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Recent advances in magnetic resonance imaging methods, including data acquisition, pre-processing and
analysis, have benefited research on the contributions of subcortical brain nuclei to human cognition and
behavior. At the same time, these developments have led to an increasing need for a high-resolution
probabilistic in vivo anatomical atlas of subcortical nuclei. In order to address this need, we constructed
high spatial resolution, three-dimensional templates, using high-accuracy diffeomorphic registration of
T1- and T2- weighted structural images from 168 typical adults between 22 and 35 years old. In these
templates, many tissue boundaries are clearly visible, which would otherwise be impossible to delineate in
data from individual studies. The resulting delineations of subcortical nuclei complement current histology-
based atlases. We further created a companion library of software tools for atlas development, to offer an
open and evolving resource for the creation of a crowd-sourced in vivo probabilistic anatomical atlas of the
human brain.

Design Type(s) source-based data analysis objective • anatomical image analysis objective

Measurement Type(s) anatomical structure

Technology Type(s) probabilistic algorithm

Factor Type(s) Image Weighting Type • regional part of brain

Sample Characteristic(s)

Homo sapiens • caudate nucleus • putamen • globus pallidus •
subthalamic nucleus • substantia nigra pars reticulata • hypothalamus •
habenular nucleus • ventral pallidum • nucleus accumbens • substantia
nigra pars compacta • parabrachial pigmental nucleus • ventral tegmental
area • amygdala • red nucleus • mammillary body
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Background & Summary
High spatial resolution magnetic resonance imaging (MRI) and improved data pre-processing, especially
non-linear image alignment techniques1–4, have enabled the systematic investigation of contributions of
subcortical brain nuclei to human cognition and behavior. This development has led to an increasing
need for a high-resolution probabilistic in vivo atlas of subcortical nuclei, for at least three reasons. First,
several of the relevant subcortical structures are not discernible when averaging structural brain scans
across participants in a single study. Second, uncertainty about anatomical labels for subcortical
structures hinders comparisons across studies. Third, because of potential spatial inaccuracies in co-
registration to standard space, it is critical to maintain probabilistic atlas labels.

To address this need, we improved upon an approach we recently developed to create the California
Institute of Technology (CIT168) probabilistic high-resolution in vivo atlas of the human amygdala5. We
significantly expanded this existing atlas by including probabilistic anatomical labels for subcortical nuclei
implicated in human executive function6,7. In particular, research in rodents and non-human primates
has identified a network of subcortical nuclei at the core of reinforcement learning and decision making
(for reviews, see refs 8,9). This work suggests that a network of diverse subcortical nuclei may, among
other psychological functions, approximate a biological simulacrum of the long short-term memory
model10, where striatal dopamine release implements a feedback mechanism for mammals to learn based
on successes and failures of their interactions with the environment11,12. Dysfunctions in these subcortical
nuclei have been identified as candidate sources in debilitating clinical conditions that levy high personal
and societal costs, including eating-disorders, obsessive-compulsive disorder, and drug-use disorders13.
However, current scientific understanding of their functions is strongly informed by animal models (for
reviews, see refs 14–16). The resulting uncertainty about whether analogous neural mechanisms are
conserved in the human brain has undermined progress in identifying specific biological mechanisms and
corresponding therapeutic targets17.

The existing CIT168 atlas of the human amygdala has already provided a useful research tool for
neuroscience studies across domains. Using a symmetric normalization (SyN) diffeomorphic image
transform to map preoperative structural scans of epileptic patients onto the CIT168 atlas, it was possible
to discover electrophysiological evidence for item-specific working memory activity in the human
amygdala18. Another study, with the CIT168 atlas as reference, combined electrophysiological, lesion, and
functional MRI data, and found evidence that the human amygdala processes both the degree of emotion
in facial expressions and the categorical ambiguity of the emotion shown, and that these two aspects of
amygdala processing can be most clearly distinguished at the level of single neurons19. The present
extension of the CIT168 atlas has already been used in a recent functional MRI study, which found
evidence for state value prediction errors, in addition to reward prediction errors, in the human
substantia nigra (pars compacta), while participants solved a Markovian decision making task20.

