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The thalamic nuclei are involved in many neurodegenerative diseases and therefore, their identification is
of key importance in numerous clinical treatments. Automated segmentation of thalamic subparts is
currently achieved by exploring diffusion-weighted magnetic resonance imaging (DW-MRI), but in absence
of such data, atlas-based segmentation can be used as an alternative. Currently, there is a limited number
of available digital atlases of the thalamus. Moreover, all atlases are created using a few subjects only, thus
are prone to errors due to the inter-subject variability of the thalamic morphology. In this work, we present
a probabilistic atlas of anatomical subparts of the thalamus built upon a relatively large dataset where the
individual thalamic parcellation was done by employing a recently proposed automatic diffusion-based
clustering method. Our analyses, comparing the segmentation performance between the atlas-based and
the clustering method, demonstrate the ability of the provided atlas to substitute the automated diffusion-
based subdivision in the individual space when the DW-MRI is not available.
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Design Type(s) anatomical image analysis objective • data collection and processing objective

Measurement Type(s) regional part of brain

Technology Type(s) digital curation

Factor Type(s)

Sample Characteristic(s) Homo sapiens • thalamus

Background & Summary
The thalamus is a central relay structure and regulator of the motor and sensory impulses that are
transmitted by the white matter fibers. Despite its relatively small size of approximatively 8cm3 per
hemisphere, the thalamus represents a highly complex structure built from numerous small nuclei
differing between them in both histology and function. Each nucleus projects to different parts of the
cortex and therefore, is associated with different neurological function. For this reason, the thalamic
nuclei are implicated in a wide range of functional impairments and, as consequence, are of central
interest in many neurodegenerative studies and clinical applications1–4.

Magnetic Resonance Imaging (MRI), as a non-invasive technique that provides an enhanced
depiction of the soft biological tissues, allows an automated delineation and characterization of the brain
structures5. However, the intrinsic contrast provided by the standard T1- and T2-weighted (T1w and
T2w) MRI is too low for distinguishing any thalamic subpart and therefore, these images are of limited
use for segmenting the nuclei in an automated framework.

Diffusion-weighted MRI (DW-MRI) is, so far, the only non-invasive imaging method able to image
the human brain white matter by describing the geometry of its underlying microstructure. More
precisely, DW-MRI captures the average diffusion of water molecules, which probes the structure of the
biological tissue at a scale much smaller than the imaging resolution. Hence, DW-MRI is able to depict
the different fibers characteristics representing each thalamic nucleus with respect to its cortical
projections. Therefore, the state-of-the-art methods in the field of automated thalamic parcellation are
mainly based on features provided by DW-MRI and are divided in two groups: the first exploring the
local diffusion properties6–8, while the second, the global thalamic connectivity9,10. The major difference
between the groups in terms of outcome is that the fiber tracking approaches lead to a segmentation
pattern that strongly diverges from the known anatomy of the thalamus9,10.

Recent literature proposes a robust and reproducible method that subdivides the thalamus in seven
regions closely matching the anatomy11. The developed segmentation framework is based on the trade-off
between the spatial position of the thalamic voxels and their local diffusion properties from 3 T MRI
expressed by the diffusion orientation distribution function (ODF) projected in the spherical harmonics
(SH) basis12–14. Unlike other DW-MRI features used so far, ODF allows the use of the full diffusion signal
and orientation profile at each voxel and therefore, the proposed method outperforms the state-of-the-art
based on exploring the local diffusion properties.

Nevertheless, if the DW-MRI data is not available, it would not be possible to perform such
parcellation. One alternative in such cases is the use of digital atlases. Currently, there is a limited number
of published works presenting thalamic atlases9,15–18, especially available in digital format9,17,19. In
general, these atlases are built using a few subjects only and therefore, they enclose a restrain inter-subject
variability of the thalamic morphology. Additionally, while Morel’s16 and Yelnik’s17 atlases are portraying
the histology, Behrens’9 one subdivides the thalamus with respect to its cortical connections, which does
not necessarily reflect the underlying anatomy.

