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High concentrations of cyanobacterial toxins such as microcystin represent
aglobal challenge to water quality in lakes, threatening health, economies

and ecosystem stability. Lakes are sentinels of climate change but how
warming will affect microcystin concentrations s still unclear. Here we
examine how warming impacts the probability of exceeding microcystin
water quality thresholds across 2,804 lakes in the United States and
show how future warming will alter these probabilities. We find that
higher temperatures consistently increase the likelihood of microcystin
occurrence but that the probability of microcystin concentrations above
water quality thresholdsis highest for water temperatures between 20
and 25 °C. Regions with temperatures that promote microcystin will shift
to higher latitudes in the coming decades, leading to relative changes

in exceedance probabilities of more than 50% in many basins of the
United States. High nitrogen concentrations amplify the impact of rising
temperatures, calling for increased awareness of a substantial hazard to
ecosystems and human health under global warming.

Harmful algal blooms and their associated toxins pose a severe threat
to health and water quality* Microcystins, produced by cyanobacteria
commonly known as blue-green algae, are one of the most frequently
detected classes of such toxins globally?, with several hundred micro-
cystin congeners currently known*. As a potent hepatotoxin, micro-
cystin affects liver function by inhibiting protein phosphatases’ and
acute concentrations can lead to fatalities in wild and domestic animals
and, in rare cases, humans®’. Microcystin can also impact animal and
human health through chronic exposure®’, including being classi-
fied as a potential carcinogen'®. As an example of real-world impacts,
around 500,000 people living near Lake Erie were instructed in 2014
to not drink tap water because microcystin concentrations exceeded
safe limits in finished drinking water.

Climate change is one of the greatest challenges to water quality
and aquatic ecosystems'""2, Lakes, which hold 87% of Earth’s liquid
surface freshwater”, are sentinels of climate change'* with lake sum-
mer surface temperatures expected toincrease by 0.34 °C per decade
onaverage®. This trend will have severe consequences for lakes, with

impactsoncritical abiotic and biotic processes such as mixing regimes,
evaporation, lake ice phenology and the growth rates and composition
of freshwater taxa™'>™,

How temperature affects total microcystin concentrations within
lakes, however, is still unclear. Generally, cyanobacteria have been
identified as big winners of climate warming and are likely to increase
globally in abundance and dominance, outcompeting other species
due to boosted growth rates and intensified water stratification'®°,
Larger blooms, however, do not necessarily contain higher microcystin
concentrations, as not all taxa can produce this class of toxins* and
high genetic diversity leads to varying toxin-producing capabilities
evenwithinaspecies?. Warming has also been found to promote toxic
strains over non-toxic strains* but toxin cell quotas have been reported
todecrease withincreasing temperatures>**, While laboratory studies
have reported temperature optima for elevated microcystin concentra-
tions, field studies widely disagree on the direction of the temperature
effect on microcystin concentrations, reporting negative, positive or
negligible?””* relationships in lakes. This complicates water quality
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management because rising temperatures may counteract the effect
of nutrient management strategies™.

Here, we use 3,027 measurements from 2,804 lakes across the
United States that were sampled in2007,2012 and 2017 as part of the
National Lakes Assessment® (NLA) to determine how temperature
impacts microcystin occurrence (defined here as concentrations
above the 0.1 pg 1" detection limit of enzyme-linked immunosorb-
ent assays (ELISA)*>* used by the NLA) and concentrations across
large geographic regions. We use alogistic model to represent occur-
rence and a log-normal model to represent concentrations above
the analytical detection limit while controlling for pH, Secchi depth,
the natural-log transformations of each of total nitrogen (TN), total
phosphorus (TP), chlorophyll a (Chl-a), dissolved organic carbon
(DOC) and lake depth (D) and area (A4), all of which have been found
to impact or correlate with microcystin concentrations in previous
studies®?”*5*** The two models are then combined into a zero-
adjusted model” that represents microcystin both below and above
the detection limit (Methods).

The models are fitted in the framework of generalized additive
models for location, scale and shape** (GAMLSS) which allows us to
identify potential nonlinear relationships and to model the full prob-
ability distribution of microcystin concentrations, making it possible
to quantify the probability of exceeding any defined water quality
threshold under specific environmental conditions (Methods).

We then use the combined model to assess the impact of future
warming on the geographic distribution of areas with elevated prob-
abilities of microcystin concentrations above critical water quality
thresholds across the continental United States. To do so, we use projec-
tions from15 generalized circulations models (GCMs) (Extended Data
Table 1) participating in the coupled model intercomparison project
phase 6 (CMIP6) (ref. 37) under the ‘middle-of-the-road’ shared socio-
economic pathway scenario SSP 2-4.5 (ref. 38) (Methods).