In summary, we strove to create a probabilistic in vivo reference atlas for subcortical nuclei involved in
reward learning and decision making, but not included in existing in vivo atlases21–24. The current
delineation provides a finer parcellation of subcortical nuclei, with more accurate external boundary
definition than current histology-based atlases. This atlas is especially useful in conjunction with high
accuracy registration methods, such as diffeomorphic warping. We intend for these templates and
delineations to be an open and evolving resource for future functional and structural neuroscience
studies. To this effect, we further created a library of Python tools for the creation of a crowd-sourced
in vivo probabilistic anatomical atlas of the human brain.

Methods
We constructed high spatial resolution in vivo templates of the human brain by diffeomorphically
registering structural magnetic resonance images from 168 typical adults drawn from the Human
Connectome Project25. Subsequently, we constructed eight validation templates by averaging 84 T1w and
T2w warped image pairs selected randomly from the 168 T1w and T2w image pairs in template space5.
We delineated subcortical nuclei in the left hemisphere of each validation template, averaged labels from
all observers and validation templates, then projected the label averages diffeomorphically to the right
hemisphere. This resulted in a bilateral probabilistic atlas with minimal left-right observer bias
(see subsection "Probabilistic atlas construction" for details).

Source data
Structural MRI data was drawn from the Human Connectome Project (HCP) S500 subject release25. The
minimal HCP structural preprocessing pipeline was therefore already applied to all structural imaging
data26. To maximize SNR in individual data, we included only subjects for which two separate
acquisitions for each of the T1w and T2w structural images were available26. Application of this inclusion
criterion reduced the available sample to 208 subjects. To perform age and sex unbiasing, we balanced the
number of male and female subjects at each integer age between 22 and 35 years old, inclusively. This
resulted in a final sample size of 168 individuals (84 females and 84 males, mean± sd age in both
groups= 28.9± 3.6 years).

For those researchers interested in the demographics of the original 168 subjects averaged to make the
CIT168 templates, the top level of the OSF storage contains a summary table (CIT168_Unrestricted_-
Demographics.tsv) for this project, listing the HCP identifier, sex and five-year age range for all 168
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subjects used to generate the CIT168 templates. Rich demographic and behavioral data for each subject
are made available by the HCP and can be tied to the CIT168 cohort through the HCP identifier. Integer
ages for individual subjects are considered protected data by the HCP and we cannot release this
information here under the Terms of Use agreement. For more detailed, but restricted demographics, the
user should apply directly to the HCP.

Group template construction
We constructed an unbiased group template using diffeomorphic normalization with a joint cost function
over T1w and T2w high-resolution 3D images. We used the bivariate symmetric normalization (SyN)
algorithm for all registrations performed, relying on the implementation by the Advanced Normalization
Toolbox (ANTs v2.1.0) in the antsMultivariateTemplateConstruction.sh script4. We constructed initial
unbiased seed templates for T1w and T2w volumes by simple averaging across all subjects. This was
possible because all volumes were already rigid-body AC-PC aligned (i.e. without linear scaling) by the
minimal HCP structural preprocessing pipeline. For each individual brain, we optimized a single
diffeomorphic mapping using a joint cross-correlation similarity metric giving equal weights to the T1w
and T2w images27. As the individual T1w and T2w images were already coregistered during HCP
preprocessing26, only a single diffeomorphism is required. Other SyN registration parameters used for
this bivariate template include: SyN gradient step= 0.25, SyN Gaussian regularization σ= 3.0 voxels28,
multiscale downsampling factors= (4, 2, 1), affine registration iterations at each downsampling
factor= (10000, 10000, 1000), SyN registration iterations at each downsampling factor= (30, 90, 20). The
initial unbiased bivariate template was refined iteratively: After each iteration, a new template was created
by applying the newly generated affine and diffeomorphic transforms5. We terminated this template
refinement after four iterations29–31. This resulted in an unbiased, AC-PC aligned pair of T1w and T2w
group templates, with 700 μm isotropic spatial resolution, subsequently referred to as the CIT168
templates.

Probabilistic atlas construction
Some of the included subcortical nuclei cannot be readily delineated in individual structural images from
the HCP dataset. In contrast, most nuclei become sufficiently well-defined in the group average templates,
either directly, or because of well-defined surrounding subcortical structures. This enables manual
labeling in group templates generated from approximately 80 or more registered individual structural
images. We generated T1w and T2w templates for intra-observer label validation and probabilistic atlas
generation by randomly selecting then averaging 84 T1w and T2w image pairs from the original 168
individual image pairs in the group template space. We then created the complementary T1w and T2w
validation templates, by averaging over the remaining 84 image pairs. We created eight validation
templates in total (four samples of 84 from 168 individuals with complements) because we considered
this to strike a reasonable balance between the need for intra-rater validation and total labeling time,
which was approximately 4 to 8 h per template per observer.

