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Geographic redistribution of microcystin 
hotspots in response to climate warming

Julian Merder    1  , Ted Harris2, Gang Zhao    1,4, Dimitrios M. Stasinopoulos3, 
Robert A. Rigby3 & Anna M. Michalak    1 

High concentrations of cyanobacterial toxins such as microcystin represent 
a global challenge to water quality in lakes, threatening health, economies 
and ecosystem stability. Lakes are sentinels of climate change but how 
warming will affect microcystin concentrations is still unclear. Here we 
examine how warming impacts the probability of exceeding microcystin 
water quality thresholds across 2,804 lakes in the United States and 
show how future warming will alter these probabilities. We find that 
higher temperatures consistently increase the likelihood of microcystin 
occurrence but that the probability of microcystin concentrations above 
water quality thresholds is highest for water temperatures between 20 
and 25 °C. Regions with temperatures that promote microcystin will shift 
to higher latitudes in the coming decades, leading to relative changes 
in exceedance probabilities of more than 50% in many basins of the 
United States. High nitrogen concentrations amplify the impact of rising 
temperatures, calling for increased awareness of a substantial hazard to 
ecosystems and human health under global warming.

Harmful algal blooms and their associated toxins pose a severe threat 
to health and water quality1,2. Microcystins, produced by cyanobacteria 
commonly known as blue-green algae, are one of the most frequently 
detected classes of such toxins globally3, with several hundred micro-
cystin congeners currently known4. As a potent hepatotoxin, micro-
cystin affects liver function by inhibiting protein phosphatases5 and 
acute concentrations can lead to fatalities in wild and domestic animals 
and, in rare cases, humans6,7. Microcystin can also impact animal and 
human health through chronic exposure8,9, including being classi-
fied as a potential carcinogen10. As an example of real-world impacts, 
around 500,000 people living near Lake Erie were instructed in 2014 
to not drink tap water because microcystin concentrations exceeded 
safe limits in finished drinking water1.

Climate change is one of the greatest challenges to water quality 
and aquatic ecosystems11,12. Lakes, which hold 87% of Earth’s liquid 
surface freshwater13, are sentinels of climate change14 with lake sum-
mer surface temperatures expected to increase by 0.34 °C per decade 
on average15. This trend will have severe consequences for lakes, with 

impacts on critical abiotic and biotic processes such as mixing regimes, 
evaporation, lake ice phenology and the growth rates and composition 
of freshwater taxa11,12,14.

How temperature affects total microcystin concentrations within 
lakes, however, is still unclear. Generally, cyanobacteria have been 
identified as big winners of climate warming and are likely to increase 
globally in abundance and dominance, outcompeting other species 
due to boosted growth rates and intensified water stratification16–20. 
Larger blooms, however, do not necessarily contain higher microcystin 
concentrations, as not all taxa can produce this class of toxins21 and 
high genetic diversity leads to varying toxin-producing capabilities 
even within a species22. Warming has also been found to promote toxic 
strains over non-toxic strains23 but toxin cell quotas have been reported 
to decrease with increasing temperatures24,25. While laboratory studies 
have reported temperature optima for elevated microcystin concentra-
tions26, field studies widely disagree on the direction of the temperature 
effect on microcystin concentrations, reporting negative, positive or 
negligible27–29 relationships in lakes. This complicates water quality 
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strong geographic signature (Fig. 2) based on temperature, degree of 
eutrophication and other environmental conditions (Extended Data 
Fig. 1), which we discuss next.

Drivers of microcystin occurrence and 
exceedance probabilities
We find that temperature (T), TN, Chl-a and pH help explain both the 
occurrence (logistic model) of microcystin and median concentrations 
above the detection limit (log-normal model). In addition, lake area (A) 
and DOC have an effect on microcystin occurrence, thus indirectly also 
impacting microcystin concentration in the combined model, while 
lake depth (D) affects concentration above the detection limit. The 
partial effects of these covariates are shown in Fig. 3a–f for occurrence, 
in Fig. 3g–l for the median and spread (Methods) of the concentrations 
above the detection limit and in Fig. 4 for the probability of micro-
cystin concentrations exceeding a specific threshold. Neither log TP, 
nor its interaction with log TN, showed a significant relationship to 
microcystin. Also, Secchi depth did not provide significant additional 
explanatory power.

Temperature
We find that while the probability of microcystin occurrence increases 
monotonically with temperature (Fig. 3a), the median concentration 
above the detection limit peaks at 22 °C (Fig. 3g). Consequently, the 
probability of exceeding specific concentration thresholds is also high-
est for temperatures ranging from 20 to 25 °C (Fig. 4). This contrasts 
with previous studies based on a more limited set of observations that 
had found a negative or negligible effect of temperature27,28. Labo-
ratory or single lake studies, however, have also shown an optimum 
temperature in the range of 20–25 °C for elevated microcystin con-
centrations26,41, supporting our findings.