Exceedance probabilities of water quality
thresholds

The World Health Organization (WHO) provisional guideline values for
drinking water® list concentrations of 0.3 and 1 pg 1™ for children and
adults, respectively. The US Environmental Protection Agency (EPA)
has set amicrocystin threshold of 8 ng I as the water quality criterion
for recreational waters protective of human health while either swim-
mingor taking partinrecreational activities on the water*’. During the
three sampling years of the NLA,18.0% and 9.9% of lakes investigated in
this study had concentrations above the drinking water guideline for
children and adults, respectively, and 1.3% had concentrations above
the recreational water quality criterion (Fig. 1). The model developed
here (Methods) was applied under the observed environmental condi-
tions at each lake at the time of sampling and predicts 16.8-20.0% (99%
interval; Methods) of lakes would have concentrations above the chil-
dren’sdrinking water guideline. The predictedintervals are 7.6-10.1%
for the adultdrinking water guideline and 1.1-2.3% for the recreational
water criterion. The modelis therefore highly effective at representing
the probability of exceeding critical water quality standards under the
range of conditions observed during the NLA.

For individual lakes, the predicted probabilities range from O
(Waldo Lake, Oregon) for exceeding the recreational water criterion to
0.91 for exceeding the children’s drinking water guideline (Roundup
Lake, Nebraska) under the environmental conditions observed at
the time of sampling. In regions such as the upper Midwest corn belt,
the probability of exceeding the 0.3 pg I water quality guideline for
drinking water for children can be >0.50 on average across entire
basins (Fig. 2a; five basins), >0.25 for exceeding the 1.0 pg I water
quality guideline for adults (Fig. 2c; 14 basins) and >0.10 for the 8 ug I
recreational water criterion (Fig. 2e; two basins). These results indi-
cate that exceeding water quality thresholds in those areas is already
common rather than being the exception. The probabilities show a
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Fig.1|Microcystin concentrations across the United States. Observed
microcystin concentrations across 3,027 sampling points (2,804 lakes) over three
survey years (2007,2012 and 2017).

strong geographic signature (Fig. 2) based on temperature, degree of
eutrophication and other environmental conditions (Extended Data
Fig.1), which we discuss next.

Drivers of microcystin occurrence and
exceedance probabilities

We find that temperature (7), TN, Chl-a and pH help explain both the
occurrence (logistic model) of microcystinand median concentrations
above the detection limit (log-normal model). Inaddition, lake area (A)
and DOC have an effect onmicrocystin occurrence, thusindirectly also
impacting microcystin concentration in the combined model, while
lake depth (D) affects concentration above the detection limit. The
partial effects of these covariates are shownin Fig. 3a-ffor occurrence,
inFig.3g-Iforthe medianand spread (Methods) of the concentrations
above the detection limit and in Fig. 4 for the probability of micro-
cystin concentrations exceeding a specific threshold. Neither log TP,
nor its interaction with log TN, showed a significant relationship to
microcystin. Also, Secchi depth did not provide significant additional
explanatory power.

Temperature

We find that while the probability of microcystin occurrenceincreases
monotonically with temperature (Fig. 3a), the median concentration
above the detection limit peaks at 22 °C (Fig. 3g). Consequently, the
probability of exceeding specific concentration thresholdsis also high-
est for temperatures ranging from 20 to 25 °C (Fig. 4). This contrasts
with previous studies based onamore limited set of observations that
had found a negative or negligible effect of temperature**, Labo-
ratory or single lake studies, however, have also shown an optimum
temperature in the range of 20-25 °C for elevated microcystin con-
centrations®*, supporting our findings.

The more flexible nonlinear approach applied here thus made
it possible to observe the presence of a temperature optimum at the
field scale across thousands of lakes. Because both the logisticand log-
normal models include proxies for biomass (Chl-a), the higher prob-
ability of microcystin occurrence at higher temperatures is probably
attributabletoanincrease in the dominance and relative abundance of
toxicstrains of cyanobacteria®, resulting fromincreased growth rates
and water column stratification at higher temperatures.

The decreasing exceedance probabilities above 22 °C are consist-
entwith studies reporting areductionintoxin quota at higher tempera-
tures and a decoupling between optimal growth rates and highest toxin
concentration®**, Physiological reasons for this pattern are not fully
understood***. Another plausible reason for decreasing concentra-
tions when temperature exceeds 22 °C is an increase in microcystin
removal by bacteria that are capable of degrading microcystin*.
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Fig. 2| The upper Great Plains and the upper Midwest corn belt show the
highest probabilities of exceeding microcystin thresholds. The exceedance
probabilities for each lake are calculated on the basis of the environmental
conditions measured at the time of microcystin sampling. a-f, Exceedance
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probabilities are then averaged across lakes on the HUC6 basin scale (a,c,e) and
HUC2regional scale (b,d,f) for the thresholds 0.3 ug 1" (a,b), 1 pg I (c,d) and
Sugli(ef.