Region labeling was performed in the left hemisphere only, which is not without precedent in the
subcortical atlas literature32,33. The probabilistic labels for each subcortical region in the left hemisphere
were constructed by simple averaging over all 24 manually labeled volumes since all eight validation
templates were constructed in the master CIT168 template space. Left hemisphere probabilistic labels
were then mapped diffeomorphically to the right hemisphere using the combination of a reflection about
the mid-sagittal plane, followed by an affine and then a diffeomorphic transform ("reflection warp"). This
results in an anatomically constrained mapping of all points in the left hemisphere to anatomically
equivalent points in the right hemisphere. To generate a bilateral labeling, we then applied this reflection
warp to the left-hemisphere probabilistic labels using third-order B-spline interpolation. This approach
results in a bilateral probabilistic atlas with minimal left-right observer bias. If there is a consistent error
in labeling the left hemisphere by one observer, this bias is also mapped to the right hemisphere label,
minimizing any left-right observer bias for that region. The accuracy of reflection warping is addressed in
previous work5. Critically, this allows for inter-hemispheric asymmetry of subcortical nuclei, in location,
shape or volume.

Region delineation
All three observers (AN, JMT and WMP) labeled subcortical nuclei in the left hemisphere in each of the
eight validation templates using an agreed upon approach. The primary reference for regional delineation
was the Allen Institute Adult 34 year old human atlas (http://atlas.brain-map.org)34, with
the third edition of the Mai-Paxinos-Voss atlas35 as a secondary reference. To allow tissue volumes to be
defined by referencing both image contrasts, observers viewed the joint unbiased T1w and T2w templates
simultaneously in ITK-SNAP (version 3.6.0)36 using a yoked 3D cursor. Tissue boundaries were
characterized as either explicit, with clear contrast between neighboring regions, or implicit, where low
tissue contrast requires the observer to use surrounding landmarks to estimate the boundary location
when labeling (see Figure 1).

The present extension of the CIT168 atlas consists of 16 subcortical gray matter regions labeled by
three observers in eight templates. These anatomical labels can conceptually be grouped in the following
way. The first group includes subcortical nuclei that are, either directly or indirectly, modulated by
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dopamine release, and guide behavior37–39, including the caudate nucleus (Ca) and putamen (Pu), and
downstream areas such as the external and internal segments of the globus pallidus (GPe and GPi,
respectively), the subthalamic nucleus (STH), and the substantia nigra pars reticulata (SNr). The second
group of nuclei drive activity in the dopaminergic midbrain6,7,40 and include the hypothalamus (HTH),
habenular nucleus (HN), ventral pallidum (VeP), and the nucleus accumbens (NAC). The third group is
comprised of the dopaminergic midbrain regions, including the substantia nigra pars compacta (SNc),
parabrachial pigmented nucleus (PBP), and the ventral tegmental area (VTA). The final group consists of
landmark structures including the extended amygdala (EXA), red nucleus (RN), and mammillary
nucleus (MN).

The regions and the approach to delineation for each are detailed below and the resulting labels
illustrated in Figure 2. We invite interested readers to explore the atlas and anatomical labels on the
NeuroVault.org website, which supports orthogonal three-plane visualization in the MNI152 space
(https://neurovault.org/collections/3145/). The following paragraphs provide a
discussion of labeling criteria, as well as their proposed function, with a selective focus on their role
within the above computational framework for subcortical contributions to executive functions.

Caudate Nucleus (Ca). The Ca receives strong dopaminergic innervation from the ventral tier of the
SNc41. It receives synaptic input from prefrontal areas, and also exerts a modulatory influence over
prefrontal areas, via the output nuclei (see below) of the basal ganglia42,43. The Ca is involved in various
goal-directed behavior and cognitive functions44–46. The Ca is hypointense in T1w and hyperintense in
T2w templates with clear, high contrast boundaries at almost all points. The only exception is at its low
contrast ventral boundary with the nucleus accumbens (NAC). The current atlas includes the tail of the
caudate as it travels caudally and ventrally around the lateral ventricle.