The aim of the present work is to provide a digital imaging-based probabilistic atlas of the anatomical
thalamic subparts built from a relatively large population of healthy controls. To this end, we first
segmented a considerably big subset of the Human Connectome Project data using previously proposed
ODF-based thalamic clustering. From the obtained parcellations, we then constructed the atlas of each
nuclei and finally, by calculating the respective mutual template, we transformed the outcome to the MNI
(Montreal Neurological Institute) space (see Fig. 1).

Moreover, the atlas was compared with the ODF-based clustering in terms of parcellation outcome in
a large testing set of healthy subjects. Our analysis shows highly similar segmentation patterns between
both atlas-based and the cluster-based approaches, which demonstrates the ability of the provided atlas to
substitute the automated ODF-based subdivision in the individual space when the DW-MRI is not
available.

Methods
In order to create a spatial probabilistic atlas map (SPAM) for fourteen thalamic nuclei, seven per
hemisphere, a label-based approach20 was performed. First, for each subject, the right and the left thalami
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were automatically segmented into seven different nuclei each. Second, each T1w image was registered to
the MNI space and the obtained spatial transformation was then applied to map the individual thalamic
parcellation into a stereotaxic space. Finally, a probability map was constructed for each thalamic nucleus,
by determining the proportion of subjects assigned to a given anatomic label at each voxel position, in
stereotaxic space20. The flow chart in Fig. 1 illustrates the entire processing pipeline.

Participants
Seventy unrelated healthy subjects (age range 22-36 years, 39 females) were selected from the Human
Connectome Project (HCP) database. The choice of using this data is related to its high quality and better
spatial resolution, which allowed an easier implementation of the designed procedures.

All subjects were scanned on the same 3 T Siemens Skyra platform with a 32 channels head coil at
Washington University (WashU). The scanning protocol includes five MRI modalities, but only the T1w,
the T2w and the DW-MRI were used in the present study.

T1w: Magnetization-Prepared Rapid Acquisition Gradient Echo (MPRAGE) sagittal images were
acquired using a 3D inversion recovery sequence with echo time (TE) = 2.14 ms, repetition time (TR) =
2400 ms, inversion time (IT) = 1000 ms, flip angle (FA) = 8o, Bandwidth (BW) = 210 Hz per pixel,
echo spacing (ES) = 7.6 ms, gradient strength = 42 mT/m, field of view (FOV) = 180 × 224 × 224
mm3, voxel size = 0.7 × 0.7 × 0.7 mm3 and acquisition time 7 min 40 s.

T2w: T2w sagittal images were acquired using a 3D T2 sampling perfection with application-
optimized contrast by using flip angle evolution (SPACE) sequence with echo time (TE) = 565 ms,
repetition time (TR) = 3200 ms, Bandwidth (BW) = 744 Hz per pixel, echo spacing (ES) = 3.53 ms,

Figure 1. Processing flowchart showing the main steps for constructing the thalamic nuclei

probabilistic atlas.
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turbo factor = 314, field of view (FOV) = 180 × 224 × 224 mm3, voxel size = 0.7 × 0.7 × 0.7 mm3 and
acquisition time 8 min 24 s.

DW-MRI: Multi-slice echo planar imaging (EPI) with multi-band (MB) excitation and multiple
receivers were acquired with echo time (TE) = 289.5 ms, repetition time (TR) = 5520 ms, flip angle
(FA) = 78o, refocusing flip angle (rFA) = 160o, Bandwidth (BW) = 1488 Hz per pixel, multiband
factor = 3, echo spacing (ES) = 0.78 ms, gradient strength = 100 mT/m, field of view (FOV) = 210 ×
180 × 138 mm3, voxel size = 1.25 × 1.25 × 1.25 mm3 and b-values = 0, 1000, 2000 and 3000 s/mm2.
Each gradient table includes approximately 90 diffusion–weighted directions plus 6 b0 acquisitions
interspersed each run. The acquisition time was around 63 min.

