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Aggregations of animals display complex and dynamic behaviour, both at the individual level and on the
level of the group as a whole. Often, this behaviour is collective, so that the group exhibits properties that
are distinct from those of the individuals. In insect swarms, the motion of individuals is typically convoluted,
and swarms display neither net polarization nor correlation. The swarms themselves, however, remain
nearly stationary and maintain their cohesion even in noisy natural environments. This behaviour stands in
contrast with other forms of collective animal behaviour, such as flocking, schooling, or herding, where the
motion of individuals is more coordinated, and thus swarms provide a powerful way to study the
underpinnings of collective behaviour as distinct from global order. Here, we provide a data set of three-
dimensional, time-resolved trajectories, including positions, velocities, and accelerations, of individual
insects in laboratory insect swarms. The data can be used to study the collective as a whole as well as the
dynamics and behaviour of individuals within the swarm.
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Background & Summary
In nature, many species organize in groups or aggregations that exhibit temporally and spatially complex
patterns and dynamics1. This behaviour can be observed in bird flocks2–4, fish schools5, and
insect swarms6,7, among others. This group behaviour often appears to be collective, so that the group
as a whole has distinctly different properties from those of the individuals7. It is widely believed that
group behaviour is beneficial. Thus, substantial work on the nature, advantages, and origins of collectivity
has appeared in recent years5,8–10. In addition to being of fundamental biological interest, understanding
collective behaviour has also emerged as an important topic in bio-inspired engineering to enable the
design of distributed robotic systems that can handle tasks in robust and efficient ways11,12.

With recent technological advances in imaging technology, the study of animal aggregations has
increasingly focused on the detailed observation of individuals within the group to provide simultaneous
measurement of individual and group behaviour. For larger animals such as birds or fish, the task of
tracking individuals can become challenging due to visual occlusions of individuals and potential large-scale
translational movement of the group4. Many larger animals must also be studied in the wild, which brings
additional complications. In particular, it can be difficult to disentangle the effects of environmental stimuli,
which can simultaneously affect many individuals, from the intrinsic collective behaviour of the group13,14.
To remove any confounding external stimuli, we performed laboratory observations on swarms of
Chironomus riparius, a non-biting midge species that consistently and predictably forms mating swarms
over visual cues15 (see Fig. 1). As we have shown elsewhere, these swarms are a useful and convenient
system for investigating collective behaviour7,14,16,17, including by allowing potentially powerful analogies
to materials science18,19, thermodynamics20, and gravitating systems21,22.

Here, we present a dataset of such individual trajectories in laboratory insect swarms. We use a three-
camera setup to reconstruct the three-dimensional positions, velocities, and accelerations of each
individual midge during the swarming process. This temporally and spatially resolved data allows for
statistical, dynamic, and topological analyses, and can give insights in the behaviour of both individuals
and of the group as a whole.

Methods
Insect colony
The data described here was obtained from imaging swarms of Chironomus riparius midges living in
a self-sustaining laboratory colony7. We established the colony from initial egg sacs purchased from
Environmental Consulting and Testing, Inc. The midges are kept in a (122 cm)3 cubical enclosure
made of acrylic for easy optical access. The room in which this enclosure sits is maintained at a constant
22 °C and 50% humidity, with no natural light sources. The enclosure is illuminated by an overhead light
set to a circadian cycle, providing 16 h of light and 8 h of darkness per day.

Male midges spontaneously form mating swarms twice daily, at (laboratory) dusk and dawn. We
typically observe larger swarms at dusk; most of the data reported here was acquired from dusk swarms.
Females do not participate in the swarming behaviour, but will occasionally fly through the swarms to
find mates. These events are rare and are not present in the data provided here.

The insect colony setup is similar to what was described in references7,14,16–18,23, though there the
enclosure was smaller. The larger midge enclosure here allows for larger swarms to form that are still not
influenced by the walls.