The more flexible nonlinear approach applied here thus made 
it possible to observe the presence of a temperature optimum at the 
field scale across thousands of lakes. Because both the logistic and log-
normal models include proxies for biomass (Chl-a), the higher prob-
ability of microcystin occurrence at higher temperatures is probably 
attributable to an increase in the dominance and relative abundance of 
toxic strains of cyanobacteria23, resulting from increased growth rates 
and water column stratification at higher temperatures.

The decreasing exceedance probabilities above 22 °C are consist-
ent with studies reporting a reduction in toxin quota at higher tempera-
tures and a decoupling between optimal growth rates and highest toxin 
concentration24,26. Physiological reasons for this pattern are not fully 
understood24,25. Another plausible reason for decreasing concentra-
tions when temperature exceeds 22 °C is an increase in microcystin 
removal by bacteria that are capable of degrading microcystin42.

management because rising temperatures may counteract the effect 
of nutrient management strategies30.

Here, we use 3,027 measurements from 2,804 lakes across the 
United States that were sampled in 2007, 2012 and 2017 as part of the 
National Lakes Assessment31 (NLA) to determine how temperature 
impacts microcystin occurrence (defined here as concentrations 
above the 0.1 μg l−1 detection limit of enzyme-linked immunosorb-
ent assays (ELISA)32,33 used by the NLA) and concentrations across 
large geographic regions. We use a logistic model to represent occur-
rence and a log-normal model to represent concentrations above 
the analytical detection limit while controlling for pH, Secchi depth, 
the natural-log transformations of each of total nitrogen (TN), total 
phosphorus (TP), chlorophyll a (Chl-a), dissolved organic carbon 
(DOC) and lake depth (D) and area (A), all of which have been found 
to impact or correlate with microcystin concentrations in previous 
studies22,27,28,34,35. The two models are then combined into a zero-
adjusted model27 that represents microcystin both below and above 
the detection limit (Methods).

The models are fitted in the framework of generalized additive 
models for location, scale and shape36 (GAMLSS) which allows us to 
identify potential nonlinear relationships and to model the full prob-
ability distribution of microcystin concentrations, making it possible 
to quantify the probability of exceeding any defined water quality 
threshold under specific environmental conditions (Methods).

We then use the combined model to assess the impact of future 
warming on the geographic distribution of areas with elevated prob-
abilities of microcystin concentrations above critical water quality 
thresholds across the continental United States. To do so, we use projec-
tions from 15 generalized circulations models (GCMs) (Extended Data 
Table 1) participating in the coupled model intercomparison project 
phase 6 (CMIP6) (ref. 37) under the ‘middle-of-the-road’ shared socio-
economic pathway scenario SSP 2-4.5 (ref. 38) (Methods).

Exceedance probabilities of water quality 
thresholds
The World Health Organization (WHO) provisional guideline values for 
drinking water39 list concentrations of 0.3 and 1 μg l−1 for children and 
adults, respectively. The US Environmental Protection Agency (EPA) 
has set a microcystin threshold of 8 μg l−1 as the water quality criterion 
for recreational waters protective of human health while either swim-
ming or taking part in recreational activities on the water40. During the 
three sampling years of the NLA, 18.0% and 9.9% of lakes investigated in 
this study had concentrations above the drinking water guideline for 
children and adults, respectively, and 1.3% had concentrations above 
the recreational water quality criterion (Fig. 1). The model developed 
here (Methods) was applied under the observed environmental condi-
tions at each lake at the time of sampling and predicts 16.8–20.0% (99% 
interval; Methods) of lakes would have concentrations above the chil-
dren’s drinking water guideline. The predicted intervals are 7.6–10.1% 
for the adult drinking water guideline and 1.1–2.3% for the recreational 
water criterion. The model is therefore highly effective at representing 
the probability of exceeding critical water quality standards under the 
range of conditions observed during the NLA.

For individual lakes, the predicted probabilities range from 0 
(Waldo Lake, Oregon) for exceeding the recreational water criterion to 
0.91 for exceeding the children’s drinking water guideline (Roundup 
Lake, Nebraska) under the environmental conditions observed at 
the time of sampling. In regions such as the upper Midwest corn belt, 
the probability of exceeding the 0.3 μg l−1 water quality guideline for 
drinking water for children can be >0.50 on average across entire 
basins (Fig. 2a; five basins), >0.25 for exceeding the 1.0 μg l−1 water 
quality guideline for adults (Fig. 2c; 14 basins) and >0.10 for the 8 μg l−1 
recreational water criterion (Fig. 2e; two basins). These results indi-
cate that exceeding water quality thresholds in those areas is already 
common rather than being the exception. The probabilities show a 
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Fig. 1 | Microcystin concentrations across the United States. Observed 
microcystin concentrations across 3,027 sampling points (2,804 lakes) over three 
survey years (2007, 2012 and 2017).
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Other environmental drivers
As expected, the model developed here confirms that in-lake nitrogen 
has a clear positive effect on microcystin occurrence and exceedance 
probabilities (Figs. 3 and 4). This is in line with previously observed 
results indicating that TN is a dominant driver of microcystin27,28,34. 
This pattern may reflect that cells deal with excess N by shunting it out 
into N-rich metabolites26,43 such as microcystin. In addition, however, 
we also identified a direct impact of TN on the variability in microcys-
tin concentrations above the detection limit (Fig. 3l), suggesting that 
the uncertainty in microcystin concentration increases with TN, that 
is, that the likelihood of microcystin concentration extremes scales 
directly with in-lake TN.

