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Explosive synchronization and explosive percolation are currently two independent phenomena occurring
in complex networks, where the former takes place in dynamical phase space while the latter in
configuration space. It has been revealed that the mechanism of EP can be explained by the Achlioptas
process, where the formation of a giant component is controlled by a suppressive rule. We here introduce an
equivalent suppressive rule for ES. Before the critical point of ES, the suppressive rule induces the presence
of multiple, small sized, synchronized clusters, while inducing the abrupt formation of a giant cluster of
synchronized oscillators at the critical coupling strength. We also show how the explosive character of ES
degrades into a second-order phase transition when the suppressive rule is broken. These results suggest that
our suppressive rule can be considered as a dynamical counterpart of the Achlioptas process, indicating that
ES and EP can be unified into a same framework.

brupt phase transitions have been observed in a variety of networked systems', from epileptic seizures in

the brain” to cascading of power grids’® and jamming in the Internet*, and coping with them has been (and

is currently) one of the most challenging problems. Recently, the occurrence of such transitions has been
connected with the issue of percolation, i.e. the formation of a macroscopic connected component in the network.
Explosive percolation (EP) was interpreted by a simple mechanism, equivalent, in fact, to a modified Erdds-Rényi
(ER) growth process, where a product rule or sum rule (the so-called Achlioptas growth process) is additionally
imposed® which tends to suppress the formation of a large cluster before criticality. Since its putting forward, EP
was immediately confirmed in regular lattice networks® and scale-free (SF) networks”®, and attracted a lot of
interest in different contexts’”. Whether EP is an exact first-order or a second-order transition in the ther-
modynamic limit® " is still matter of debate, and recently a stochastic model was designed to show that in the
thermodynamic limit the EP transition can be either continuous or discontinuous™.

Together with the great progress in EP, it has been argued that also synchronization transitions on SF networks
can occur explosively, i.e. by a discontinuous transition, called explosive synchronization (ES)*'. Based on
Kuramoto oscillators, ES has rapidly become a subject of enormous interest*>~**>. While originally it was suggested
that ES was due to a positive correlation between the natural frequencies of oscillators and the degrees of nodes*,
more recent studies have highlighted that ES can be also observed in homogeneous, non-SF, networks, provided
that a positive correlation between the natural frequency of oscillator and its coupling strength exists™.
Interestingly, these two kinds of positive correlations can be unified within the framework of mean-field, where
the effective couplings are weighted to be proportional to the frequency of the oscillators**.

Notice that EP describes the abrupt change of the network structure, while ES denotes the abrupt change of the
network’s dynamical behavior. Uncovering the common features between EP and ES would then be extremely
helpful to understand the various phenomena of abrupt transitions observed in natural phenomena. It is the aim
of this work to propose a synthesization of EP and ES into a common framework.

Results

Description of the model. We start considering a network of N Kuramoto-like phase oscillators, whose evolution
is ruled by:

S

N
;i|ZAijsin(0j—9i), i=1,...,N, v
1 1:1
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where dot denotes temporal derivative, ; (0;) is the natural
frequency (the instantaneous phase) of oscillator i, A is the overall

coupling strength, k; = Zszl Ajj is the degree of node i, and A;; are

the elements of the symmetric adjacency matrix A (A;; = 1 when the
nodes i and j are connected, and A;; = 0 otherwise). The model (1)
can be considered as a frequency-weighted network and reflects the
feature of several natural and social systems such as, for instance,
power grid networks and communication networks. In the former
case, a power grid network can be described as a network of
Kuramoto oscillators, where the weighted coupling coefficient
between two oscillators is related to their own natural
frequencies®***. In the latter case, an extrovert will contact his or
her neighbors more frequently than an introvert. If we define the
contact between two individuals as a kind of coupling and the
frequency of contacts as coupling strength, the coupling strength
will be then correlated with the characteristics of individuals, i.e. a
kind of natural frequency of human being™.

The model (1) actually encompasses the degree-weighted case of
Ref. 21 when the network is SF and w; = k;. Ref. 33 demonstrated that
ES can be observed in Eq. (1) for an arbitrary network topology,
provided that the distribution g(w) from which the natural frequen-
cies of the network’s oscillators are drawn is symmetric around zero.
In what follows we will assume (unless when otherwise specified)
g(o) to be a Gaussian distribution with zero average and unit stand-
ard deviation.

