

THE DISTILLERY

This week in techniques

Disease models Chemokine CX3C motif A microglia-specific expression system could help study the role of such cells in various CNS diseases. Studying microglia is challenging because of the cells' lack of distinguishing genetic markers. Transient expression of a tamoxifen-activated Cre recombinase under control of the CX3CR1 promoter, which is active in brain microglia, was used to induce permanent gene inactivation in long-lived microglia cells in the brain. In a mouse model of multiple sclerosis (MS), microglia inactivation of MAP kinase kinase r (Map3k7; Tak1) decreased disease severity compared with that seen in wild-type controls or Patent and licensing statement of the comparison of the compared with that seen in wild-type controls or Patent and licensing statement of the comparison of	Publication and contact information
receptor 1 (CX3CR1)such cells in various CNS diseases. Studying microglia is challenging because of the cells' lack of distinguishing genetic markers. Transient expression of a tamoxifen-activated Cre recombinase under control of the CX3CR1 promoter, which is active in brain microglia, was used 	
neuroectoderm-specific knockout mice. Next steps could include using the model to identify microglia-specific drug targets.	Goldmann, T. <i>et al. Nat. Neurosci.</i> ; published online Sept. 29, 2013; doi:10.1038/nn.3531 Contact: Marco Prinz, University of Freiburg, Freiburg, Germany e-mail: marco.prinz@uniklinik-freiburg.de Contact: Steffen Jung, Weizmann Institu of Science, Rehovot, Israel e-mail: s.jung@weizmann.ac.il

SciBX 6(41); doi:10.1038/scibx.2013.1170 Published online Oct. 24, 2013