Consistent with earlier field and laboratory studies27,41, the prob-
ability of exceeding microcystin thresholds grows with increasing 
Chl-a and pH. Intense blooms can lead to depleted carbon dioxide 
concentrations, thereby increasing pH. Studies also suggest that 
depleted carbon dioxide concentrations favour cyanobacteria over 
other taxa25,44. For DOC, earlier studies report both negative and posi-
tive effects on microcystin occurrence or concentration27,34,45. Here, we 
find that DOC has a positive effect on microcystin occurrence, which 
increases the probability of microcystin concentrations exceeding 
water quality thresholds. The effect of DOC on microcystin may be the 
result of light limitation46 or the production of reactive oxygen species 

formed under ultraviolet radiation, which in turn has been shown to 
spur toxin production35. We also find an effect of lake area and depth 
on the probability of exceeding microcystin thresholds. Both lake area 
and lake depth increase the likelihood and strength of stratification in 
summer months47, which has been observed to promote cyanobacterial 
dominance over eukaryotic competitors48. Another way in which lake 
morphology may impact microcystin concentrations is through the 
coupling between lake water and lake sediments, where microcystin 
degradation has been found to take place49.

Compound effects in the presence of warming
We find that the impact of rising temperatures is greater under high 
TN concentrations (Fig. 5a) and the sensitivity to changes in TN con-
centrations is highest for temperatures between 20 and 25 °C (Fig. 5b).  
This suggests that the impact of warming can be supercharged by 
eutrophication. At the time of the NLA, regions with high TN concen-
trations (Extended Data Fig. 1a) did not coincide with temperature 
regions associated with the highest risk for elevated microcystin con-
centrations (Extended Data Fig. 1g) but this could change under future 
conditions. That the whole may be greater than the sum of its parts is in 
line with the ‘allied attack’ concept50 suggesting a potential reinforcing 
effect between eutrophication and rising temperatures and was pre-
viously observed to boost microcystin in a pond water experiment16. 

a >0.3 µg l–1 b >0.3 µg l–1

c >1 µg l–1 d >1 µg l–1

e >8 µg l–1 f >8 µg l–1

0.005 0.010 0.025 0.050 0.100 0.250 0.500

Exceedance
probability

Fig. 2 | The upper Great Plains and the upper Midwest corn belt show the 
highest probabilities of exceeding microcystin thresholds. The exceedance 
probabilities for each lake are calculated on the basis of the environmental 
conditions measured at the time of microcystin sampling. a–f, Exceedance 

probabilities are then averaged across lakes on the HUC6 basin scale (a,c,e) and 
HUC2 regional scale (b,d,f) for the thresholds 0.3 μg l−1 (a,b), 1 μg l−1 (c,d) and 
8 μg l−1 (e,f).
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Here, we observe and quantify this effect across thousands of lakes 
(Fig. 5). Interestingly, such a compounding effect was not observed 
for cyanobacterial biovolume19.

Geographic redistribution under rising 
temperatures
We find that the probability of exceeding water quality thresholds will 
increase under SSP 2-4.5, applied to 15 climate models participating in the 
CMIP6 intercomparison (Methods). Taking the water quality guideline for 
children as an example, the relative increase in exceedance probability 
will be >50% for 14 basins by the mid-century and 28 basins by the late-
century relative to historical conditions (Fig. 6a,c,e). We project that about 
a quarter of basins will see increases of >25% for the mid- (66 basins) and 
late-century (78 basins). Even at the Hydrologic Unit Code (HUC) regional 
scale HUC2 (Fig. 6b,d,f), three regions will see increases of >25% by mid-
century and two regions will see increases of >50% by late-century.

Geographically, the regions with the greatest relative increase in 
exceedance probabilities are located in the north of the United States, 
where summer temperatures are projected to be close to the opti-
mum for high microcystin concentrations (Fig. 7). For some regions, 
such as the Great Lakes, the exceedance probabilities are already high  
(Fig. 2) based on relatively high TN concentrations. But even for north-
ern regions that currently have relatively low exceedance probabilities  
(Fig. 2), a relative change in exceedance probabilities of up to 50% means 
that those regions are much more likely to experience hazardous micro-
cystin concentrations in the future. Interestingly, even at present the 
relative increase in exceedance probabilities is >10% higher than under 
historical conditions for more than a quarter of basins (Fig. 6a), indicat-
ing that the impact of regional shifts in temperature is already being felt.