Setup and Procedure
Swarms of C. riparius are well known to nucleate over visual features on the ground15,24. In the wild, such
features may be, for example, tree stumps or stream banks. In the laboratory, we provide a 31 × 31 cm2

“swarm marker” (in our case, a black square plate) for this purpose (see Fig. 1). In addition to
encouraging the formation of swarms, the marker also allows us to position swarms in the midge
enclosure so that we can ensure their visibility by our imaging system and prevent them from drifting in
space or interacting with the walls of the enclosure. Note that swarms do not tend to fill the entire
enclosure, but rather remain far from the walls7. As such, the insects are not directly constrained by the
size of the laboratory environment.

Static properties such as the size and shape of the marker can affect the behaviour of very small
swarms, but do not play a strong role in the morphology or behaviour of swarms larger than about 10
individuals23. In contrast, dynamic movement of the swarm marker does affect the swarm noticeably.The
data we present here was obtained using a static marker.

We image the swarms using three hardware-synchronized Point Grey Flea3 cameras, recording 8-bit
greyscale images with a spatial resolution of 1280 by 1024 pixels at a rate of 100 Hz. Using an array of
near-infrared LEDs, the swarms are illuminated at a wavelength that is visible to the cameras but not to
the midges, so that their behaviour is not disturbed by lighting. Each swarming event is filmed for
approximately 2 to 5 min, corresponding to roughly 10000 to 20000 frames of data. The cameras are
arranged outside the enclosure in a horizontal plane, as sketched in Fig. 2b, with angular separations of
approximately 30° and 70°. To calibrate the imaging system, we assume a standard pinhole camera
model25. The cameras are calibrated using a target mask consisting of a regular dot pattern26 that is
positioned in the center of the enclosure and removed before swarming begins. The conceptual design of
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the experiment and the data acquisition follows the description in ref.7, with camera locations and
illumination setup adjusted to account for the larger midge enclosure.

Data Treatment
To track the motion of individuals in the swarm, we followed the methodology described in ref.7. We first
located midges in each camera frame by finding the centroids of regions that had sufficient contrast with
the background and were larger in area than an appropriate threshold A1, after the average of all frames
was subtracted (see Fig. 3a). To improve on the detection method, centroid coordinates of circular
regions above a second larger threshold A2 (see Fig. 3c) were duplicated as they potentially corresponded
to two midges almost completely overlapping from the viewpoint of a single camera. This allowed the
stereomatching to correctly distinguish two midges that were partially obstructed in the field of view of
one camera. Highly non-circular regions above a third area threshold A3 were additionally split into two
spatially separated midges because they may potentially correspond to two distinct midges that overlap
only slightly in the frame (see Fig. 3b). A1 was chosen to be about 15 pixels, which for the given
illumination and camera setup proved to be large enough to prevent unnecessary false positives. A2 was
about 100 pixels which is larger than any typical single midge observed, and A3 was about 150 pixels to
reduce the error in finding the center of split midges. Note that while for the observations in this dataset

Figure 1. Images of midge swarms in the laboratory, taken with the same cameras and illumination used

to obtain the data. (a) A snapshot from a swarming event. Midges are swarm above a square black plate that

serves as a nucleation point for the swarm. (b) An inverted, long exposure of the swarm, showing the

trajectories of individual midges. The contrast in both images is enhanced for better visualization.

Figure 2. Midge trajectories and experimental setup. (a) Long reconstructed trajectories from a single

observation. Shown are those trajectories from Ob14 that are longer than 35 s. The swarm marker is shown by

a black square. (b) Schematic top view of the experimental setup. Swarms form inside a cubical acrylic

enclosure measuring 122 cm on a side and are imaged using three cameras mounted outside the enclosure. The

swarm marker is roughly positioned in the center of the enclosure. The enclosure contains eight midge

development tanks (light blue) and four infrared LED arrays (yellow; additional arrays on top of the enclosure

are not shown).
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the illumination and camera setup remained constant, in general these parameters do strongly depend on
the illumination level and the distance of the cameras from the swarm center.

