

THE DISTILLERY

This week in therapeutics

Cancer Thyroid cancer Anaplastic lymphoma kinase (ALK); striatin calmodulin binding protein (STRN) In vitro and mouse studies identified STRN-ALK fusions in highly aggressive thyroid cancers that could help assess prognosis and guide treatment. STRN-ALK fusions were identified in 3 of 256 well-differentiated papillary thyroid cancer samples, 3 of 35 poorly differentiated thyroid	Patent and licensing status unavailable	Kelly, L.M. <i>et al. Proc. Natl. Acad. Sci.</i> USA; published online Feb. 3, 2014; doi:10.1073/pnas.1321937111 Contact: Yuri E. Nikiforov, University of Pittsburgh School of Medicine,
kinase (ALK); striatin calmodulin binding protein (STRN) kinase (ALK); striatin calmodulin binding protein (STRN) strink-ALK fusions were identified in 3 of 256 well-differentiated papillary thyroid cancer	0	USA; published online Feb. 3, 2014; doi:10.1073/pnas.1321937111 Contact: Yuri E. Nikiforov, University of Pittsburgh School of Medicine,
cancer samples and 1 of 24 anaplastic thyroid cancer samples. In mice, expression of STRN- ALK increased thyroid cell proliferation and subcutaneous tumor formation compared with expression of a kinase-dead fusion protein and led to constitutive ALK activity. The effects of the active transfects were blocked by the ALK inhibitor Xalkori crizotinib. Next steps could include validating the STRN-ALK fusion protein in additional cancer samples. Pfizer Inc. markets Xalkori to treat non-small cell lung cancer (NSCLC). At least eight other companies have ALK inhibitors in Phase II or earlier testing to treat cancer.		Pittsburgh, Pa. e-mail: nikiforovye@upmc.edu

Published online March 6, 2014