This week in therapeutics | Indication | Target/marker/pathway | Summary | Licensing status | Publication and contact information | |-----------------------------|---|--|--|--| | Endocrine/metabolic disease | | | | | | Diabetes | Platelet derived growth
factor A (PDGFA; PDGF1);
platelet derived growth
factor receptor (PDGFR) | Mouse and cell culture studies suggest increasing PGDFR signaling could help treat juvenile type 1 diabetes. In islets from juvenile mice and humans, a recombinant human PDGFA homodimer increased β cell replication compared with species-matched adult islets. In juvenile mice, greater PDGFR signaling increased β cell mass compared with normal PDGFR signaling. Next steps could include evaluating the effect of greater PDGFR signaling in animal models of diabetes. | Patent and licensing
status unavailable | Chen, H. et al. Nature;
published online Oct. 12, 2011;
doi:10.1038/nature10502
Contact: Seung K. Kim,
Stanford University, Stanford, Calif.
e-mail:
seungkim@stanford.edu | | | | | | |