incompatible elements back into an ambient (depleted) peridotite
mantle. As the extracted melt compositions vary, metasomatic effects
will also vary along the adiabatic path (Figs. 1 & 3).

The behaviour of Na2O and Cr2O3 are potentially useful in dis-
cerning the effects of melting and reaction in heterogeneous eclogite/
peridotite lithologies. Cr2O3 is refractory with respect to eclogitic
melts. The Cr/Al of oceanic crust is relatively low (,0.0112,17,20).
Residual garnet and clinopyroxene remain low in Cr2O3 and Cr/Al
even after extraction of high melt fractions from residual eclo-
gite12,17,20. Cr/Al in fertile lherzolite is much higher and increases in
residues from partial melting21, so highly refractory harzburgite resi-
dues have the highest Cr/Al ratios and Mg#s21. In contrast, Na2O and
Al2O3 are mobile in eclogitic partial melts (GA2 and Res2) but are
controlled by partitioning relationships with clinopyroxene in resid-
ual eclogite (SFigs. 5 & 10; STable 3). High % Res2 melt fractions at
3 GPa are more enriched in Na2O than 5 GPa incipient melts (SFig.
5) and are most effective in leaching Cr31 and Fe31 from garnet of
adjacent peridotite (or reacting with chromite of adjacent harzbur-
gite or dunite), relative to Res2 low-degree melts formed at 5 GPa.
Therefore, reaction between eclogitic melts and peridotitic mantle at
relatively low pressure (e.g. 3 GPa) is more effective than at high
pressure (e.g. 5 GPa) at forming Na-Cr-rich (and Na-Fe31-rich) py-
roxene such as kosmochlor (and acmite) in the RZL according to
reaction 2 (and reaction 3 in SNotes).

Ca,Mgð Þ3 Cr,Fe3z
� �

2Si3O12z2NaAlSi2O6~

2Na Cr,Fe3z
� �

Si2O6z Ca,Mgð Þ3Al2Si3O12

ð2Þ

Cr{Fe3zgarnet peridotiteð Þzjadeite eclogitic meltð Þ

~kosmochlor, acmite RZLð Þzgrossular RZLð Þ:

Reports of Na 1 Cr-rich pyroxene at the contacts between refract-
ory eclogite layers in peridotite in peridotite-pyroxenite massifs22, as
well as frequently observed ‘eclogitic’ garnets containing little or no
Cr and Na included in some diamonds23, may form via metasomatic
processes rather than extensive melt depletion of peridotite, or gar-
nets crystallised from mafic (i.e. eclogitic) lithologies, respectively22,23

(see also below).
Assuming a Res2 bulk H2O content of ,0.26 wt.%, Res2 melt

fractions will release considerable H2O during adiabatic upwelling
(a maximum of 4 wt.% H2O in melt at 5 GPa for a 5% melt;
,0.5 wt.% H2O in melt at 3 GPa for a 40% melt). This results mainly
from the preferential partitioning of H2O into the melt phase over
NAMs in (residual) eclogite1,2,4. As these hydrous melts react with
enclosing peridotite, H2O will be in part be incorporated into NAMs
in the newly formed orthopyroxene-rich RZLs. However, an ortho-
pyroxene-rich RZL containing 75% orthopyroxene, 20% garnet, and

5% clinopyroxene may only be able to accommodate ,0.03 wt.% of
H2O (i.e. assuming that orthopyroxene, garnet and clinopyroxene
take up maxima of ,320 ppm H2O, ,200 ppm H2O and ,980 ppm
H2O respectively under water-saturated conditions4,24), which means
the excess H2O may be present as vapour and thus lower the solidi of
the orthopyroxene-rich RZL and adjacent mantle lithologies. New
melting may then initiate in the orthopyroxene-rich RZL, or olivine
orthopyroxenite/websterite formed at the contact between peridotite
and orthopyroxene-rich RZL13, or continue in the residual eclogite,
i.e. depending on the solidus of the particular mantle lithology 1