Combining the two-dimensional positions on the frames obtained from each camera and the relative
coordinates of the cameras (found using a standard calibration method based on Tsai’s model25), we
constructed an epipolar line of sight for each midge image on each camera. Near intersections of triplets
of these epipolar lines then determine the location of the midges in three-dimensional space. Here, we
only considered midges that were seen by all three cameras. Although in principle two views are sufficient
for stereoimaging, in practice at least three cameras are typically required to resolve ambiguities and
avoid false identifications27. Arranging all three cameras in a horizontal plane, as we have done here, can
still leave some residual ambiguity. However, this situation occurs infrequently and is more than
compensated for by the simpler and superior camera calibration that can be obtained when all the
cameras are positioned approximately orthogonally to the walls of the midge enclosure.

After determining the three-dimensional positions of the midges, we tracked their motion in time
using a predictive tracking algorithm originally developed to study turbulent fluid flows27. This algorithm
proceeds by using the prior flight history of a midge to estimate the expected position of the midge in
future frames; the real midge that is found closest to the estimated position is linked to the trajectory27.
We set the parameters of this algorithm conservatively, so that ambiguities in the tracking (as can be
caused by, for example, midges that come very close together or midge positions that are missing or
misidentified) led to trajectory segments ending rather than to tracking mistakes. Subsequently, however,
we tested whether we could splice together trajectory segments by re-tracking them in a six-dimensional
position-velocity space that serves to spread out the potential matches and resolve ambiguities28. To do
this, all tracks obtained via the tracking algorithm were projected forward and backward in time using
positions and velocities at the track endpoints. If the distance in position-velocity space of the forward
projection of one trajetory and the backward projection of another trajectory falls below a threshold, one
can assume that those tracks belong to the same individual midge, and the trajectory segments can be
joined28.

Observation ID Dataset length [frames] Mean swarm size Mean track length [frames]

Ob1 11000 94 224

Ob2 14870 68 194

Ob3 15000 46 162

Ob4 15000 29 417

Ob5 15000 22 523

Ob6 20000 18 509

Ob7 10000 58 217

Ob8 19000 27 194

Ob9 10000 49 219

Ob10 15000 71 270

Ob11 20000 14 1028

Ob12 20000 19 335

Ob13 20000 27 525

Ob14 20000 54 212

Ob15 20000 20 549

Ob16 20000 34 559

Ob17 20000 15 1467

Ob18 20000 19 493

Ob19 30000 29 808

Table 1. Overview of the individual swarming events in the dataset. All swarms were observed at
laboratory dusk apart from observations Ob6 and Ob11, which were captured during laboratory daytime.

Column 1 2 3 4 5 6 7 8 9 10 11

Data id x z y t vx vz vy ax az ay

Table 2. Columns in a single swarm dataset.
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Once the trajectories were identified, we computed velocities and accelerations by convolving the
trajectories with a Gaussian smoothing and differentiating kernel29, thereby avoiding noise that can
be introduced by simple finite differences23. For the data presented here, the convolution kernel was
chosen to have a standard deviation of 2 frames, and the position information from 9 frames was used to
calculate each derivative.

Our time resolution was sufficient to capture even the most intense acceleration events displayed by
the midges7. We note that since midge swarms are very dilute, tracking is relatively easy for these data
sets. Sample midge trajectories are shown in Fig. 2a.

Code availability
Code for stereomatching and tracking is available from the corresponding author upon request.

Data Records
The dataset (Data Citation 1) contains 19 individual swarming events (see Table 1), which each contain
the trajectories of all the midges within the swarm. The swarm recordings were between 100 and 200 s
long, and the swarms contained between 15 and 94 individuals. Each swarm measurement is stored in
a .csv file. The data is organized in 11 columns (see Table 2), with each line corresponding to one
individual midge at one specific time. The first column contains a unique numerical identifier id
corresponding to a single midge. The second through fourth columns contain the x, z and y coordinates,
respectively, of the midge in mm, with z pointed antiparallel to gravity. The fifth column contains the
time stamp t of that frame in seconds. The sixth through eighth columns contain the velocities vx, vz, and
vy in the x, z, and y directions, respectively, in mm/s. The ninth through eleventh columns contain the
accelerations ax, az, and ay in the x, z, and y direction, respectively, in mm/s2.