In addition to the raw MR images, the HCP database also provided the processed results (brain mask,
cortical surfaces, cortical maps and volumetric/surface parcellations, etc.) obtained by a customized
FreeSurfer pipeline, specially designed for this project. For more details about the acquisition protocol or
processing pipeline see21–23.

Thalamic parcellation
For the thalamic parcellation we followed the framework proposed by Battistella et al.11. Bellow we briefly
summarize the main processing steps.

Refinement of the thalamic mask
The first step consists in obtaining an accurate mask of the whole thalamus (see Fig. 1a).

In a nutshell, the methodology is as follows. First, each individual skull stripped T1w image was
segmented in three different classes: the grey matter (GM), the white matter (WM) and the cerebro-spinal
fluid (CSF), applying the modified Gaussian Mixture Model included in the SPM8 suite24. Using this
approach, the probability of each voxel to belong to GM, WM or CSF was computed. Second, the DW-
MRI acquired with b-value close to 1000 s/mm2 were employed to fit a diffusion tensor in order to obtain
the fractional anisotropy map (FA). Third, all the thalamic masks, obtained from the Freesurfer
subcortical parcellation, were refined to avoid partial volume contaminations. More precisely, on one
hand we have eliminated voxels that had higher probability than 5% to represent the CSF and on the
other, those that are more likely to be part of the internal capsule instead of the thalamus i.e. with FA
values higher than 0.55 - a threshold that was empirically established. All these steps were performed in
subject space.

Thalamic nuclei clustering
We first compute the orientation distribution functions (ODFs) of the thalamus from high angular
resolution diffusion images (HARDI) using q-Ball imaging with the constant solid angle algorithm
(Qball-CSA)25. The Qball-CSA is included in the FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/
UserGuide) image processing suite throughout the Qboot function. The Qball-CSA algorithm was
applied by setting the maximum number of ODF peaks to be detected to 2 using 50 samples for residual
bootstrapping1, as in the default settings of the Qboot command in FSL. Moreover, in order to have a
compatible ODF estimation model with a one-shell DWI data, as usually employed setting for this
thalamic parcellation, we used the mono-exponential modeling considering the average signal from the
three shells of the DWI data. The resulting ODFs from Qboot algorithm were represented in a basis of
spherical harmonic (SH) functions12,13. The maximum SH basis order was set to 6 giving 28 SH
coefficients in total. Thereby, the mean coefficients that were used for the clustering algorithm were
estimated as the average of the samples of the ODF shapes in each voxel resulting from the Qboot
bootstrapping.

The nuclei parcellation was performed by a modified k-means algorithm taking as inputs the mean
ODF coefficients in SH basis and the position coordinates of each voxel from the final thalamic mask.
The decision metric represents a weighted linear combination of Euclidean distances between the spatial
position and the ODF coefficients for each voxel, respectively. The distance between the ODF coefficients
will group voxels with similar microstructural properties, while the spatial distance, as proven empirically,
will constrain them to be contiguous. Therefore, the spatial term will assure compact clusters in the final
parcellation. An equal contribution was considered from both features, i.e. the weighting factor for each
Euclidean distance was set to 0.5. The number of clusters was set to seven11. Moreover, as the two used
features are not at the same scale of values, in order to avoid any bias in the k-means clustering, we have
multiplied the ODF coefficients by a scaling factor that bring the Euclidean distances between them in the
same range of values as the spatial distances. Hence, empirically we have set this scaling factor to 100.
Additionally, to exclude an initialization bias, the method was initialized in a data-driven fashion by
taking as centroids the average of 5000 randomly initialized k-means using only the position as the input
feature.