Conversely, only one basin is expected to see a relative reduction in 
exceedance probabilities of >25% by the late-century, while less than a 
quarter of basins will experience a reduction of >10% by the mid-century 
and a third by the late-century (Fig. 6d,e,f). These areas coincide with 
regions where temperatures are expected to rise above the range associ-
ated with the highest probability of exceeding microcystin thresholds.

Similar patterns emerge for other microcystin thresholds, that 
is, 1 and 8 μg l−1 (Extended Data Figs. 2 and 3). Overall, the divergent 
responses in the north and south result from the northward migra-
tion of the region with summertime temperatures closest to the 22 °C 
optimum (Fig. 7). However, the divergent response is not symmetric 

and there are more regions experiencing increases than decreases 
(Extended Data Fig. 4). Under increasing temperatures, microcystin 
levels are also expected to reach detectable concentrations more often 
(Extended Data Fig. 5) with average relative increases in occurrence of 
9.5% by the late-century across HUC2 regions.

Given that microcystin occurrence is defined here on the basis of 
the detection limit of 0.1 μg l−1, it is likely that smaller concentrations 
will become even more frequent. What impact an increasingly chronic 
microcystin exposure even under low concentrations will have on 
health and ecosystem functions is not well understood. In a recent 
study, it was shown that chronic exposure with an estimated daily 
intake of even only 0.15–0.27 μg (MC-LReq per day) led to detectable 
microcystin concentrations in human blood sera and was associated 
with signs of renal impairments9. Chronic exposure is especially danger-
ous for people with existing liver disorders such as non-alcoholic fatty 
liver disease8. Microcystin has also been reported to be transferred to 
higher trophic levels through the food chain51, to lead to growth inhibi-
tion of edible plants in bioassays and to be detected on plants grown 
for human consumption after crop spray irrigation52,53.

Compound events54, for example, events of synchronously high 
in-lake TN concentrations together with high-risk temperatures, will 
further increase the likelihood of microcystin extreme concentrations 
in the future (Fig. 5). High concentrations may occur under changing 
land use patterns or from agricultural runoff after weather events 
such as heavy rainfall. Hotter spring days or extended periods of tem-
peratures around 22 °C in autumn may also increase the frequency and 
duration of high-concentration events. Although more data will be 
needed to assess seasonal differences in microcystin occurrence and 
concentration, summer-based monitoring programmes will need to 
extend to the spring and autumn months.

Conversely, preventing excess nutrients from reaching water 
bodies and reducing eutrophication is key to counteracting the effects 
of rising temperatures. Efforts to reduce inland water eutrophication 
over the past decades have focused mainly on phosphorus, due to the 
assumption that atmospheric N2-fixing cyanobacteria will buffer nitro-
gen levels in the water column55. However, N2-fixing is not sufficient 
to offset nitrogen loss due to processes such as denitrification56 and 
microcystin-producing taxa such as the genus Microcystis require exter-
nal sources of nitrogen57 from runoff or atmospheric deposition. In 
some systems, nitrogen loading has been shown to selectively promote 
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range of observed values for those samples where the microcystin concentration 
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the abundance of toxic Microcystis strains, while orthophosphate 
has not58. Therefore, the results presented here add to the increasing 
evidence that an exclusive focus on phosphorus reductions alone will 
not be sufficient to mitigate dangers from nitrogen-rich cyanotoxins26.

Additional complexities and broader 
considerations
The ELISA used here (Methods) represent a congener-independent, 
robust and highly sensitive assessment of total microcystin concen-
trations59,60. Its main advantage relative to methods such as liquid 

chromatography-mass spectrometry is that it quantifies the total 
concentration across a very high fraction (>80%) of microcystin con-
geners60. A loss of microcystins during preparation and storage can 
in principle result in an underestimation of the true microcystin con-
centration61 with ELISA, while microcystin conjugates and byproducts 
could lead to overestimations of the toxicity of a sample62,63. Also, vari-
able cross-reactivity of congeners can lead to either under- or overes-
timations of concentrations63. The uncertainty resulting from these 
factors, however, would be highly unlikely to change the primary con-
clusions of the current study (Methods).
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Future large-scale monitoring using congener-specific approaches 
such as liquid chromatography-mass spectrometry could be used to 
answer additional questions about the impact of warming on specific 
strains and congeners, such as a shift in their diversity and relative 
abundance64. Routine monitoring of all known congeners is almost 
impossible, however, because new microcystin congeners continue 
to be discovered. Low levels of several congeners that individually 
fall under the detection limit could also lead to an underestimation 
of the total microcystin concentration. Therefore, monitoring using 
congener-specific methods could supplement but not replace assess-
ments based on ELISA.