Putamen (Pu). The Pu receives strong dopaminergic innervation from the ventral tier of the lateral
SNc41. The Pu is critical for the execution of motor behavior47,48. Similar to the Ca, the Pu boundaries are
well-defined in both T1w and T2w templates except at the ventral boundary with the NAC. In the current
atlas, and in contrast to ref. 35, we include the ventral putamen in the main Pu label, rather than as a
separate anatomical label.

Globus Pallidus (GP). The internal and external segments of the globus pallidus are considered to be
the output nuclei of the basal ganglia47,49. Both the internal (GPi) and external (GPe) segments of the
globus pallidus have well-defined margins in both the T1w and T2w templates. In T1w templates, both
segments of the GP are hypointense, with clear contrast against the surrounding myelinated white matter,
including the internal capsule. The GPe encloses the GPi laterally and rostrally and both lie medial to the

Figure 1. Example tissue boundaries. Example explicit (solid lines) and implicit (dashed lines) boundaries

between the red nucleus (RN), parabrachial pigmented nucleus (PBP), substantia nigra (SNc and SNr), and

subthalamic nucleus overlayed on the CIT168 T1w and T2w templates. The isotropic voxel size is 700 μm. See

Table 1 for label acronyms.
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Putamen. The anterior commissure (ac) provides a convenient ventral limit for the GPe, separating the
latter from the ventral pallidum (VeP).

Subthalamic Nucleus (STH). The tonic activation of neurons of the SNr is at least partially attributable
to excitatory input from the STH47,50. The STH is a relatively well-defined hyperintense structure in T1w
templates and lies caudal and lateral to the hypothalamus. The ventromedial boundary of the STH with
SNr and PBP is indistinct in the T2w templates, because all are hypointense. The segmentation of the
STH therefore relies on combined evaluation of the T1w and T2w contrast in coronal and sagittal
sections.

Substantia Nigra, pars reticulata (SNr). Within the frontal cortical-basal ganglia circuitry42, the SNr
receives inhibitory projections from the striatum51. Neurons in the SNr are tonically active and exert
tonic inhibition of the thalamus51. Therefore, activation of striatal projection neurons cause a
disinhibition of the thalamus, which is thought to produce a gating function52–54 for working memory
and motor programs in cortical areas55. The SNr appears as a hypointense band, ventrolateral to the SNc
in coronal T1w sections.

Hypothalamus (HTH). The HTH is involved in a diverse set of functions including hormone release,
control of food intake, fear processing, and sexual behavior. Within the scope of reinforcement learning,
the lateral HTH is thought to mediate the delivery of rewards56, and to cause dopamine release
corresponding to a reward prediction error9. The hypothalamus is internally heterogeneous in both T1w
and T2w templates and is most easily delineated in coronal sections using the anterior commissure,
mammillary nucleus, extended amygdala, sublenticular fascicle, and thalamus as landmarks and
boundaries. The caudal boundary of the HTH corresponds approximately with the appearance of the RN
in coronal sections.

Habenular Nuclei (HN). The lateral HN has been hypothesized to play a role during aversive l
earning57. The habenular nuclei (or habenula) lie on the medial surface of the dorsal medial nucleus of
the thalamus58. The HN have been found to exert a modulatory influence over the dopaminergic
midbrain59. In the context of reward learning, it has been shown to be involved in predicting the exact
timing of reward delivery57,60,61. The HN have a relatively high myelin content62 and are hyperintense in

Figure 2. Representative sections from atlas. Axial sections centered on the red nucleus (left column) and

substantia nigra (middle column), and a coronal section centered on the ventral pallidum (right column). T1w

and T2w sections without overlays show the original tissue contrast seen by observers during delineation. The

deterministic (P>0.5) and original probabilistic labels are shown in the right two columns. Note the softening

of label edges in the probabilistic overlay, indicating inter- and intra-observer variability in boundary location.

The color key indicates which labels are visible or out-of-plane (gray).
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T1w and hypointense in the T2w sections with clear boundaries with neighboring tissue and CSF spaces
in all directions (Figure 3).