Other environmental drivers

Asexpected, the model developed here confirms that in-lake nitrogen
hasaclear positive effect on microcystin occurrence and exceedance
probabilities (Figs. 3 and 4). This is in line with previously observed
results indicating that TN is a dominant driver of microcystin?%3*,
This pattern may reflect that cells deal with excess N by shuntingit out
into N-rich metabolites®**’ such as microcystin. In addition, however,
we alsoidentified a directimpact of TN on the variability in microcys-
tin concentrations above the detection limit (Fig. 31), suggesting that
the uncertainty in microcystin concentration increases with TN, that
is, that the likelihood of microcystin concentration extremes scales
directly with in-lake TN.

Consistent with earlier field and laboratory studies®”*, the prob-
ability of exceeding microcystin thresholds grows with increasing
Chl-a and pH. Intense blooms can lead to depleted carbon dioxide
concentrations, thereby increasing pH. Studies also suggest that
depleted carbon dioxide concentrations favour cyanobacteria over
other taxa®>**. For DOC, earlier studies report both negative and posi-
tive effects on microcystin occurrence or concentration”>**, Here, we
find that DOC has a positive effect on microcystin occurrence, which
increases the probability of microcystin concentrations exceeding
water quality thresholds. The effect of DOC on microcystinmay be the
result of light limitation*® or the production of reactive oxygen species

formed under ultraviolet radiation, which in turn has been shown to
spur toxin production®. We also find an effect of lake area and depth
onthe probability of exceeding microcystin thresholds. Both lake area
and lake depthincreasethelikelihood and strength of stratificationin
summer months*, which has been observed to promote cyanobacterial
dominance over eukaryotic competitors*®, Another way in which lake
morphology may impact microcystin concentrations is through the
coupling between lake water and lake sediments, where microcystin
degradation has been found to take place®.

Compound effects in the presence of warming

We find that the impact of rising temperatures is greater under high
TN concentrations (Fig. 5a) and the sensitivity to changes in TN con-
centrationsis highest for temperatures between 20 and 25 °C (Fig. 5b).
This suggests that the impact of warming can be supercharged by
eutrophication. At the time of the NLA, regions with high TN concen-
trations (Extended Data Fig. 1a) did not coincide with temperature
regions associated with the highest risk for elevated microcystin con-
centrations (Extended Data Fig. 1g) but this could change under future
conditions. That the whole may be greater than the sum of'its partsisin
line with the ‘allied attack’ concept® suggesting a potential reinforcing
effect between eutrophication and rising temperatures and was pre-
viously observed to boost microcystin in a pond water experiment®,
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Fig. 3 | Partial effects of environmental parameters. a-f, Partial effects of the
environmental parameters on the log odds of microcystin being detected (that
is, microcystin occurrence) for the logistic model. g-1, Partial effects of the
environmental parameters on concentrations above the detection limit for the
log-normal model; g-k, show the partial effect on log(u), where uis the predicted
median of the microcystin concentration distribution, while I shows the effect
onlog(o), where gis the predicted standard deviation of the log microcystin

concentration above the detection limit; Methods. The ranges on the horizontal
axes represent the ranges observed in the sampled data. The range for the log-
normal modelis smaller than for the logistic model because it only includes the
range of observed values for those samples where the microcystin concentration
was above the detection limit. The shaded areas represent the 95% confidence
intervals.

Here, we observe and quantify this effect across thousands of lakes
(Fig. 5). Interestingly, such a compounding effect was not observed
for cyanobacterial biovolume®.