Additional factors such as the local cyanobacterial strain composi-
tion and genetic diversity, grazing by zooplankton, viral lysis or micro-
bial interactions can also influence microcystin concentrations65,66 but 
were not considered here because such data are currently non-existent 
for the United States across large scales. The identified effects of tem-
perature therefore represent the net effect of temperature across vari-
ous biotic and physiological responses. While strain evolution could 
in principle impact the future trends explored here, an earlier study 
found that increased eutrophication and temperature did not favour 
strain evolution towards more toxin-producing strains in one of the 
most important microcystin producers Microcystis aeruginosa67. Future 
work exploring biotic factors could further deepen understanding of 
the processes that control microcystin and bloom dynamics.

In addition, future changes in temperature are also likely to 
affect other drivers included in the model and the future projections 
presented here do not account for correlations among changes to 
those variables (Extended Data Fig. 6). Given that temperature has 
been found to increase cyanobacterial biomass either directly or 
indirectly17,68, increases in temperature may also increase other pre-
dictors in the model, such as Chl-a. As such, microcystin concentra-
tions would be expected to increase even more than presented here, 
making our conclusions a conservative estimate of future impact. 
The long-term coupling of environmental variables, however, may 
impact cyanobacterial taxa differently19,69, which makes future micro-
cystin projection much more complex under climate change and 
highlights the need for more research focusing on the interplay of 
environmental variables.

Lastly, although this study focuses on lakes in the United States, 
microcystin is a global hazard65 and the results shown here indicate 
that microcystin occurrence is expected to increase with rising tem-
peratures. Regions where summertime temperatures are near 22 °C, 
promoting exceedance of microcystin thresholds, will shift poleward 
not just for the United States but globally (Extended Data Fig. 7). Poten-
tial seasonal shifts in periods with elevated microcystin concentrations 
can also be expected. The threat to water quality posed by microcys-
tin will therefore grow globally as warming continues, especially in 
eutrophic systems.

a Present — historic b Present — historic

c Mid-century — historic d Mid-century — historic

e Late-century — historic f Late-century — historic

−25% −10% −5% 0% 5% 10% 25% 50%

Relative change in
exceedance probability

Fig. 6 | Warming will change the exceedance probability of the children’s 
drinking water guideline (0.3 μg l−1), with relative increases exceeding 
50% in some areas. a–f, The relative increase in risk due to warming relative to 
the historic period (1950–1979), averaged across lakes within individual HUC6 

basins (a,c,e) and HUC2 regions (b,d,f), for present (1990–2019) (a,b), projected 
mid-century (2030–2059) (c,d) and projected late-century (2070–2099) (e,f) 
summertime temperatures. All other variables are held constant at their values at 
the time of sampling. White areas represent basins with no sampled lakes.

http://www.nature.com/natwater


Nature Water | Volume 1 | October 2023 | 844–854 850

Article https://doi.org/10.1038/s44221-023-00138-w

Methods
Data
We analysed lakes across the continental United States that were part of 
the EPA National Lake Assessment (NLA) surveys conducted in 200731, 
201270 and 201771 with microcystin concentrations detected by ELISA.

ELISA is an antibody-based analytical method widely applied in 
water treatment for the screening of toxic cyanobacterial metabo-
lites32,33,59,60. ELISA does not target individual microcystin congeners but 
rather measures the total concentration of microcystins (and nodular-
ins) in a sample33,59,60 that share very similar toxicity and structure and 
are thus combined under the general term microcystins here. The ELISA 
used in the NLA surveys is calibrated against the microcystin-LR con-
gener59, which also forms the basis of the WHO drinking water guide-
lines39. No statistically significant difference between concentrations 
could be identified when comparing ELISA to liquid chromatography/
tandem mass spectrometry under various cell lysis techniques33. The 
EPA uses freeze/thaw cycles to lyse cyanobacterial cells and extract 
toxins; as such this method not only quantifies dissolved toxins but 
also microcystin within cells59. ELISA is the recommended method of 
the EPA to quantify total microcystins (and nodularins)59 and as such 
many water monitoring efforts and drinking water supplies use ELISA 
kits to measure microcystins within their systems. Therefore, ELISA 
and the predicted microcystin concentrations derived from those 
measurements are in line with end users.

Lakes included in the NLA were selected by a stratified proba-
bilistic sampling design to be representative of the >50,000 lakes in 
that project. Previous studies have analysed the 2007 and 2012 sur-
veys27,28,34,45, while our study incorporates the 2017 data.

From these data, we selected the environmental variables Chl-a 
(μg l−1), surface water temperature T (°C), TN (μg l−1) and TP (μg l−1), 
DOC (mg l−1), pH, Secchi depth (m), lake depth D (m) and area A (ha) for 
consideration for inclusion in the model. A very detailed description 
of data sampling can be found at EPA and within NLA references31,70,71.