Ventral Pallidum (VeP). The ventral pallidum is internally heterogenous in both T1w and T2w
templates, partially due to its relatively small size, and edge effects with surrounding tissue introduced
during midspace template construction (see Methods “Group template construction”). However, it is not
entirely indistinct, and can be well localized because of surrounding nuclei. Rostrally, it borders with the
nucleus accumbens. Ventrally, it borders with the hypothalamus and substantia innominata. Dorsally, it
is separated from the ventral GPe by the anterior commissure (2).

Nucleus Accumbens (NAC). The NAC is bidirectionally interconnected with the VTA and the dorsal
tier of the SNc41. It thus is both the target of strong dopaminergic innervation, and also modulates
dopamine release in dorsal striatal areas41. The boundaries between the nucleus accumbens and the
caudate and putamen respectively are indistinct, but not entirely invisible and are best delineated using a
combination of coronal and axial sections from both T1w and T2w templates. The caudal limit of the
NAC coincides with the appearance of the anterior commissure in coronal sections.

Substantia Nigra, pars compacta (SNc). The SNc contains predominantly dopaminergic neurons
with projections primarily to the striatum, pallidum, SNr, and STH and plays an important role in a
variety of brain functions including motivation, reinforcement learning, and movement control63. Prior
work has shown an important distinction between a dorsal and a ventral tier within the SNc41. However,
it is not possible to distinguish these tiers in vivo in individual structural images by MRI. The SNc is
visible in coronal T1w sections as a semi-continguous, irregularly-shaped, hyperintense band between the
PBP and SNr. The rostral limit of the SNc coincides approximately with the caudal limit of the
hypothalamus.

Parabrachial Pigmented Nucleus (PBP). Similar to the VTA, the PBP is rich in dopamine neurons64,
and also projects mainly to the ventral striatum65. The PBP is visible as a hypointense band in T2w
coronal sections, running ventromedially to dorsolaterally between the red nucleus and the SNc. The PBP
has a high contrast, explicit boundary with the hypointense red nucleus dorsomedially and a lower
contrast boundary with the SNc ventrolaterally in T2w templates. Rostrocaudally, the PBP extends from
the caudal limit of the hypothalamus to the caudal limit of the red nucleus, medial to the subthalamic
nucleus.

Ventral Tegmental Area (VTA). The VTA is rich in dopamine neurons, many of these neurons axons
terminate in the striatum, so that activation of these neurons results in the release of dopamine in
targeted areas41,65. The VTA is the target of projections from the shell of the nucleus accumbens41, as well
as from the central nucleus of the amygdala66. In coronal sections, the VTA lies ventral to the RN at the
ventromedial limit of the PBP. Rostrocaudally, the VTA extends from the approximate rostrocaudal
midpoint of the RN to just beyond the caudal limit of the RN as seen in coronal sections. The boundary
with the RN is a well defined and explicit, but the transition from PBP to VTA, and both rostral and
caudal limits, are poorly defined and therefore implicit in both T1w and T2w templates (Figure 3).

Extended Amygdala (EXA). The extended amygdala consists of the bed nuclei of the stria terminalis
(BNST), the sublenticular extended amygdala (SLEA) and the interstitial nucleus of the posterior limb of

Figure 3. Sections through smaller nuclei. A central coronal section through the VTA, PBP, SNc, and SNr

(top row) and axial section through the HN (bottom row). T1w and T2w sections without overlays show the

original tissue contrast seen by observers during delineation. The deterministic (P>0.5) and original

probabilistic labels are shown in the right two columns. The color key indicates which labels are visible or out-

of-plane (gray).
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the anterior commissure, though this last region cannot be identified in either the T1w or T2w templates
and is consequently omitted from the atlas. In coronal sections, the EXA extends ventrally from the
ventromedial edge of the caudate nucleus to the anterior commissure, lying between the columns of the
forix and the internal capsule (Figure 2). The SLEA extends laterally from the main body of the BNST,
immediately caudal to the anterior commissure and dorsolateral to the hypothalamus.

Red Nucleus (RN). The red nucleus is hypointense in the T2w template with clear, high-contrast
boundaries with the surrounding midbrain, but has very low contrast in the T1w templates. It is an
important landmark for the PBP, SNr, SNc, and VTA labels.