Geographicredistribution under rising
temperatures
We find that the probability of exceeding water quality thresholds will
increase under SSP 2-4.5, applied to15 climate models participatinginthe
CMIP6intercomparison (Methods). Taking the water quality guideline for
children as an example, the relative increase in exceedance probability
will be >50% for 14 basins by the mid-century and 28 basins by the late-
centuryrelativeto historical conditions (Fig. 6a,c,e). We project that about
aquarter of basins will see increases of >25% for the mid- (66 basins) and
late-century (78 basins). Even at the Hydrologic Unit Code (HUC) regional
scale HUC2 (Fig. 6b,d,f), three regions will see increases of >25% by mid-
century and two regions will see increases of >50% by late-century.
Geographically, the regions with the greatest relative increase in
exceedance probabilities are located in the north of the United States,
where summer temperatures are projected to be close to the opti-
mum for high microcystin concentrations (Fig. 7). For some regions,
such as the Great Lakes, the exceedance probabilities are already high
(Fig.2) based onrelatively high TN concentrations. But even for north-
ernregionsthat currently haverelatively low exceedance probabilities
(Fig.2), arelative change in exceedance probabilities of up to 50% means
that those regions are much more likely to experience hazardous micro-
cystin concentrations in the future. Interestingly, even at present the
relativeincreasein exceedance probabilities is >10% higher than under
historical conditions for more thana quarter of basins (Fig. 6a), indicat-
ing that theimpact of regional shiftsin temperatureis already being felt.
Conversely, only one basinis expected to see arelative reductionin
exceedance probabilities of >25% by the late-century, while less than a
quarter of basins will experience areduction of >10% by the mid-century
and a third by the late-century (Fig. 6d,e,f). These areas coincide with
regions where temperatures are expected to rise above the range associ-
ated withthe highest probability of exceeding microcystinthresholds.
Similar patterns emerge for other microcystin thresholds, that
is, 1and 8 pg I (Extended Data Figs. 2 and 3). Overall, the divergent
responses in the north and south result from the northward migra-
tion of the region with summertime temperatures closest to the 22 °C
optimum (Fig. 7). However, the divergent response is not symmetric

and there are more regions experiencing increases than decreases
(Extended Data Fig. 4). Under increasing temperatures, microcystin
levelsare also expected to reach detectable concentrations more often
(Extended Data Fig. 5) with averagerelative increasesin occurrence of
9.5% by the late-century across HUC2 regions.

Giventhat microcystinoccurrence is defined here on the basis of
the detection limit of 0.1 pug I, it is likely that smaller concentrations
willbecome even more frequent. Whatimpact anincreasingly chronic
microcystin exposure even under low concentrations will have on
health and ecosystem functions is not well understood. In a recent
study, it was shown that chronic exposure with an estimated daily
intake of even only 0.15-0.27 pug (MC-LReq per day) led to detectable
microcystin concentrations in human blood sera and was associated
with signs of renalimpairments’. Chronic exposure is especially danger-
ous for people with existing liver disorders such as non-alcoholic fatty
liver disease®. Microcystin has also been reported to be transferred to
higher trophiclevels through the food chain®, to lead to growth inhibi-
tion of edible plants in bioassays and to be detected on plants grown
for human consumption after crop spray irrigation’>,

Compound events®*, for example, events of synchronously high
in-lake TN concentrations together with high-risk temperatures, will
furtherincrease thelikelihood of microcystin extreme concentrations
inthe future (Fig. 5). High concentrations may occur under changing
land use patterns or from agricultural runoff after weather events
such as heavy rainfall. Hotter spring days or extended periods of tem-
peratures around 22 °Cinautumn may also increase the frequency and
duration of high-concentration events. Although more data will be
needed to assess seasonal differences in microcystin occurrence and
concentration, summer-based monitoring programmes will need to
extend to the spring and autumn months.

Conversely, preventing excess nutrients from reaching water
bodies and reducing eutrophicationis key to counteracting the effects
of rising temperatures. Efforts to reduce inland water eutrophication
over the past decades have focused mainly on phosphorus, due to the
assumption that atmospheric N,-fixing cyanobacteria will buffer nitro-
gen levels in the water column®. However, N,-fixing is not sufficient
to offset nitrogen loss due to processes such as denitrification®® and
microcystin-producing taxasuch as the genus Microcystisrequire exter-
nal sources of nitrogen® from runoff or atmospheric deposition. In
some systems, nitrogen loading has been shown to selectively promote
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the abundance of toxic Microcystis strains, while orthophosphate
has not™®. Therefore, the results presented here add to the increasing
evidence thatan exclusive focus on phosphorus reductions alone will
notbe sufficient to mitigate dangers from nitrogen-rich cyanotoxins®.

Additional complexities and broader
considerations

The ELISA used here (Methods) represent a congener-independent,
robust and highly sensitive assessment of total microcystin concen-
trations®>®°. Its main advantage relative to methods such as liquid

chromatography-mass spectrometry is that it quantifies the total
concentration across a very high fraction (>80%) of microcystin con-
geners®. A loss of microcystins during preparation and storage can
in principle result in an underestimation of the true microcystin con-
centration® with ELISA, while microcystin conjugates and byproducts
couldlead to overestimations of the toxicity of asample®>®, Also, vari-
able cross-reactivity of congeners canlead to either under- or overes-
timations of concentrations®. The uncertainty resulting from these
factors, however, would be highly unlikely to change the primary con-
clusions of the current study (Methods).
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Future large-scale monitoring using congener-specificapproaches
such as liquid chromatography-mass spectrometry could be used to
answer additional questions about the impact of warming on specific
strains and congeners, such as a shift in their diversity and relative
abundance®*. Routine monitoring of all known congeners is almost
impossible, however, because new microcystin congeners continue
to be discovered. Low levels of several congeners that individually
fall under the detection limit could also lead to an underestimation
of the total microcystin concentration. Therefore, monitoring using
congener-specific methods could supplement but not replace assess-
ments based on ELISA.