H2O and Tp (Fig. 3).
Reaction and freezing processes may initially only occur at the

eclogite-peridotite boundary for incipient Res2 melts at 5 GPa as
segregation of melt from the eclogitic residue will be limited by poor
interconnection of melt networks/pools (SFig. 3). In contrast, higher
Res2 melt fractions at 3 GPa must separate from residual eclogite, as
intergranular melt will be strongly interconnected at ,30% melting
(SFig. 3). It is conceivable that an original eclogite body (such as
Res2) could become strongly zoned during adiabatic ascent due to
reaction at the eclogite/peridotite interface. The core of such bodies
may comprise a solid residue of Res2 (RRes2) with a higher solidus
temperature than Res2, with or without partial melt. Provided that
the solidus temperature of the RZL remains above ambient mantle
conditions, it may act as a seal to prevent further melt migration and
reaction with the surrounding peridotite. In this case, eclogitic partial
melts produced by continued adiabatic upwelling will be retained in
the eclogite, so that melt and the solid residue remain in equilibrium.
Convective motions are likely to cause stirring, stretching and
internal deformation of Res2 zoned fragments. Eclogitic bodies
may be deformed into layers, even at the cm-scale18, increasing the
reaction surface, leading to opening of the sealing RZL and RRes2
layers, and release of Res2 melt, which freezes into adjacent peridotite
on contacts. Continuous mantle convection and stirring may repeat-
edly re-open and re-seal such rheologically contrasting, refertilised
Res2 melt bodies until all melt available has reacted into peridotite,
ensuring a wide distribution of frozen ‘crustal components’ within
the Earth’s upper mantle.

Residual bimineralic eclogite formed at 3 GPa may become suffi-
ciently Mg-rich and clinopyroxene low in both Ca-eskolaite and
jadeite components (Fig. 2; SFig. 7–9) that solidus temperatures
are no longer below those of (refertilized) harzburgite/lherzolite,
olivine orthopyroxenite/websterite (i.e. the contact between perido-
tite and orthopyroxene-rich RZL), or orthopyroxenite (RZL) lithol-
ogies (Fig. 3). Subsequent melting will then proceed at the melting
minimum of olivine orthopyroxenite/websterite 6 H2O13 (TZ in
Fig. 3). Melt compositions produced will be nepheline-normative,
lying to the silica-undersaturated side of the thermal divide13,19,25 in
Fig. 3. Due to the relatively high Na/Ca and low Ca/Al ratios of the
refertilising eclogitic (Res2) melts (SFig. 5), these new melts will also
be characterised by higher Na/Ca and lower Ca/Al ratios (‘crustal
signature’) relative to melt compositions known from nepheline-
normative melts of ‘pristine’ peridotite10,26.

Subduction and subsequent upwelling of residual eclogite Res2
enclosed in ambient mantle may continuously cause numerous other
heterogeneities (Fig. 3). For instance, reduced mantle at high pres-
sures27 may impose its low oxygen fugacity (fO2) on widely distrib-
uted bodies of Res2, assuming that recycled crustal material is
predominantly oxidized28. This may cause oxidation of CH4 present
in reduced ambient mantle to form H2O and C (graphite/diamond),
and instigate redox melting (reaction 4 in SNotes)26,28,29.

As the adiabat under consideration lies in the (incipient) melting
field of peridotite 1 H2O under oxidising conditions (Fig. 1b), the
presence of significant H2O may also lead to (incipient) melting of
peridotite30. The resulting melts are olivine-rich basanite to nephe-
linite, enriched in alkalis, with high Ca/Al and Mg# , 70–75.
Reaction of these melts with eclogite such as Res2, will increase the

www.nature.com/scientificreports
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modal clinopyroxene content and jadeite components (with possibly
slightly higher kosmochlor solid solution) as well as decrease the Ca-
eskolaite component of clinopyroxene with little or no change in Mg#

or Cr/Al of the eclogite. Clinopyroxene enriched zones will be pro-
duced at the peridotite/eclogite interface by such ‘back-reaction’
varying from possible olivine-bearing garnet pyroxenite with little
or no orthopyroxene and Mg# ,85–90 (metasomatised peridotite) to
garnet-bearing clinopyroxenite with Mg# ,75–80 and less orthopyr-
oxene (metasomatised eclogite) than in the analogous reaction of
siliceous eclogitic melt into peridotite (Fig. 3).

Under oxidising conditions, the presence of significant H2O may
also lead to melting of peridotite 1 CO2 1 H2O at greater mantle
depths than Res2 along the given adiabat (Fig. 1b). Resulting melts
are carbonatitic to carbonate-bearing silicate melts26,29,31,32. If residual
eclogite Res2 is swamped by such melts, it will react to form new
clinopyroxene-rich RZL (with increased diopside and Ca-
Tschermaks solid solution, and reduced or no Ca-Eskolaite compon-
ent) in the presence of C (graphite/diamond) and/or carbonate and/
or CO2 and/or SiO2 (reactions 3–4; Fig. 3; SFig. 11).