Mammillary Nucleus (MN). The mammillary nucleus is well defined in both T1w and T2w templates
with a distinct, more heavily myelinated capsule (comprised mainly of fibers of the mammillary peduncle,
fornix and mammillothalamic tract) which appears hyperintense in T1w and hypointense in T2w
templates. The MN is readily located at the ventral terminations of the fornix and
mammillothalamic tract.

Volumes of subcortical nuclei
In order to assess the size of the different subcortical nuclei, we estimated the volume of each of the
subcortical nuclei by spatial integration of the their voxel-wise probabilities over an entire hemisphere
(Table 1). In addition, we calculated a percent laterality index, L= (Vi-Vr)/(Vi+Vr) × 100% (where Vi and
Vr are the left and right volume estimates respectively) as a measure of relative inter-hemispheric volume
differences for each nucleus.

Cumulative probability distribution of each atlas label
Maintaining probabilistic rather than deterministic atlas labels helps encode observer uncertainty in a
natural and well-established way. The cumulative relative frequency distribution of probabilistic atlas
labels provides a useful representation of this uncertainty (Figure 4).

Code availability
Software tools for generating probabilistic atlases from segmented templates and for evaluating inter- and
intra-rater reliability are maintained in a publicly available code repository https://github.com/
jmtyszka/atlaskit.

Data Records
The probabilistic atlas, including anatomical images, T1w and T2w templates, as well as segmentations of
labels are available at the Open Science Framework (OSF) (Data Citation 1). All imaging data is in
compressed Nifti-1 format. We invite contributions by other researchers, in terms of alternative opinions
on labeling of included subcortical nuclei, as well as inclusion of additional subcortical nuclei.

Label Volume (μl)

Acronym Left Right Laterality (%)

Putamen Pu 5224 5196 0.3

Caudate Ca 4493 4543 − 0.6

Nucleus Acumbens NAC 397 399 − 0.3

Extended Amygdala EXA 134 136 − 1.0

Globus Pallidus (External) GPe 696 678 1.3

Globus Pallidus (Internal) GPi 383 383 0.0

Ventral Pallidum VeP 68 74 − 4.3

Substantia Nigra (Compacta) SNc 132 136 − 1.5

Substantia Nigra (Reticulata) SNr 261 269 − 1.4

Parabrachial Pigmented Nucleus PBP 99 98 0.5

Subthalamic Nucleus STH 135 128 2.9

Ventral Tegmentum VTA 33 33 0.1

Hypothalamus HTH 604 617 − 1.1

Red Nucleus RN 301 298 0.5

Mammillary Nucleus MN 64 62 2.0

Habenular Nuclei HN 29 27 4.5

Table 1. Volumes of subcortical nuclei.We derived the volume of each subcortical nucleus in microliters by
spatial integration of label probabilities over each hemisphere independently. Laterality is a measure of left
(negative) or right volume bias between the hemispheres (see main text for formal definition).
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Technical Validation
We assessed intra- and inter-rater labeling reliability between equivalent labels using two distinct
similarity measures: 1. the Dice coefficient (also known as the Sørensen-Dice index), and 2. the directed
(or forward) Hausdorff distance. Both measures are reported in units to the voxel dimension. We use the
standard definition of the Dice coefficient, D, as the ratio of the intersection volume of two labels to the
mean volume of the two labels, in the range [0,1]67. To calculate the directed Hausdorff distance, H,
between two labeled regions, A and B, we first determine for each voxel in A the minimum Euclidean
distance to any voxel in B, and then determine the maximum of all these minimum distances. This
definition of H is sensitive to the ordering of A and B, and is therefore typically referred to as the directed
Hausdorff distance68. The distance H is a measure of proximity between two regions which takes account
of shape and orientation. The Hausdorff distance finds frequent application in machine vision, in the
context of locating a template object within a scene69. Full similarity metrics for all observers and
templates are provided in the OSF repository (Data Citation 1). Summary statistics for inter- and intra-
rater similarity metrics are presented in Tables 2 and 3. Values of H and D were based only on the left
hemisphere labels generated directly by each observer in all eight templates.

Caveats
This atlas relies on averaging in vivo data from many different brains to raise the contrast-to-noise ratio
between regions sufficiently for delineation. Despite the accuracy of the diffeomorphic registration, some
small-scale individual features will be lost during averaging (for example the idiosyncratic SNr/SNc
boundary), resulting in boundaries which can no longer be mapped back to individual data exactly. This
is an inevitable limitation of group midspace templates and can only be addressed practically by
averaging many repeated measurements from a single individual to raise the contrast-to-noise ratio
sufficiently for delineations.