Technical Validation
The image processing step of our method was tested by comparing the algorithmic results with those
obtained by human identification on a representative sample of images. By appropriately tuning the
thresholds, all midges identified by eye were automatically detected by our algorithm. The tracking
algorithm used in this study has been thoroughly tested against numerical simulations of particles in
turbulent flows27, a scenario in which individual particles display much more erratic behaviour and much
stronger accelerations than the swarming midges. To do this, particle trajectories were generated by direct
numerical simulation of the Navier-Stokes equations for the case of a turbulent flow. The trajectories
were parameterized by time, and lists of the time-resolved positions (without any indication of which
position belonged to which trajectory) were fed into the tracking algorithm. Since the trajectories of the
simulated particles were known a priori, it was possible to evaluate the performance of the tracking
algorithm quantitatively by comparing the true trajectories with the output of the algorithm27. In the case
of low particle densities, as is the case in the midge swarms, tracking mistakes were negligible. We did not
directly assess the performance of our tracking algorithm on simulated midge trajectories because the
equations of motion of midges are not known; nevertheless, they still must obey basic kinematics such as
smoothness of the trajectories, which is the only assumption underlying our tracking algorithm.

The resulting distribution of trajectory lengths is shown in Fig. 4. These distributions have long, nearly
exponential tails, implying that the ending of a trajectory is uncorrelated and random. There is a slight
increase of the decay rate with swarm size, with larger swarms favoring shorter trajectories. This effect is

Figure 3. Enlarged images of midges as captured by our cameras. (a) A representative single midge as

detected by the image processing algorithm. (b) A typical occurrence of a non-circular detected area that

corresponds two two individual midges. These areas are split into two separate groups of pixels, each

corresponding to a single midge, to improve the stereomatching rate. (c) An example of a large detected area

that corresponds to a single midge that may potentially be obstructing another midge. These areas are

duplicated in place to allow the line of sight through this midge from one camera to intersect with multiple

lines of sight from the other cameras.
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likely due to a combination of factors, including a greater likelihood of visual occlusions on the cameras
when more midges are flying and a higher chance of a midge leaving the field of the view of the cameras
for larger swarm volumes. As a result, the mean trajectory length decreases somewhat with the total
number of midges in the swarm. Note, however, that this does not mean that a smaller proportion of the
midges are tracked. Rather, the conservative approach we take in reconstructing midge identity is more
likely to result in broken trajectories.

As an a posteriori validation step of the quality of our data, we checked the kinematics of our midge
trajectories for inconsistencies that might be the result of systematic errors. In Fig. 5, time series of the
number of midges N and the mean speed v of midges from observation 14 are shown over the course of
the entire measurement. Neither of these quantities show any suspicious outliers (that is, data points that
are very far from the mean behaviour), and they agree with human observations of swarm size and the
typical travel times of midges through the swarm volume. Similarly, the kinematic statistics of the midges,
such as the speed and acceleration magnitude probability density functions shown in Fig. 6, are smooth
and show no unexpected features.

Figure 4. Statistics of track lengths for several swarms. (a) Probability density functions of track length for

swarms containing between 15 and 71 individuals. The distribution of track lengths has a roughly exponential

tail with a slight dependence of the decay factor on the swarm size. (b) The mean track length as a function of

the swarm size. Larger swarms tend to have lower mean trajectory lengths.

Figure 5. Time series of swarm properties for Ob14. (a) Time series of the number of midges in the swarm.

The number of detected midges in the swarm remains roughly constant, with a mean value of 54 individuals

and only small fluctuations. (b) Time series of the mean speed of midges from the same swarm. As expected,

the speed is not a strong function of time and fluctuates about a common mean value. Neither of the time

series show any indication of outliers produced by errors in the data processing.
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Usage Notes
While gravity is always directed in the negative z direction, neither the x and y direction nor the absolute
position of the origin in space are fixed between different observations. The coordinate system for each
observation was determined by the position and orientation of the calibration target, and the target was
not placed at the exact same location and orientation for different measurements. However, the center of
mass of the swarm defines a physical meaningful origin in each case, and we find that the swarms are
azimuthally symmetric.
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