The final seven partitions derived from the clustering algorithm in each individual thalamus were
labeled accordingly to the anatomical subpart they represent respectively. Namely, we have: anterior
group (A), ventral anterior group (VA), medio-dorsal group (MD), ventral latero-ventral group (VLV),
ventral latero-dorsal group (VLD), pulvinar (Pu) and cluster enclosing the central lateral, the lateral
posterior and the medial pulvinar (CL-LP-PuM) (see Fig. 2).
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For three out of the 70 tested cases, we observed a clustering outcome differing from the expected
segmentation pattern, therefore they were not considered for the construction of the atlas.

Custom template construction and spatial normalization
All the skull stripped T1w and T2w images were employed to build a customized template using the
symmetric group-wise diffeomorphic normalization (SyN) method incorporated in the open source
software Advanced Normalization Tools (ANTs)26,27. ANTs registration suite was used because it was
selected as the top ranked registration procedure in terms of accuracy and precision in the recent
nonlinear registration evaluation paper of Klein et al.28.

ANTs robustly maps images from a population to a common space by finding the template and the set
of transformations that gives the “smallest” parameterization of the dataset. First, the T1w and T2w
images were independently affine registered and averaged to create a first iteration template for both
modalities. Second, all the T1w and T2w images were registered to their corresponding template using
cross-correlation as similarity metric. Parameters were specified so the SyN registration method uses 30
iterations at a quarter resolution, 20 iterations at half resolution, and 4 iterations at full resolution. In the
next step the aligned images were averaged to create new templates. The averaged volumes are then used
as new templates for another iteration of the same procedure. This process was repeated six times and

Figure 2. Thalamic nuclei atlas. Each row shows different slices of the T1152 template in MNI space focused

on the thalamic area and overlaid with the spatial probabilistic maps (first and second column) and the

maximum probability atlas (third column).
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both a T1w and a T2w templates were obtained and the spatial transformations between subject space
and custom atlas space (native-to-custom transformations) were saved.

The resulting custom T1w template was finally non linearly registered to MNI space using as target
template the nonlinear version of the ICBM152 atlas introduced by Evans29,30. The spatial transformation
(custom-to-MNI) between both templates was also saved.

More details about the SyN method can be found in26.

Atlas construction
The probabilistic atlas for each thalamic nuclei was built following the strategy schematically presented in
Fig. 1b and c. We applied the native-to-custom and custom-to-MNI transforms to resample the subject
individual thalamic parcellation data into the MNI space. Since we were averaging across the subjects, for
forming images with labels we applied nearest-neighbor as interpolation method. By averaging across the
subjects, we then computed the probability maps for the 14 thalamic subparts (seven for each
hemisphere). The maximum likelihood labeling was determined by identifying, at each voxel, the
structure label with the greatest value in the nuclei probability maps. In the case of multiple modes, where
multiple nuclei had maximal likelihood values at a voxel, a label was chosen at random from the modes at
that site (see Fig. 2).

Code availability
The custom code used for the thalamic nuclei clustering is implemented in Matlab and is uploaded in
Zenodo (Data Citation 1). The used and the current version of the software is 1.0. All the parameters
employed to process the dataset are given in the provided files.

Data Records
A summary of the data records related to this study is given in Table 1.

Data Records as a contribution
The contribution of the presented work is a single data record containing two image files given in
compressed NIfTI-1 format (.nii.gz extension). One of them is a 4D volumetric file including all 14
constructed 3D spatial probabilistic maps of the thalamic nuclei, while the second one is 3D volume
representing the maximum likelihood atlas where each voxel contains a single integer value for each
thalamic nucleus.

The maximum likelihood atlas is supplied with a standard color lookup table (LUT, stored as a .txt
file), where each line represents one labeled thalamic region and provides information about the
respective label-code, name, RGB (red, green, blue) color triplet and opacity. The RGB and opacity values
are 8-bits integers values. For visualization purposes, the colors of the thalamic nuclei are symmetric
between hemispheres but each nucleus has a unique label code and structure caption to distinguish
between left and right hemisphere. This file, together with the maximum likelihood atlas, can be opened
with one of the main visualization tools available (such as tkmedit, freeview or 3D-Slicer) in order to
color regions when showing labels. This color lookup table can be also edited for customizing the colors
or working with additional regions.