Similarity metrics. There are limitations to the use of similarity metrics to demonstrate the validity of
tissue delineations, since at best, they may only show that all observers are equivalently biased. We report
Dice coefficients and Hausdorff distances, because the two metrics provide complementary information
about label location, shape, and overlap within and between observers. Dice coefficients are sensitive to
the average volume of the two regions being compared: Small errors in overlap begin to dominate, as the
average volume decreases. We therefore expect Dice coefficients to underestimate the similarity of small

Figure 4. Cumulative relative frequencies of label probabilities. We visualize the uncertainty in defining

each subcortical nucleus label by calculating the cumulative relative frequency (CRF) for each probabilistic label

over all non-zero voxels. Pu and Ca are examples of labels with a high degree of both inter- and intra-rater

similarity, while the more convex cumulative distributions observed for PBP and VTA reflect increased inter-

rater variance as the label volume decreases and the tissue boundaries become less reliably defined.
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volume labels, in comparison to large volume labels. For example, Dice coefficients for brain masks
routinely exceed 0.95 (ref. 70). Hausdorff distances may therefore be the more appropriate similarity
metric for small volume labels.

Alternative approaches to atlas creation
A variety of three-dimensional anatomical atlases of human subcortical nuclei have been constructed
using approaches ranging from mapping delineations made in post mortem samples, to the use of
structural connectivity estimated from diffusion MRI to functional connectivity estimated from resting-
state fMRI. A comprehensive list of subcortical atlases in MNI152 space is available at: http://www.lead-
dbs.org/.

Regional delineation in histological stained sections has long been considered the gold standard for
brain atlas construction in large part due to the cellular resolution of optical microscopy and the
versatility of histological staining, including immunohistochemical labeling. S'uch cytoarchitectonic
atlases have been mapped to standard in vivo MRI templates71,72. There are non-trivial hurdles to
accurate registration of post mortem stained sections with in vivo MR images, arising in part from tissue
distortion, shrinkage and damage during fixation and sectioning, the collapse of CSF spaces and larger
blood vessels post mortem and intrinsic differences in tissue contrast between histological sections and
in vivo MR images.

One of the most widely used subcortical segmentation tools, Freesurfer73 has recently added
probabilistic labels based on high resolution MRI of ex vivo human brain samples of the hippocampal
subfields74 and amygdala subdivisions75. This approach holds tremendous promise for bridging the gap
between cytoarchitectonic atlases and in vivo labeling, although the number of brains used to generate
these delineations is small (10 to 15) and the donor age at death is high (60 to 91 years).

Localization of subcortical nuclei using diffusion MRI has been reported, using both voxel-level
diffusion properties and estimated structural connectivity from diffusion tractography. Examples include
the nucleus accumbens76) and substantia nigra77. However diffusion MRI tractography has well-known
biases and inaccuracies when estimating structural connectivity from in vivo data78,79 and will require
significant improvements in both data acquisition and analysis to realize its full potential for human brain
atlas construction.

Similarly, the use of task-based functional MRI to localize subcortical nuclei has made significant
progress in recent years (for a review, see ref. 15). However, in the near term, this approach is limited
primarily by the low sensitivity of many fMRI protocols in subcortical areas80. This is further complicated
by an incomplete understanding of the function of some subcortical nuclei in humans16, in part due to
the generally strong reliance on forward inference in functional neuroimaging81, and the resulting
absence of an exhaustive set of localizer tasks.

Label Name Dice Coefficient Hausdorff Distance (mm)

