

## THE DISTILLERY

## This week in techniques

| Disease modelsHuman embryonic stem<br>cells (hESCs) generated<br>from somatic cell nuclear<br>transfer (SCNT) using<br>postnatal somatic cellsSCNT could be useful for creating patient-matched hESCs for disease<br>modeling and therapeutic applications. Previous efforts to reliably<br>generate hESCs with nuclear transfer protocols have been limited to using<br>nuclei from fetal as opposed to postnatal somatic cells. Fibroblasts from a<br>32-year-old female with type 1 diabetes or a newborn male were fused to<br>enucleated donor human oocytes and activated with an oocyte activation<br>protocol. A subset of the oocytes bearing the diploid genome of the donor<br>fibroblasts developed into blastocysts, which were used to establish stable<br>hESC lines. Next steps include comparing induced pluripotent stem (iPS)<br>cell lines to nuclear transfer cell lines of the same genetic makeup to<br>understand key differences between the two types of cells.Patent application<br>fibroblasts developed into blastocysts, which were used to establish stable<br>hESC lines. Next steps include comparing induced pluripotent stem (iPS)<br>cell lines to nuclear transfer cell lines of the same genetic makeup to<br>understand key differences between the two types of cells.Patent application<br>fibroblasts developed into blastocysts, which were used to establish stable<br>hESC lines. Next steps include comparing induced pluripotent stem (iPS)<br>cell lines to nuclear transfer cell lines of the same genetic makeup to<br>understand key differences between the two types of cells.Patent application<br>fibroblast developed into blastocysts, which were used to establish stable<br>hESC lines.Next steps include comparing induced pluripotent stem (iPS)<br>tell into the same genetic makeup to<br>understand key differences between the two types of cells.Patent application<br>fibroblasts developed into blastocysts, which were used to<br>est | Approach                                                                                                                         | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Licensing status                                             | Publication and contact<br>information                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Human embryonic stem<br>cells (hESCs) generated<br>from somatic cell nuclear<br>transfer (SCNT) using<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Disease models                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Human embryonic stem<br>cells (hESCs) generated<br>from somatic cell nuclear<br>transfer (SCNT) using<br>postnatal somatic cells | SCNT could be useful for creating patient-matched hESCs for disease<br>modeling and therapeutic applications. Previous efforts to reliably<br>generate hESCs with nuclear transfer protocols have been limited to using<br>nuclei from fetal as opposed to postnatal somatic cells. Fibroblasts from a<br>32-year-old female with type 1 diabetes or a newborn male were fused to<br>enucleated donor human oocytes and activated with an oocyte activation<br>protocol. A subset of the oocytes bearing the diploid genome of the donor<br>fibroblasts developed into blastocysts, which were used to establish stable<br>hESC lines. Next steps include comparing induced pluripotent stem (iPS)<br>cell lines to nuclear transfer cell lines of the same genetic makeup to<br>understand key differences between the two types of cells. | Patent application<br>filed; licensing<br>status undisclosed | Yamada, M. <i>et al. Nature</i> ;<br>published online April 28, 2014;<br>doi:10.1038/nature13287<br><b>Contact:</b> Dieter Egli, The<br>New York Stem Cell Foundation,<br>New York, N.Y.<br>e-mail:<br><b>d.egli@nyscf.org</b> |

*SciBX* 7(21); doi:10.1038/scibx.2014.622 Published online May 29, 2014