Although cyanobacterial abundance is also measured as part of 
this effort, we used Chl-a as a proxy for biomass because Chl-a is more 

commonly measured and makes the model applicable to a wider range 
of water bodies beyond those examined in this study. Chl-a, TN, TP, 
DOC, A and D were all natural log-transformed. In total, 2,804 individual 
lakes had measurements of all the environmental variables considered 
here with paired microcystin measurements. As some lakes were sam-
pled multiple times, the total number of observations was 3,027. In 
1,092 of those observations microcystin was above the detection limit.

Statistical model
We used GAMLSS implemented via the R package gamlss36,72,73. This is a 
distribution-based approach to nonlinear regression where not only the 
mean but all parameters of the conditional distribution, for example, the 
variance of the response variable, are related to environmental variables. 
In the easiest case, assuming the conditional distribution of the response 
is Gaussian, both the mean and the standard deviation are functions of 
covariates. Further, as all parameters of the distribution are modelled, 
the probability density function can be calculated for any combination 
of covariates. With this information, every quantile or probability to 
cross a chosen response value (microcystin threshold) can be calculated.

There is a detection limit of 0.1 μg l−1 for microcystin in these sur-
veys, such that the observed microcystin concentration (MC) is not 
completely continuous. Because of that, we used a zero-adjusted model 
for M = MC − 0.1 that combines a logistic model (occurrence model) of 
microcystin detection or non-detection, with a continuous model to 
represent microcystin concentrations above the detection limit, that 
is, to model M > 0. For the continuous model, a log-normal distribution 
(LOGNO2) was selected as the optimal conditional distribution for 
M > 0 after extensive testing of >50 distributions currently available 
in GAMLSS74 based on fit and parsimony via the Bayesian information 
criterion75 (BIC). The log-normal distribution has two parameters, μ (the 
median of M) and σ (the standard deviation of log M). The log-normal 
probability density function of M > 0 is defined as:

fM>0(m) =
1

(2π)1/2σm
exp {− 1

2σ2 [ln(m) − ln(μ)]
2} (1)

a Historic b Present

c Mid-century d Late-century

0 5 10 15

Absolute
di�erence
to 22 °C

Fig. 7 | Areas with summertime temperatures associated with the highest 
risk of elevated microcystin concentrations are moving northward. a–d, The 
absolute difference of summertime air temperatures to 22 °C, the approximate 

temperature with the highest risk, for the historic period (1950–1979) (a), present 
(1990–2019) (b), projected mid-century (2030–2059) (c) and projected late-
century (2070–2099) (d).
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where m represents any specific value of the random variable M. It is 
interesting that the log-normal distribution, which has a compounding 
effect between predictor variables (effects combine multiplicatively), 
performed best for microcystin concentrations out of the many distri-
butions available in GAMLSS including, for example, a zero truncated 
t-distribution with identity link that does not lead to a compounding 
effect. This indicates that compounding effects between environmen-
tal variables are likely in predicting microcystin concentrations above 
the detection limit.

M was modelled using a zero-adjusted log-normal distribution, 
with a mixed (discrete-continuous) probability function. Hence, the 
mixed (discrete–continuous) probability function for microcystin 
MC is:

fMC(mc) = {
p0 ifmc = 0.1

(1−p0)
(2π)1/2σ(mc−0.1)

exp {− 1
2σ2

[ln(mc − 0.1) − ln(μ)]2} ifmc > 0.1
(2)

where p0 is the probability that microcystin is below the detection limit 
from the logistic model and where mc represents any specific value of 
the random variable MC.

The selection of environmental covariates used to estimate μ, σ 
of the log-normal model, and p0 of the logistic model was based on 
minimizing the BIC in a stepwise selection process. Here, each environ-
mental variable can be part of the distribution parameter model either 
as a penalized P-spline72 or a linear term, or not selected. BIC was also 
used locally for selecting the amount of smoothing, that is, the effective 
degrees of freedom used for smoothing, in the P-spline. The selection 
of environmental variables for the models was performed using the 
stepGAIC() and stepGAICAll.A() functions, respectively, from the R 
package gamlss72. We also checked for an interaction between TN and 
TP but these did not improve the fit as assessed by the BIC.

The final model (equation (2)) giving fMC (mc) for MC has the fol-
lowing parameters:

ln ( p0
(1−p0)

) = s(ln(TN)) − 0.31 ln(Chl-a) + s(ln(A)) − 0.42 ln(DOC)

−0.03T − 0.45pH + 6.89

ln(μ) = 0.68 ln(TN) + 0.37pH + s(T) + 0.28 ln(Chl-a) + 0.34 ln(D) − 9.81

ln(σ) = 0.08 ln(TN) + 0.06
(3)

The partial effects for ln((1 − p0)/p0), ln(μ) and ln(σ), are displayed in  
Fig. 3. Note that since Fig. 3 shows the partial effects for ln((1 − p0)/p0) =  
−ln(p0/(1 − p0)), the sign in the terms for ln(p0/(1 − p0)) in equation (3) 
is reversed in Fig. 3, for example, −0.3 T in equation (3) becomes 0.3 T 
in Fig. 3.