Mean SD Mean SD

Pu 0.94 0.04 2.67 2.12

Ca 0.93 0.05 3.64 3.39

NAC 0.81 0.15 2.11 1.85

EXA 0.75 0.18 2.11 2.07

GPe 0.88 0.09 1.25 1.03

GPi 0.89 0.08 1.11 0.91

VeP 0.69 0.25 1.20 0.97

VTA 0.55 0.35 2.57 2.31

SNc 0.77 0.17 1.61 1.36

SNr 0.79 0.16 1.72 1.40

PBP 0.62 0.28 2.57 2.53

RN 0.92 0.07 0.79 0.61

HTH 0.81 0.14 2.51 2.16

STH 0.84 0.13 1.09 0.95

HN 0.87 0.10 0.69 0.58

MN 0.85 0.12 0.81 0.65

Table 2. Inter-rater Similarities. Summary statistics for inter-rater Hausdorff distances and Dice coefficients
averaged over all observers and templates. See Table 1 for acronyms.
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Usage Notes
Suggested usage
The CIT168 atlas is meant as a useful resource for neuroscience studies which would benefit from a high-
resolution in vivo probabilistic atlas of subcortical nuclei. Its uses include pre-determined ROIs for fMRI
studies20, measuring individual differences in subcortical volume / morphometry in disease and health82,
defining seeds for tractography or functional-connectivity83, and targets for electrophysiological
recordings18. The atlas also represents a useful tool for studying brain anatomy, and for clinical
applications. Caution should be given when utilizing this atlas for studies on populations of extreme ages,
because of the variability of myelination and therefore T2w contrast during early development, as well as
age-related increases in selective atrophy84,85.

Probabilistic and deterministic atlas labels. The probabilistic labels are an estimate of the likelihood
that a specific voxel belongs to a given brain region. Strictly, the probabilistic labels are an empirical
estimate of the likelihood that an experienced observer will assign a specific voxel to a given brain region.
While the atlas labels can be converted to binary masks (by simple thresholding) for subsequent analyses,
we recommend using the probabilistic labels as weights for calculations. The main reasons for this
recommendation is that several boundaries (e.g. between SNc and SNr) are highly inter-digitated in
individual brains, a feature that is entirely eliminated by averaging in the T1w and T2w templates.
Consequently, deterministic labels (binary or integer valued) give a false impression of precision of such
boundaries when mapped back to individual brains, and should be avoided where possible. Nevertheless,
the atlaskit GitHub repository contains a script (prob2det.sh) for the creation of binary or deterministic
anatomical labels.

Standard spaces. T1w and T2w templates and the probabilistic labels are available in standard
MNI152 2009c nonlinear asymmetric space in the OSF repository (Data Citation 1) along with the
CIT168 to MNI152 affine and SyN transformation data. In addition, the atlaskit GitHub repository
contains scripts for registering structural images of individual study subjects to the CIT168 atlas.

Value of this atlas. The current atlas templates represent the geometry and tissue contrast of the adult
human brain in vivo. Uncertainty of boundary locations is encoded in the probabilistic labels themselves.
Implicit boundaries and structures blurred by averaging will be harder to delineate consistently, both
between and within observers, and the probabilistic label value in this region will decrease accordingly.
Similarly, high contrast explicit boundaries are more likely to be delineating consistently and the
transition zone between tissues will be correspondingly sharp in the probabilistic atlas.

Opportunity to contribute. We ask researchers who would like to contribute to this evolving resource
to visit the project on the open science framework (OSF) and the associated GitHub collaborative
repository (available at: https://github.com/jmtyszka/CIT168-SubCorticalAtlas). Briefly, contributers will
be asked (1) to download the validation templates, (2) to fork the above associated GitHub collaborative

Label Name Dice Coefficient Hausdorff Distance (mm)

Mean SD Mean SD

Pu 0.95 0.03 2.24 1.15

Ca 0.94 0.03 2.08 1.08

NAC 0.83 0.10 1.80 1.03

EXA 0.78 0.10 1.87 1.28

GPe 0.90 0.06 1.36 0.82

GPi 0.89 0.06 1.21 0.63

VeP 0.70 0.14 1.33 0.76

VTA 0.71 0.13 1.17 0.59

SNc 0.75 0.11 1.71 0.92

SNr 0.80 0.08 1.74 0.97

PBP 0.72 0.13 1.76 0.95

RN 0.93 0.04 0.90 0.43

HTH 0.83 0.07 2.20 1.11

STH 0.82 0.09 1.30 0.74

HN 0.87 0.07 0.81 0.43

MN 0.86 0.08 0.83 0.41

Table 3. Intra-rater Similarities. Summary statistics for intra-rater Hausdorff distances and Dice coefficients
averaged over all observers and templates. See Table 1 for acronyms.
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repository, (3) to label their brain regions of interest in their preferred tool (e.g. ITK-SNAP), to then
either (3a) upload the labeling files to the OSF project page, or to (3b) initiate a pull request via the
GitHub repository.
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