The global and local order parameters. The degree of phase
coherence of the collective motion in Eq. (1) can be quantified by
well known Kuramoto order parameter R defined by

v 1SN .
Re™ = N Z el (2)
=1

where 0 = R = 1 and 'Y denotes the average phase. Figure 1 shows the
synchronization diagrams for N = 200, and for the cases of fully
connected (squares), ER (circles) and SF (triangles) networks, the
latter originating from the uncorrelated configuration model (UCM)
with a power-law degree distribution®. From Fig. 1 one can see that
there is an abrupt transition with an associated hysteretic loop in
each of the three cases, which is produced by increasing A
adiabatically in both the forward and backward directions. The
forward critical couplings for the three networks are 4. = 2.13,
2.17 and 2.21, respectively. Notice that the order parameter R
remains at a small value before the jump, indicating that an
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Figure 1 | Synchronization transitions for different network’s topologies.
The three curves with “squares”, “circles” and “triangles” represent the
cases of fully connected, ER and UCM networks, respectively, and A.and 4,
denote the critical points of forward and backward transition. The network
size is N = 200 for all the three cases, and the average degree for both ER
and UCM networks is (k) = 24.

2.5

increase in the coupling strength before /. does not induce a giant
cluster of phase synchronization.

To gather more detailed information on the mechanisms under-
lying the observed scenario, we refer to the local order parameter, Ry,
as defined in METHODS. R;; will be 1 for any two phase-locked
oscillators, zero for all pairs of fully uncorrelated oscillators, and will
take a value between 0 and 1 for any two partially correlated oscilla-
tors. Figures 2 (a)-(d) report the values of R;; for the fully connected
network and for four typical 4 values: namely (a) corresponds to 4 =
1.5, (b) to 4 = 1.8, (c) to 4 = 2.12, i.e. right before 4 = 1. = 2.13, and
(d) to A = 2.14, i.e. right after 4., where the oscillator i is labeled by the
ascending order of frequency ;. It is interesting to notice that there
are only small synchronized clusters of oscillators for 4 < A, (Fig. 2(a)
to (c)), while a giant synchronized cluster shows up suddenly right
after /. (Fig. 2(d)), indicating that the small synchronized clusters are
not gradually merged into larger synchronized clusters before 4., but
suddenly merge together right at A = A.. The very same scenario
occurs for ER networks (Fig. 2(e) to (h)) and for UCM networks
(Fig. 2 (i) to (1)), and can also be observed at around the backward
critical point 4, (reported in Fig. 1 of the Supplementary Material).
Such a scenario is in striking contrast with the classical scenario
leading to a second order smooth transition to global phase syn-
chronization (where an initial core of phase locked oscillators pro-
gressively attracts more and more elements in the network), and
exhibits many similarities with that produced by the Achlioptas pro-
cess in EP, where the formation of a giant percolation cluster is
prevented before the transition®.

To show an evidence on the similarity between the evolution of ES
and the Achlioptas process in EP, we here transform the dynamical
synchronization process into an equivalent percolation process. For
this purpose, we introduce the concept of synchronized link to indi-
cate a pair of nodes i and j with R;; = 0.95. In this way, no synchro-
nized links will be present in the network at A = 0, whereas more and
more synchronized links will appear with the increase of 4. Take the
fully connected network in Fig. 2(a) - (d) as an example. We find that
the new synchronized links are always generated among those nodes
with the adjacent numbers of i and j, i.e. close ®; and wj, and then all
the generated synchronized links will form some separated clusters
when / increases. Remarkably, it is found that these small clusters
grow, but remain independent with the further increase of 1 before
A < J.(where suddenly all the clusters merge together to form a giant
one), thus pointing to the very same process as in EP. To show the
evolution of such a dynamical EP process, we have realized a movie in
the Supplementary Material, where a point in the plane i — j appears
all times a new synchronized link is formed.

Suppressive rule of ES. To understand the mechanism of Achlioptas
process in dynamical phase space, we focus on the phase-locking
between two oscillators as observed in Fig. 2. Our theoretical
analysis (whose details are extensively reported in METHODS)
shows that a necessary condition of phase-locking between two
oscillators is given by

Joi—o _ oo 3
jeoi] + Jeoj]

|0i— o)

Let then Y;= be the frequency difference between

il + |
nodes i and j, scaled by the factor |w;| + |wj|. Y;; will be 0 for ; =
wj, 1 for opposite w; and wj, while 0 < Yj; < 1in any other case. Fig. 1
highlights that R takes a rather small value when 4 < /,, implying
that only those pairs of oscillators with smaller Yj; can satisfy the
condition (3) and thus form synchronized clusters. Since the scaling
factor |w;| + |w;| represents the coupling weights of the two con-

nected oscillators in Eq. (1), a smaller Y;; comes from a pair of
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Figure 2 \ Plots of the matrix R;; for fully connected (first line), ER (second line) and UCM (third line) networks, where the oscillator iis labeled by the
ascending order of frequency @;. The coupling strengths are 4 = 1.5, 1.8,2.12,and 2.14in (a) — (d) (4, = 2.13); A = 1.5, 1.8, 2.16, and 2.18 in (e) — (h) (4,

= 2.17);and A = 1.5, 1.8, 2.20, and 2.22 in (i) — (1) (4. = 2.21).

oscillators with both larger couplings and smaller frequency
difference.