Model validity was assessed using detrended quantile–quantile 
plots of the normalized quantile residuals76, which show a good fit for 
both the logistic and log-normal model (Extended Data Fig. 8). Concur-
vity between model predictors was not concerning in both models as 
assessed via the R package gamlss.ggplots77 using the function gamlss.
ggplots:::get_concurvity(). Also refitting the models using only linear 
predictors resulted in variance inflation factors never exceeding five, 
indicating no issues of multicollinearity78 for those parameters. The 
partial effects plots, exceedance probability plots and detrended quan-
tile–quantile plots were also created via the R package gamlss.ggplots77.

Once all parameters are estimated from the final model, the prob-
ability of crossing a specified microcystin threshold under given envi-
ronmental conditions can be calculated as one minus the cumulative 
probability up to that threshold. In contrast to studies conducting 
multiple logistic regressions to determine exceedance probabilities, 
this model can thus be applied to any threshold without refitting a new 
model at each threshold.

On the basis of the exceedance probabilities, we can create inter-
vals for the percentage of samples in this study expected to cross a 
chosen threshold. For this, we treated each exceedance probability 
for a sample as a draw from a Bernoulli distribution79 (a biased coin 
flip). We can do this for each sample to simulate whether it exceeds the 
threshold. We then sum the number of samples for which the threshold 
was exceeded and divide by the total number of samples. This gives us 
a simulated percentage of how often samples are expected to exceed 
the threshold under equivalent environmental conditions. We repeated 
this 10,000 times to calculate the 0.5th percentile and 99.5th percentile 
of this distribution and compare it to the observed data.

Spatially averaged detection probabilities and exceedance prob-
abilities for 0.3, 1 and 8 μg l−1 were calculated to find broad-scale pat-
terns across the United States within HUC boundaries at the HUC2 
and HUC6 level, as developed by the US Geological Survey80 (Fig. 2). 
All base maps of this study have been created with the R package sf 81.

Scenarios
We calculated how the risk of exceeding water quality guidelines 
changes under warming temperatures at each lake. To do so, we used 
projections from an ensemble of 15 GCMs participating in CMIP6  
(ref. 37) (Extended Data Table 1) run for SSP 2-4.5 (ref. 38), which rep-
resents a ‘likely’ scenario for future climate regulation strategy given 
current policies. Data from the model projections were bias-corrected 
and spatially downscaled to 0.25° using the bias correction and spatial 
disaggregation82,83 method. For the bias correction process, the refer-
ence air temperature data in the historical period were collected from 
the Global Meteorological Forcing Dataset84.

While the above climate models are predicting air temperature the 
model is based on water surface temperature. However, in the temperate 
zones and on a monthly scale, water surface and air temperature track 
very closely, especially in the range 5–30 °C during summer months85,86.

Under this scenario we investigated how exceedance probabilities 
have changed and will change under the expected average local air 
temperature change in the summer months ( June–September) for the 
present day (1990–2019), for the mid-century (2030–2059) and for the 
late-century (2070–2099) relative to the historical period (1950–1979). 
The relative change in exceedance probability was calculated as the 
ratio of the exceedance probability during each of the three periods 
to the exceeding probability during the historical period. The relative 
changes were again spatially averaged to identify broad-scale patterns 
of shifts in occurrence and exceedance probabilities at the HUC2 and 
HUC6 level. The percentage relative changes in exceedance probability 
(Fig. 6 and Extended Data Figs. 2 and 3) are defined as:

100 (
P(MC > mc)S − P(MC > mc)H

P(MC > mc)H
)% (4)

where S represents one of the scenarios (present, mid-century or late-
century) and H the historic reference.

The change in exceedance probability we report here between 
two scenarios can be seen and interpreted as the change between two 
snapshots that exhibit the average summer temperature of the assessed 
time periods, respectively.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Observations of microcystin concentrations and environmental 
parameters are part of the EPA NLA surveys conducted in 200731, 201270 
and 201771 and are publicly available online at: https://www.epa.gov/
national-aquatic-resource-surveys/data-national-aquatic-resource-
surveys. CMIP6 model output was downloaded from the NASA Earth 
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Exchange Global Daily Downscaled Projections82 and merged with NLA 
data. Source data are provided with this paper.