The data record derived from this work is available through Zenodo (Data Citation 2).

Original datasets used
The used HCP data is provided by the Human Connectome Project, WU-Minn Consortium (Principal
Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes
and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for
Systems Neuroscience at Washington University. It is available at https://db.humanconnectome.org,
while the IDs of the used subjects, their approximative age and gender is given in a text file stored in the
same Zenodo repository as the atlas maps (Data Citation 2).

Dataset Human Connectome Project (HCP) cohort Testing cohort

Number of subjects 70 34

Provenance refer to https://db.humanconnectome.org control group of the study presented by Battistella et al.31

Available from https://db.humanconnectome.org a subset available in Data Citation 1

Used modalities T1w and DW-MRI T1w and DW-MRI

Experimental usage Building the atlas Technical validation of the atlas

Provided output Thalamic nuclei SPAMs and maximum likelihood
atlas

Atlas-based and cluster-based thalamic parcellation

Output format NifTI-1 (extension .nii.gz) NifTI-1 (extension .nii.gz)

Table 1. Summary of the data records related to this study.
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Moreover, data from five healthy subjects taking part of the dataset explored for technical validation is
available on Zenodo together with the previously mentioned custom code for thalamic parcellation (Data
Citation 1).

Technical Validation
As first validation, all images and results were visually inspected. We observed good quality of the applied
image-registrations and robustness of the clustering in terms of their spatial distribution, with exception
of the three previously mentioned cases where the ODF-based clustering failed to provide the expected
parcellation.

Comparison with histological atlas
The lack of a gold standard for the thalamic nuclei makes the assessment of the atlas-based parcellation
difficult to solve. However, following the previously reported analysis by Battistella et al.11, the results
obtained from the atlas-based segmentation of the thalamic subparts in subject-space were visually
compared to the histological atlas of Morel. This inspection demonstrated similarity between the
obtained segmentation pattern and the thalamic anatomy presented in Morel’s atlas (please refer to
Fig. 3).

Comparison with subject-based DW-MRI clustering
In order to characterize the differences that could appear when segmenting the thalamus nuclei using an
atlas-based segmentation approach compared to a cluster-based parcellation using the diffusion-weighted
images11, we analyzed an independent large cohort of additional healthy subjects.

Testing Dataset. The testing subset consisted of 34 healthy subjects with no history of neurological
illnesses, aged between 20 and 70 years, that were scanned in a 3 T Siemens Trio scanner (Siemens AG,
Erlangen, Germany) using a 32-channel head coil. Differently from the HCP, this dataset was acquired in
a standard clinical setting. Local institutional review board named Commission cantonale d'éthique de la
recherche sur l'être humaine (CER-VD) approved the study and all participants gave written informed
consent. All the presented analyses were performed in accordance with the relevent ethical ragulations.
T1w: The Gradient Echo (MPRAGE) images were acquired with echo time (TE) = 2.98 ms, repetition time

(TR) = 2300 ms, flip angle (FA) = 8o, field of view (FOV) = 160 × 256 × 256 mm3, voxel size = 1 × 1 × 1
mm3 and acquisition time 4 min 4 s.
DW-MRI: DW-MRI were acquired using a spin-echo echo-planar imaging sequence with echo time (TE) =

89 ms, repetition time (TR) = 6700 ms, field of view (FOV) = 192 × 192 × 130mm3, voxel size = 2 × 2 ×
2.5 mm3 and b-value = 1000 s/mm2. The gradient table includes 64 diffusion-weighted directions plus 1 b0
acquisition. The acquisition time was 8 min.
For each subject, both thalami were segmented using both approaches: atlas-based and cluster-based

segmentation, making use of the T1w and diffusion-weighted images, respectively. The parcellation results
provided from both methods in a single subject are shown in Figure 3. In terms of spatial distribution and
extent of the delineated clusters, we visually observe similar segmentation pattern from both approaches (see
Fig. 3).