On the other hand, a large value of Y;; will not satisfy the condition
(3) and thus prevent synchronization between the corresponding
oscillators. That is, the condition (3) will promote, at any 4, the
synchronization between two connected oscillators with small Y;;,
while suppressing the synchronization of those oscillators corres-
ponding to large Y;;. This is the reason why the small synchronized
clusters in Fig. 2 do not gradually merge together for 4 < A.: with the
gradual increase of A, those oscillators with smaller Y;; will firstly
form multiple synchronized cores, and then the cores will attract
their neighboring oscillators to form multiple synchronized clusters.
Because of the uniformly distributed larger Yj;, the synchronized
clusters cannot merge together into larger synchronized clusters,
but only attract more and more neighboring free oscillators. When
all the free oscillators have been attracted to the synchronized clus-
ters, the further increase of A cannot make the synchronized clusters
become larger, but makes the clusters to merge each other suddenly,
this way producing the significant jump on R observed in the explos-
ive transition.

We call Eq. (3) a suppressive rule for the formation of synchronized
local clusters in ES, and the rest of this work is dedicated to discuss
how Eq. (3) controls the mechanism behind the observed transition
to synchronization. Figure 3(a), for instance, shows the values of Yy
for a symmetric distributed g(w) with both positive and negative
values of w. It is easy to see that the second and fourth quadrants
correspond to suppressive areas of synchronization, with Y; ~ 1.
Now, for the cases considered in Figs. 1 and 2, all frequencies w; are
randomly and uniformly distributed in the networks. Therefore, half
of the network’s connected pairs will display a positive and a negative
o, while the other half will be formed by nodes with the same sign
(positive or negative) of w. Those pairs of connected oscillators with
the same sign in w will, therefore, display relatively small value Y
(and thus will tend to form phase synchronized clusters), while those
pairs with opposite sign of w» will have Y;; ~ 1. These latter pairs, as in
the Achlioptas process, will prevent small synchronized clusters to

merge into a bigger one, i.e. they will suppress the formation of a
giant cluster of synchronized oscillators before criticality.

Degradation from a first-order to a second-order phase transition.
An effective proof of validity consists in reporting how ES relaxes
into a smooth, second-order, phase transition as soon as the
suppressive rule (3) is broken. To that purpose, let us consider the
ER network of Figs. 1 and 2 as an example, and artificially re-adjust
the network by randomly exchanging the frequencies of two nodes i
and j. As the two nodes have k; and k; neighbors respectively, such an
exchange will ultimately influence all the values Y; (with
I1=1,2,---,k; for the links between the node i and its neighbors)
and Yj; (with [=1,2, - - - k; for the links between the node j and its
neighbors).

Figure 3 | Plot of the matrix Y;; with (a) representing the case of a
symmetric g(w) with both positive and negative @ and (b) the case with
only @ > 0.
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Figure 4 | Synchronization diagrams obtained by operating frequency
exchanges between connected nodes, as described in the text. (a) g(w)
taken as a Gaussian distribution with both positive and negative ®, where
the “squares” denotes the case of no operation, “circles” and “up
triangles” represent the cases of decreasing P to P = 0.47, and 0.41,
respectively, and “down triangles” and “diamonds” represent the cases of
increasing P to P = 0.56, and 0.63, respectively. (b) g(w) taken as a
Lorentzian distribution with only w > 0. The “squares” denotes the case of
no operation with Q = 0.289, “circles” and “up triangles” represent the
cases of decreasing Q to Q = 0.246, and 0.225, respectively, and “down
triangles” and “diamonds” represent the cases of increasing Q to Q =
0.326, and 0.344, respectively.