Additional factors suchas the local cyanobacterial strain composi-
tion and genetic diversity, grazing by zooplankton, viral lysis or micro-
bialinteractions canalso influence microcystin concentrations®>** but
were not considered here because such dataare currently non-existent
for the United States across large scales. The identified effects of tem-
perature therefore represent the net effect of temperature across vari-
ous biotic and physiological responses. While strain evolution could
in principle impact the future trends explored here, an earlier study
found thatincreased eutrophication and temperature did not favour
strain evolution towards more toxin-producing strains in one of the
mostimportant microcystin producers Microcystis aeruginosa® . Future
work exploring biotic factors could further deepen understanding of
the processes that control microcystin and bloom dynamics.

In addition, future changes in temperature are also likely to
affect other driversincluded in the model and the future projections
presented here do not account for correlations among changes to
those variables (Extended Data Fig. 6). Given that temperature has
been found to increase cyanobacterial biomass either directly or
indirectly”*®, increases in temperature may also increase other pre-
dictorsinthe model, such as Chl-a. As such, microcystin concentra-
tions would be expected to increase even more than presented here,
making our conclusions a conservative estimate of future impact.
The long-term coupling of environmental variables, however, may
impact cyanobacterial taxa differently'**’, which makes future micro-
cystin projection much more complex under climate change and
highlights the need for more research focusing on the interplay of
environmental variables.

Lastly, although this study focuses on lakes in the United States,
microcystin is a global hazard® and the results shown here indicate
that microcystin occurrence is expected to increase with rising tem-
peratures. Regions where summertime temperatures are near 22 °C,
promoting exceedance of microcystin thresholds, will shift poleward
notjust for the United States but globally (Extended DataFig. 7). Poten-
tial seasonal shifts in periods with elevated microcystin concentrations
can also be expected. The threat to water quality posed by microcys-
tin will therefore grow globally as warming continues, especially in
eutrophic systems.

Nature Water | Volume 1| October 2023 | 844-854

849


http://www.nature.com/natwater

Article

https://doi.org/10.1038/s44221-023-00138-w

@ Historic

€ Mid-century

o

T
o 'f’d 5
& 1N 5
¥ W
Absolute
difference -
to22°C 0] 5

Fig.7|Areas withsummertime temperatures associated with the highest
risk of elevated microcystin concentrations are moving northward. a-d, The
absolute difference of summertime air temperatures to 22 °C, the approximate

b Present

10 15

temperature with the highest risk, for the historic period (1950-1979) (a), present
(1990-2019) (b), projected mid-century (2030-2059) (c) and projected late-
century (2070-2099) (d).

Methods

Data

We analysed lakes across the continental United States that were part of
the EPA National Lake Assessment (NLA) surveys conducted in 20077,
20127°and 2017”* with microcystin concentrations detected by ELISA.

ELISA is an antibody-based analytical method widely applied in
water treatment for the screening of toxic cyanobacterial metabo-
lites®>**%%%° ELISA does not target individual microcystin congeners but
rather measures the total concentration of microcystins (and nodular-
ins) in asample®*?*° that share very similar toxicity and structure and
arethus combined under the general term microcystins here. The ELISA
used in the NLA surveys is calibrated against the microcystin-LR con-
gener®”, which also forms the basis of the WHO drinking water guide-
lines”. No statistically significant difference between concentrations
could beidentified when comparing ELISA to liquid chromatography/
tandem mass spectrometry under various cell lysis techniques®. The
EPA uses freeze/thaw cycles to lyse cyanobacterial cells and extract
toxins; as such this method not only quantifies dissolved toxins but
also microcystin within cells®. ELISA is the recommended method of
the EPA to quantify total microcystins (and nodularins)* and as such
many water monitoring efforts and drinking water supplies use ELISA
kits to measure microcystins within their systems. Therefore, ELISA
and the predicted microcystin concentrations derived from those
measurements are in line with end users.

Lakes included in the NLA were selected by a stratified proba-
bilistic sampling design to be representative of the >50,000 lakes in
that project. Previous studies have analysed the 2007 and 2012 sur-
veys?"?5**% while our study incorporates the 2017 data.