2Ca0:5½ �0:5AlSi2O6zCaMg CO3ð Þ2~

CaMgSi2O6zCaAlAlSiO6zSiO2z2Cz2O2

ð3Þ

Ca{eskolaite eclogiteð Þ

zdolomite carbonatitic to carbonate{bearing silicate meltsð Þ

~diopside RZLð ÞzCa{tschermaks RZLð Þ

zSiO2 melt=quartz=coesite; RZLð Þ

zgraphite=diamond=CO2 melt=vapourð Þ RZLð Þ

2Ca0:5½ �0:5AlSi2O6zMgCO3z~

Mg2Si2O6zCaAlAlSiO6zSiO2z2Cz2O2

ð4Þ

Ca{eskolaite eclogiteð Þ

zmagnesite carbonatitic to carbonate{bearing silicate meltsð Þ

~enstatite RZLð ÞzCa{tschermaks RZLð Þ

zSiO2 melt=quartz=coesite; RZLð Þ

zgraphite=diamond=CO2 melt=vapourð Þ RZLð Þ:

Thus, reaction with carbonate-rich melts may also cause melting
of Res2, producing (sodic) carbonate-bearing silicate or silicate-
bearing carbonatitic melts (as observed previously33,34), buffered by
these reactions. Subsequent reactions of eclogitic carbonate melts
with ambient mantle may in turn leach out Cr and Na from perido-
titic garnet, possibly producing Cr- and Na-poor garnets enclosed in
some diamonds (reactions 5–6 in SNotes), as described above (reac-
tion 2; and reaction 3 in SNotes).

Redox melting and -freezing may thus lead to the co-existence of
carbonate- and/or diamond-bearing peridotite and eclogite depend-
ing on the pressure, temperature and fO2 conditions relative to silica-
carbonate-diamond redox equilibrium reactions26,29,35–37 (reactions
3–4; reactions 4–8 in SNotes). However, there is currently a lack of
experimental calibration of these reactions with respect to para-
meters of pressure, temperature, fO2, and composition.

Dynamic mantle processes ensure continuous changes in redox
conditions at the interface between eclogites and peridotite, suggest-
ing continuous formation and destruction of diamond and carbona-
tite along an adiabat. Subduction and recycling of former crust
appears to be one of the main causes for continuous but episodic
self-driven and –fluxing (redox-) re-melting and -freezing events.

Thus, it is not surprising that (incipient) melting and alkaline mag-
matism occurs episodically and with increased frequency over the
Earth’s history after commencement of tectonic regimes involving
plate subduction38–40.

Methods
Res2 starting composition was prepared as glassed synthetic sintered oxide powders
using established procedures13, and doped with a trace-element blend of 10 elements
(La, Ce, Sm, Gd, Yb, Sc, Y, Zr, Sr, Cu) at levels of 400 ppm. We used established
experimental and analytical procedures as outlined by Spandler et al.12. The accuracy
of the EDS/SEM methods employed has been demonstrated by Spandler et al.41.
Sample preparation, FTIR spectroscopy, and quantification of H2O and CO2 in
Res2_19 melts were similar to Liu et al.42 and Mandeville et al.43. Sample thickness was
on average 200 mm. FTIR data, absorbance values, and typical FTIR spectra are given
in SFig. 2 and STable 2. Absorbance peaks at ,3550 cm21 is attributed to O–H
stretching modes of H2O and OH. To determine the H2O content of the sample, the
backgrounds of the corresponding bands were estimated and subtracted from the
absorbance by interpolation of a straight line through the minima at the high and low
wave-number ends of the absorption peaks. The minute absorbance peak at
,2950 cm21 represents tiny amounts of organic contamination, and hence, is not
further considered.
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30. Green, D. H., Hibberson, W. O., Kovács, I. & Rosenthal, A. Water and its influence
on the lithosphere – asthenosphere boundary. Nature 467, 448–451 (2010).

31. Brey, G. P., Bulatov, V. K. & Girnis, A. V. Influence of water and fluorine on
melting of carbonated peridotite at 6 and 10 GPa. Lithos 112(S1), 249–259 (2009).

32. Foley, S. F. et al. The composition of near-solidus melts of peridotite in the
presence of CO2 and H2O between 40 and 60 kbar. Lithos 112, Part 1 Sp. Iss. S1,
274–283 (2009).

33. Dasgupta, R. et al. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle.
Nature 493, 211–215 (2013).

34. Kiseeva, E. S. et al. An Experimental Study of Carbonated Eclogite at 3.5–5.5 GPa
– Implications for Silicate and Carbonate Metasomatism in the Cratonic Mantle.
J. Petrol. 53, 727–759 (2012).

35. Eggler, D. H. & Baker, D. R. [Reduced volatiles in the system C–O–H: implications
to mantle melting, fluid formation, and diamond genesis] High-Pressure Research
in Geophysics [Akimoto, S. & Manghnani, M. H. (eds.)] [237–250] (Center for
Academic Publications, Tokyo, 1982).