Precisely, we introduce the quantity

ki k
Sij= Z Yi+ i: Yi, (4)

I=1 =1

and we pick randomly a pair of nodes i and j in the network. If
exchanging ; and w; would result in a value of S;; smaller than the
original one, we accept the exchanging, while otherwise we make no
operations. This way, one can gradually make more and more con-
nected pairs with opposite signs in  to turn into pairs displaying the
same sign (negative or positive) of . Let us further introduce the
quantity
P ! ! Ajjsi 5
2 2N<k> %: ,]szgn(w,w,), ( )

which represents the fraction of the pairs of connected oscillators
with opposite sign in w. P will take a value in between 0 and 1.
Namely, P = 0.5 denotes the case of a uniform mixture, and P #
0.5 implies that the uniform mixture is partially destroyed. With
operating more and more of the proposed exchanging operations,
one can gradually reduce P, until the case in which the network’s
oscillators are eventually divided into two big groups, with the same
sign of w for connected pairs belonging to the same group, and
different signs of w for connected pairs at the boundary of the two
groups. Similarly, one can revert the acceptance condition for the
exchange, and gradually increase P by artificially promoting links
between oscillators with opposite signs of .

Figure 4(a) reports the transitions to synchronization observed at
different levels of exchanging. Precisely, the curve with “squares”
corresponds to the case of no operation, those with “circles” and
“up triangles” represent the cases of decreasing P to P = 0.47, and
0.41, respectively, and those with “down triangles” and “diamonds”
represent the cases of increasing P to P = 0.56, and 0.63, respectively.
It is easy to see that decreasing P initially destroys the hysteretic loop
(see the curve with “circles”), and eventually produces a transition

with no jump (see the curve with “up triangles”), i.e. converting ES
into a second-order phase transition. At variance, the sizes of the
hysteretic loop for the “down triangles” and “diamonds” curves in
Fig. 4(a) are both larger than that of “squares” with uniform mixture,
indicating that increasing of P always enhances ES. See Fig. 2 in the
Supplementary Materials for a detailed report on the different paths
to synchronization induced by the exchanging process.

The suppressive rule (3) can also be applied for asymmetric fre-
quency distributions, as, for instance the case of taking only the
positive half of g(w)*'. Fig. 3(b) shows the matrix of Y;; with only
@ > 0. From Fig. 3(b) we see that the value of Y; is small nearby the
diagonal, but close to unity in the red triangle area along the axes,
indicating that the suppressive area of synchronization is formed
here by those pairs of oscillators with one displaying a low frequency
and the other displaying a large frequency. As the area of red triangle
is proportional to the range of m,(w,), a larger range of w (such as
that arising from a SF distribution) will have the result of warranting
the presence of a finite fraction of Y;; inside the suppressive area of

ij
synchronization. We here choose a Lorentzian distribution

1 v
(g(w) T |:((/)_CU0)2+V2
is an approximate power-law distribution. The existence of a suffi-
ciently large suppressive area will prevent the merging of small syn-
chronized clusters into a giant synchronized cluster before criticality,
and thus we can observe ES (see the existence of the hysteretic loop in
the “squares” curve of Fig. 4(b), obtained for the ER network and the
Lorentzian distribution of g(c) in Figs. 1 and 2).
Instead of P, we here introduce the quantity

1
Q= g 2 A (©)

with wy = 0,7 = 0.2 and w > 0), which

that measures the average connection between nodes with large and
small w, and repeat the exchanging process driven by Eq. (4), this
way decreasing or increasing Q. Figure 4(b) shows the resulting
synchronization transitions at different values of Q. Similarly to
Fig. 4(a), the progressive decreasing of Q has the effect of eventually
leading to a second-order transition, while increasing Q makes larger
and larger the size of the hysteresis loop, thus enhancing ES.

Discussion

The character of the phase transition accompanying explosive per-
colation has been the object of a continuous debate. At variance,
there is no debate on the irreversible nature of ES because of the
existence of an associated hysteretic loop. Yet, little was known about
the robustness of ES so far. Here we have developed analytical tools to
address this problem, and found that the robustness of ES depends
on both the network topology and the frequency distribution.
Moreover, we reveal that the suppressive rule (3) is the bridge
between the first-order and second-order transitions and can be
intuitively expressed as

Destruction of suppressive rule (3)

I

Costruction of suppressive rule (3)

where I and I represent the first-order and second-order transitions,
respectively.