From these data, we selected the environmental variables Chl-a
(pg ™), surface water temperature 7 (°C), TN (ug1™) and TP (ug 1),
DOC (mg 1), pH, Secchidepth (m), lake depth D (m) and area A (ha) for
consideration for inclusion in the model. A very detailed description
of data sampling can be found at EPA and within NLA references® %",

Although cyanobacterial abundance is also measured as part of
this effort, we used Chl-aas a proxy for biomass because Chl-ais more

commonly measured and makes the model applicable to awider range
of water bodies beyond those examined in this study. Chl-a, TN, TP,
DOC,Aand Dwere all natural log-transformed. In total, 2,804 individual
lakes had measurements of all the environmental variables considered
here with paired microcystin measurements. As some lakes were sam-
pled multiple times, the total number of observations was 3,027. In
1,092 of those observations microcystin was above the detection limit.

Statistical model
We used GAMLSS implemented via the R package gamlss**”>”*. Thisis a
distribution-based approachto nonlinear regression where not only the
meanbutall parameters of the conditional distribution, for example, the
variance of the response variable, are related to environmental variables.
Inthe easiest case, assuming the conditional distribution of the response
is Gaussian, both the mean and the standard deviation are functions of
covariates. Further, as all parameters of the distribution are modelled,
the probability density function can be calculated for any combination
of covariates. With this information, every quantile or probability to
crossachosen response value (microcystin threshold) can be calculated.
Thereisadetection limit of 0.1 pg I™* for microcystin in these sur-
veys, such that the observed microcystin concentration (MC) is not
completely continuous. Because of that, we used azero-adjusted model
for M=MC - 0.1that combines alogistic model (occurrence model) of
microcystin detection or non-detection, with a continuous model to
represent microcystin concentrations above the detection limit, that
is,tomodel M > 0. For the continuous model, alog-normal distribution
(LOGNO2) was selected as the optimal conditional distribution for
M > 0 after extensive testing of >50 distributions currently available
in GAMLSS™ based on fit and parsimony via the Bayesian information
criterion” (BIC). The log-normal distribution has two parameters, u (the
median of M) and o (the standard deviation of log M). The log-normal
probability density function of M > O is defined as:

exp{- 5 lin(m) - Inu)’| )

1
Suso(m) = 1 207

(2m) " “om
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where m represents any specific value of the random variable M. It is
interesting that the log-normal distribution, which hasacompounding
effect between predictor variables (effects combine multiplicatively),
performed best for microcystin concentrations out of the many distri-
butions availablein GAMLSS including, for example, a zero truncated
t-distribution with identity link that does not lead to a compounding
effect. Thisindicates that compounding effects between environmen-
tal variables arelikely in predicting microcystin concentrations above
the detection limit.

M was modelled using a zero-adjusted log-normal distribution,
with a mixed (discrete-continuous) probability function. Hence, the
mixed (discrete-continuous) probability function for microcystin
MCis:

Po ifmc=0.1
fMC(mc) =

(1-po) _ _ _ 2] .
G omeoD) exp{ ™ [In(mc —0.1) — In( )] } ifmc > 0.1
(2)

where p,is the probability that microcystinis below the detection limit
fromthe logistic model and where mc represents any specific value of
the random variable MC.

The selection of environmental covariates used to estimate y, o
of the log-normal model, and p, of the logistic model was based on
minimizing the BICin astepwise selection process. Here, each environ-
mental variable can be part of the distribution parameter model either
asapenalized P-spline”” or a linear term, or not selected. BIC was also
used locally for selecting the amount of smoothing, that is, the effective
degrees of freedomused for smoothing, in the P-spline. The selection
of environmental variables for the models was performed using the
stepGAIC() and stepGAICAIIL.A() functions, respectively, from the R
package gamlss’?. We also checked for aninteraction between TN and
TPbut these did notimprove the fit as assessed by the BIC.

The final model (equation (2)) giving fy,c (mc) for MC has the fol-
lowing parameters:

In ((:f, )) = 5(In(TN)) — 0.31In(Chl-a) + s(In(4)) — 0.42 In(DOC)

—0.037-0.45pH + 6.89
In(p) = 0.68In(TN) + 0.37pH + s(T) + 0.28 In(Chl-a) + 0.34 In(D) — 9.81

In(0) = 0.08In(TN) + 0.06
)

The partial effects for In((1 - p,)/p,), In(1) and In(o), are displayed in
Fig. 3. Note that since Fig. 3 shows the partial effects for In((1- p,)/p,) =
-In(p,/(1-p,)), the signin the terms for In(p,/(1 - p,)) in equation (3)
isreversed in Fig. 3, for example,—0.3 Tin equation (3) becomes 0.3 T
inFig.3.