Evaluation metrics. Three main quantitative metrics were used to evaluate the similarity between both
segmentation approaches, the atlas-based segmentation (Patlas) and the cluster-based (Pclust). More
precisely we computed: 1) the Dice Similarity Index32, which measures the spatial overlap between both

Figure 3. Single subject thalamic nuclei segmented with both cluster-based and atlas-based parcellation

approaches.
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Figure 4. Different similarity metrics between both cluster-based and atlas-based thalamic parcellation

methods for each subject and each thalamus. (a) Axial view and (b) Sagittal view of the cluster-based

segmentation of the right thalamus in a single subject. The centroids obtained from both methodologies, the

cluster-based and the atlas-based, are given in white and blue respectively. (c) Dice similarity index. (d) Relative

percentage of volume differences. (e) Distance between the centroids coordinates. The metrics shown in (c-e)

were calculated between both approaches. (f) Maximum radius of each nuclei obtained by the cluster-based

parcellation. This value serves as a reference for evaluating the distance between the centroids of the nuclei

obtained by both methods. For each boxplot, the median values are shown together with the confidence

interval (25% and the 75% percentiles).
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segmentations, 2) normalized difference in volume with respect to the volume obtained using the cluster-
based approach and 3) the distance between thalamic nuclei centroids.
The centroids coordinates were computed by averaging the coordinates of the voxels that belong to the same

thalamic nucleus. For each thalamic nucleus and parcellation method, the distance between the centroid and
the farthest point on the nucleus was also computed. This metric can be considered as a measure of the radius
of each thalamic nuclei and is used as a reference value for evaluating the magnitude of the distance between
the nuclei centroids obtained from both parcellation methods.
The Dice coefficient is one of the measures of the extent of spatial overlap between two binary images. It is

commonly used in reporting segmentation performance and gives more weighting to instances where the two
images agree. Its values range between 0 (no overlap) and 1 (perfect agreement). In this work, the Dice values
are obtained using the following expression (1)]:

DiceðPatlas;PclustÞ ¼ 2ðPatlas ∩ PclustÞ
ðPatlas ∩ Pclust þ Patlas ∪ PclustÞ ð1Þ

Percentage of volume difference between both parcellations relative to volume obtained by using the cluster-
based approach was calculated as follow:

%V ¼ Vatlas - Vclust

Vclust
´ 100 ð2Þ

Figure 4a and b show the corresponding surfaces of the cluster-based parcellation for a selected subject and the
centroids obtained from both segmentation approaches, atlas-based and cluster-based, respectively. An
overview of all the results is given in Table 2 and Fig. 4.
The Dice Similarity Index (Fig. 4c) showed an overlap of 0.6 on average, where the maximum was found for

the pulvinar left (0.74) and the minimum for the Cl-LP-PuM right (0.46). Regarding the size of the clusters,
these findings could be considered as a fair match. Complementary to Dice, the volume difference indicates
that overall there is only 20% of size-mismatch between the clusters obtained from both methods (see Fig. 4d).
Additionally, the Euclidean distance between center of mass of atlas-based segmentation and those of the direct
clustering-based segmentation reflect also an important degree of agreement in terms of locations (Fig. 4e).
Pulvinar and ventral latero-ventral show low values of distance between centroids, while the maximal variation
appears for the cluster CL-LP-PuM in the right hemisphere. Nevertheless, from the reported results we see that
the average centroids difference for this cluster is three times less than the maximal radius of the cluster (see
Fig. 4c and f). For the others clusters this distance corresponds to even smaller proportion of the estimated
radius. Hence, the variation between the centers of mass of the respective clusters obtained from the two
approaches can be considered as relatively low.
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