Abrupt phase transitions are ubiquitous in both nature and man-
made systems and can be understood from different perspectives. A
natural but important question concerns the relationship between EP
and ES, as the answer to such question will open a new window to
understand the classical percolation transitions in complex net-
works. Our key finding, the suppressive rule (3), suggests that ES
and EP can be unified in a same framework. Namely, for ES, a larger
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scaled frequency difference between two connected oscillators pre-
vents their phase synchronization, and further suppresses, before the
critical point, the merging of small synchronized clusters into a giant
cluster. Similarly to the EP transition in configuration space, the
process of forming synchronized clusters in ES can be considered
as a dynamical Achlioptas process in phase space. According to the
suppressive rule (3), the previous observations of ES from either a
positive correlation between node’s degree and frequency or a pos-
itive correlation between node’s coupling strength are now well
understood in terms of the existence of a suppressive area. Once
the suppressive rule (3) is broken, ES returns to be a second-order
phase transition. Our findings are therefore of relevance for control-
ling ES, by properly manipulating the distribution of frequencies on
nodes.

On their turn, our results raise new questions. First of all, based on
the unified framework of the suppressive rule (3), what is the
counterpart system in the ES perspective, which corresponds to the
continuous/discontinuous debate in the EP systems? Second, what
happens when more complicated frequency distributions are con-
sidered such as the double peaks Lorentzian distribution of g(w)?
Finally, can our result apply to the real dynamics of networks in
situations such as epileptic seizures? We predict that our work will
stimulate further research efforts on these and related challenging
issues.

Methods

To measure the phase correlation between nodes i and j, we introduce the local order
parameter

1 t+T X
| tim ?[ et[(},(t)—(b(f)]dt" @)

where T'is the time window to measure the correlation. R;; will be in between 0 and 1
and a larger value of R;; represents a stronger phase synchronization. We use this
approach to produce the Fig. 2 and the Figs. 1 and 2 in the Supplementary Material.
Similarly, we can also use other approaches to measure the phase correlation between
nodes i and j. For example, we may choose the cross correlation

Flj:<cos(9,-(f)—6j(t))> ®

where (.) represents the average on time. The Fig. 3 in the Supplementary Material is
produced by Eq. (8).
The suppressive rule (3) can be derived as follows. We first consider the case of a

1
fully connected network. From Eq. (2), we have Rsin(‘¥ —0;) = N Zj sin(0;—0;).
Plugging into Eq. (1), one obtains
0;=w;+ Z|w;|Rsin(¥ —0,), i=1,....N, (9)
where f(4, ®;) = A|w,|R represents the effective coupling. Then, we consider the case

of non-fully-connected networks. For an uncorrelated network, we follow Refs. 23, 37
to rewrite Eq. (1) as

é(t):w+i|w\/dk’/d0’

— Aw|h(t)

kP(k) "+ 0',t) sin(0' —
o k0050 ~0) o)

where P(k), (k), p(k; 0, t) represent the degree distribution, average degree, and
density of the nodes with phase 0 at time ¢ for a given degree k, respectively, and the
term h(t) takes into account time fluctuations and is given by

h= Im{e’m Z)N: L Aij ((emf >r —e ) }, where “Im” stands for the imaginary part.
We may regard h as a sum of k approximately uncorrelated terms and thus expect 4 to
be of order v/k. Under the assumptions of k > 1 and substantially above the transition
the term h(t) in Eq. (10) can be neglected. On the other hand, when this approxi-
mation is applied to numerical examples where the finite-size effect is not small, the
theory is still useful in that it correctly indicates the trend of the numerical obser-
vations”. Correspondingly, Eq. (2) can be rewritten as

Re'Y = % / dk / dOKP(K)p(k: 0.¢)¢" (11)

1
which gives Rsin(‘¥ —0) = ® /dk/d(?’kp(k)p(k; 0',t) sin(0' —0). Neglecting the

fluctuation h(t) and substituting Eq. (11) into Eq. (10), we obtain
0(t) = w+ A|w|R sin(¥ — 0), which is exactly Eq. (9). Therefore, we have Eq. (9) for
the cases of both fully connected and non-fully-connected networks. Ref. 33

demonstrated that all the cases of ES can be unified within the mean-field framework
of (9), provided that f(4, w;) is proportional to the natural frequency of the oscillators.
We therefore take here Eq. (9) as our starting point. The evolution of the phase
difference A0; = 0; — 0; is then given by

Abjj = o; + |y | R sin(¥ — 0;) — o — 2| ;| R sin (¥ — 0)). (12)
When the two oscillators i and j are phase-locked, one has A@,j =0, and
w;— ;=R [|wj| sin(¥ —0;) — |o;| sin(¥ —6;)]. (13)

The maximum value of the right hand side of Eq. (13) is AR(|@;| + |e;]), which gives a
necessary condition of phase-locking between two oscillators, i.e. the suppressive rule

3).
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