Model validity was assessed using detrended quantile-quantile
plots of the normalized quantile residuals™, which show a good fit for
boththelogistic and log-normal model (Extended Data Fig. 8). Concur-
vity between model predictors was not concerning in both models as
assessed via the R package gamlss.ggplots” using the function gamiss.
ggplots:::get_concurvity(). Alsorefitting the models using only linear
predictorsresulted in variance inflation factors never exceeding five,
indicating no issues of multicollinearity’® for those parameters. The
partial effects plots, exceedance probability plotsand detrended quan-
tile-quantile plots were also created via the R package gamlss.ggplots””.

Onceall parameters are estimated from the final model, the prob-
ability of crossing a specified microcystin threshold under given envi-
ronmental conditions can be calculated as one minus the cumulative
probability up to that threshold. In contrast to studies conducting
multiple logistic regressions to determine exceedance probabilities,
this model can thus be applied to any threshold without refitting a new
model at each threshold.

Onthe basis of the exceedance probabilities, we can create inter-
vals for the percentage of samples in this study expected to cross a
chosen threshold. For this, we treated each exceedance probability
for a sample as a draw from a Bernoulli distribution’ (a biased coin
flip). We can do this for each sample to simulate whether it exceeds the
threshold. We then sum the number of samples for which the threshold
was exceeded and divide by the total number of samples. This gives us
asimulated percentage of how often samples are expected to exceed
the threshold under equivalent environmental conditions. We repeated
this10,000 times to calculate the 0.5th percentile and 99.5th percentile
of this distribution and compare it to the observed data.

Spatially averaged detection probabilities and exceedance prob-
abilities for 0.3,1and 8 pg I were calculated to find broad-scale pat-
terns across the United States within HUC boundaries at the HUC2
and HUCG level, as developed by the US Geological Survey® (Fig. 2).
All base maps of this study have been created with the R package sf®'.

Scenarios

We calculated how the risk of exceeding water quality guidelines
changes under warming temperatures at each lake. To do so, we used
projections from an ensemble of 15 GCMs participating in CMIP6
(ref. 37) (Extended Data Table 1) run for SSP 2-4.5 (ref. 38), which rep-
resents a ‘likely’ scenario for future climate regulation strategy given
current policies. Data from the model projections were bias-corrected
and spatially downscaled to 0.25° using the bias correction and spatial
disaggregation®** method. For the bias correction process, the refer-
enceair temperature datainthe historical period were collected from
the Global Meteorological Forcing Dataset®*.

While the above climate models are predicting air temperature the
modelisbased onwater surface temperature. However, in the temperate
zones and on a monthly scale, water surface and air temperature track
very closely, especially in the range 5-30 °C during summer months®>*¢,

Under this scenario we investigated how exceedance probabilities
have changed and will change under the expected average local air
temperature change in the summer months (June-September) for the
present day (1990-2019), for the mid-century (2030-2059) and for the
late-century (2070-2099) relative to the historical period (1950-1979).
The relative change in exceedance probability was calculated as the
ratio of the exceedance probability during each of the three periods
tothe exceeding probability during the historical period. Therelative
changes were again spatially averaged to identify broad-scale patterns
of shifts in occurrence and exceedance probabilities at the HUC2 and
HUC6 level. The percentage relative changes in exceedance probability
(Fig. 6 and Extended Data Figs. 2 and 3) are defined as:

(C))

100 <P(MC > mc)g — P(MC > mc)H> %

P(MC > mc),

where Srepresents one of the scenarios (present, mid-century or late-
century) and Hthe historic reference.

The change in exceedance probability we report here between
two scenarios can be seen and interpreted as the change between two
snapshots thatexhibit the average summer temperature of the assessed
time periods, respectively.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Observations of microcystin concentrations and environmental
parameters are part of the EPANLA surveys conducted in2007*,20127°
and 20177 and are publicly available online at: https://www.epa.gov/
national-aquatic-resource-surveys/data-national-aquatic-resource-
surveys. CMIP6 model output was downloaded from the NASA Earth
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Exchange Global Daily Downscaled Projections® and merged with NLA
data. Source data are provided with this paper.