36. Luth, R. W. Diamonds, Eclogites, and the Oxidation State of the Earth’s Mantle.
Science 261, 66–68 (1993).

37. Stagno, V., Oiwang, D. O., McCammon, C. A. & Frost, D. J. The oxidation state of
the mantle and the extraction of carbon from Earth’s interior. Nature 493, 84–88
(2013).

38. Foley, S. F. The genesis of continental basic alkaline magmas: an interpretation in
terms of redox melting. J. Petrol. Sp. Lithophere Issue, 139–161 (1988).

39. Jelsma, H., Barnett, W. Richards, S. & Lister, G. Tectonic setting of kimberlites.
Lithos 112, 155–165 (2009).

40. Kogarko, L. N. Alkaline magmatism and enriched mantle reservoirs: Mechanisms,
time, and depth of formation. Geochem. Internat. 44, 3–10 (2006).

41. Spandler, C., Yaxley, G. M., Green, D. H. & Scott, D. Experimental phase and
melting relations of metapelite in the upper mantle: implications for the
petrogenesis of intraplate magmas. Contrib. Mineral. Petrol. 160, 569–589 (2010).

42. Liu, X., O’Neill, H. St . C. & Berry, A. J. The Effects of Small Amounts of H2O, CO2

and Na2O on the Partial Melting of Spinel Lherzolite in the System CaO-MgO-
Al2O3-SiO2-H2O-CO2-Na2O at 1.1 GPa. J. Petrol. 47, 409–434 (2006).

43. Mandeville, C. W. et al. Determination of molar absorptivities for infrared
absorption bands of H2O in andesitic glasses. Am. Mineral. 87, 813–821 (2002).

44. Bose, K. & Ganguly, J. Quartz-coesite transition revisited: Reversed experimental
determination at 500–1200uC and retrieved thermochemical properties. Am.
Mineral. 80, 231–238 (1995).

45. Hirschmann, M. M. Mantle solidus: Experimental constraints and the effects of
peridotite composition. G-cubed 1, 2000GC000070 (2000).

46. Green, D. H., Falloon, T. J., Eggins, S. M. & Yaxley, G. M. Primary magmas and
mantle temperatures. Europ. J. Mineral. 13, 437–451 (2001).

47. Herzberg, C. et al. Temperatures in ambient mantle and plumes: Constraints from
basalts, picrites, and komatiites. G-cubed 8, 2006GC001390 (2007).

48. McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by
extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

Acknowledgments
We thank Dean Scott, David Clark and Bill Hibberson for support in the high-pressure
facilities, and Frank Brink for support at the Centre for Advanced Microscopy at the ANU.
This research was supported by an Australian Research Council Discovery Grant to G.M.Y.
and D.H.G. A.R. acknowledges funding by an ANU PhD Scholarship, a RSES 2007 joint
‘Mervyn & Katalyn Paterson Fellowship’, and a Marie Curie International Incoming
Fellowship (302637). I.K. acknowledges funding by an A.E. Ringwood Memorial
Scholarship, an Australian International Postgraduate Research Scholarship, a Marie Curie
International Reintegration Grant (NAMS-230937), the Bolyai Fellowship Program, and
the Hungarian Scientific Research Found (OTKA PD101683).

Author contributions
The manuscript and the ideas therein were mainly developed by A.R., G.M.Y. and D.H.G.,
with contributions from all other co-authors. G.M.Y. and D.H.G. initiated and planned the
project, which was carried out by A.R. as part of her PhD-project. G.M.Y. and D.H.G. acted
as supervisors, and J.H. and C.S. as advisors, and supported A.R. comprehensively during
her PhD. A.R. carried out the high pressure experimental work, prepared the experimental
charges for SEM analysis, made SEM micro-analyses, compiled all the analyses, formulated
results and conclusions as a PhD-thesis, as well as subsequent conclusions such as the new
silica-carbonate-diamond redox equilibrium reactions. I.K. supported A.R. substantially in
preparing the thin section for FTIR analyses, in performing the FTIR Spectroscopy and in
processing of the FTIR data.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Rosenthal, A. et al. Continuous eclogite melting and variable
refertilisation in upwelling heterogeneous mantle. Sci. Rep. 4, 6099; DOI:10.1038/srep06099
(2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International License. The images or other third party material in
this article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative
Commons license, users will need to obtain permission from the license holder
in order to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6099 | DOI: 10.1038/srep06099 6

http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle
	Introduction
	Methods
	Acknowledgements
	References