Code availability

Data analysis was based on the R packages gamlss’” and the add-on
gamlss.ggplots”. Specific functions for model selection and formulas
aregiveninthe Methods. The model canbe accessed in an online tool
(https://algal-risk.dge.carnegiescience.edu/) where exceedance prob-
abilities of individually selected thresholds of toxin concentration can
be calculated under any combination of environmental conditions.
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Extended Data Fig. 1| Spatial distribution of environmental variables concentration, (c) pH, (d) chlorophylla concentration, (e) depth, (f) areaand (g)
selected for inclusion in the model for sampled lakes, averaged to the HUC6 temperature. Panel (h) shows the number of lakes present in each HUC6 basin.
basinscale. These include (a) TN concentration, (b) dissolved organic carbon White areas represent basins with no sampled lakes.
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Extended Data Fig. 2| Temperatures will change the exceedance probability and HUC2 regions (b, d, f), for (a, b) present (1990-2019), (c, d) projected mid-
of the adult drinking water guideline (1 pg/L). Panels show the relative century (2030-2059) and (e, f) projected late-century (2070-2099) summertime
increase in exceedance probabilities due to warming relative to the historic temperatures. All other variables are held constant at their values at the time of
period (1950-1979), averaged across lakes within individual HUC6 basins (a, c, e) sampling. White areas represent basins with no sampled lakes.
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Extended Data Fig. 3| Temperatures will change the exceedance probability
of the recreational water quality criterion (8 pg/L). Panels show therelative
increase in exceedance probabilities due to warming relative to the historic
period (1950-1979), averaged across lakes within individual HUC6 basins (a, c, e)

-5%

b: Present — historic

d: Mid-century — historic

f: Late-century — historic

5% 10% 25% 50%

and HUC2 regions (b, d, f), for (a, b) present (1990-2019), (c, d) projected mid-
century (2030-2059) and (e, f) projected late-century (2070-2099) summertime
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Extended DataFig. 6 | Correlations between microcystin predictors. Pearson measured at sampled lakes, including temperature (°C), log TN (ng/L), log
correlation (upper triangle), distribution (diagonal) and linear relationship chlorophylla (pg/L), pH, log DOC (mg/L), log area (ha), log depth (m) and log
(lower triangle) between environmental parameters included in the model microcystin (where microcystin> 0.1 pg/L).

Nature Water


http://www.nature.com/natwater

Article https://doi.org/10.1038/s44221-023-00138-w

g

1 _._.!G f ot iR -
™ v N o . . e x
T o g

historic present mid century late century
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Extended Data Fig. 8 | Model validation based on detrended quantile-
quantile plots for the logistic and the lognormal model. Points show the
deviations of the ordered normalized quantile residuals from their expected
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Extended Data Table 1| List of 15 climate models participating in the Coupled Model Inter-comparison Project phase 6
(CMIP6) that were used for projections of future temperatures

Model name Modeling center Nominal
resolution

BCC-CSM2-MR | Beijing Climate Center, China Meteorological Administration, China 1.125°%x1.125°

CanESMS5 Canadian Centre for Climate Modelling and Analysis, Canada 2.813°x2.813°

IITM-ESM Centre for Climate Change Research-Indian Institute of Tropical Meteorology, India | 1.915°x1.875°

CNRM-ESM2-1 | Center National de Recherches Météorologiques—Center Européen de Recherche et 1.406°x1.406°
de Formation Avancée en Calcul Scientifique, France

ACCESS- Commonwealth Scientific and Industrial Research Organisation, Australia 1.250°x1.875°

ESM1-5

MPI-ESM1-2- German Climate Computing Centre, Germany 0.938°x0.938°

HR

INM-CMS5-0 Institute for Numerical Mathematics, Russia 1.500°x2.000°

IPSL-CM6A-LR | L'nstitut Pierre-Simon Laplace, France 1.259°x2.500°

MIROC-ES2L Model for Interdisciplinary Research on Climate, Japan 2.813°x2.813°

HadGEM3- Met Office Hadley Center, United Kingdom 1.250°x1.875°

GC31-LL

UKESM1-0-LL | Met Office Hadley Center, United Kingdom 1.250°x1.875°

MRI-ESM2-0 Meteorological Research Institute, Japan 1.125°x1.125°

KACE-1-0-G National Institute of Meteorological Sciences-Korea Meteorological Administration, | 1.250°x1.875°
South Korea

GFDL-ESM4 NOAA/Geophysical Fluid Dynamics Laboratory, USA 1.000°x1.250°

NESM3 Nanjing University of Information Science and Technology, China 1.875°x1.875°

The selection of models was based on data availability on the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6%) accessed on September 1st, 2022. For institutes
that supply multiple models (for example, ACCESS-CM2 vs ACCESS-ESM1-5), we chose the model with an earth system model (ESM) component (for example, we selected ACCESS-ESM1-5).
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conducted in 2007, 2012 and 2017 and publicly available online under: https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-
surveys.

Data for climate simulations was downloaded from the NASA Earth Exchange Global Daily Downscaled Projections (see: https://doi.org/10.7917/0FSG3345 and
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