Code availability
Data analysis was based on the R packages gamlss72 and the add-on 
gamlss.ggplots77. Specific functions for model selection and formulas 
are given in the Methods. The model can be accessed in an online tool 
(https://algal-risk.dge.carnegiescience.edu/) where exceedance prob-
abilities of individually selected thresholds of toxin concentration can 
be calculated under any combination of environmental conditions.
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Extended Data Fig. 1 | Spatial distribution of environmental variables 
selected for inclusion in the model for sampled lakes, averaged to the HUC6 
basin scale. These include (a) TN concentration, (b) dissolved organic carbon 

concentration, (c) pH, (d) chlorophyll a concentration, (e) depth, (f ) area and (g) 
temperature. Panel (h) shows the number of lakes present in each HUC6 basin. 
White areas represent basins with no sampled lakes.
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c: Mid-century — historic d: Mid-century — historic

e: Late-century — historic f: Late-century — historic
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Extended Data Fig. 2 | Temperatures will change the exceedance probability 
of the adult drinking water guideline (1 μg/L). Panels show the relative 
increase in exceedance probabilities due to warming relative to the historic 
period (1950–1979), averaged across lakes within individual HUC6 basins (a, c, e) 

and HUC2 regions (b, d, f), for (a, b) present (1990–2019), (c, d) projected mid-
century (2030–2059) and (e, f) projected late-century (2070–2099) summertime 
temperatures. All other variables are held constant at their values at the time of 
sampling. White areas represent basins with no sampled lakes.
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Extended Data Fig. 3 | Temperatures will change the exceedance probability 
of the recreational water quality criterion (8 μg/L). Panels show the relative 
increase in exceedance probabilities due to warming relative to the historic 
period (1950–1979), averaged across lakes within individual HUC6 basins (a, c, e) 

and HUC2 regions (b, d, f), for (a, b) present (1990–2019), (c, d) projected mid-
century (2030–2059) and (e, f) projected late-century (2070–2099) summertime 
temperatures. All other variables are held constant at their values at the time of 
sampling. White areas represent basins with no sampled lakes.
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Extended Data Fig. 4 | More areas will experience increases than decreases 
in the probability of exceeding the microcystin drinking water guideline 
for children (0.3 μg/L) under projected warming. Frequency distribution of 
percentage relative changes in exceedance probabilities for (a) HUC6 basins 
and (b) HUC2 regions. Panels show the relative increase (positive) or decrease 

(negative) in exceedance probabilities due to warming relative to the historic 
period (1950–1979), averaged across lakes (a) within individual HUC6 basins and 
(b) HUC2 regions, for present (1990–2019), projected mid-century (2030–2059) 
and projected late-century (2070–2099) summertime temperatures. Colours are 
the same as in Fig. 6.
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Extended Data Fig. 5 | Rising temperatures will increase the probability of 
microcystin occurrence. Panels show the relative increase in the probability of 
microcystin occurrence (above the detection limit of 0.1 μg/L) due to warming 
relative to the historic period (1950–1979), averaged across lakes within 
individual HUC6 basins (a, c, e) and HUC2 regions (b, d, f), for (a, b) present 

(1990–2019), (c, d) projected mid-century (2030–2059) and (e, f) projected late-
century (2070–2099) summertime temperatures. All other variables are held 
constant at their sampled values at the time of sampling. White areas represent 
basins with no sampled lakes.
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Extended Data Fig. 6 | Correlations between microcystin predictors. Pearson 
correlation (upper triangle), distribution (diagonal) and linear relationship 
(lower triangle) between environmental parameters included in the model 

measured at sampled lakes, including temperature (°C), log TN (μg/L), log 
chlorophyll a (μg/L), pH, log DOC (mg/L), log area (ha), log depth (m) and log 
microcystin (where microcystin > 0.1 μg/L).
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historic present mid century late century 

Extended Data Fig. 7 | The regions with temperatures with the highest microcystin risk are moving poleward globally. Areas indicating where local summertime 
average air temperatures range from 21 °C to 23 °C for the historic (1950–1979; pink), present (1990–2019; peach), mid-century (2030–2059; green) and late-century 
(2070–2099; blue).
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Extended Data Fig. 8 | Model validation based on detrended quantile–
quantile plots for the logistic and the lognormal model. Points show the 
deviations of the ordered normalized quantile residuals from their expected 
normal quantiles plotted against the expected normal quantiles. The shaded 

area corresponds to an approximate 95% confidence region around the zero line, 
within which the actual residual deviations should fall. The red line corresponds 
to a polynomial fit and should be close to a horizontal line at zero.
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Extended Data Table 1 | List of 15 climate models participating in the Coupled Model Inter‐comparison Project phase 6 
(CMIP6) that were used for projections of future temperatures

The selection of models was based on data availability on the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP682) accessed on September 1st, 2022. For institutes 
that supply multiple models (for example, ACCESS-CM2 vs ACCESS-ESM1-5), we chose the model with an earth system model (ESM) component (for example, we selected ACCESS-ESM1-5).
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used to collect the data. 

Data analysis Data analysis was based on the 'R' packages 'gamlss' (https://cran.r-project.org/web/packages/gamlss/index.html), and the add-on 
'gamlss.ggplots' (https://cran.r-project.org/web/packages/gamlss.ggplots/index.html). Specific functions for model selection and formulas are 
given in the methods section of this study.  
Calculations of exceedance probabilites for any microcystin threshold can also be openly accessed throughout an app explicitly created for 
this study: https://algal-risk.dge.carnegiescience.edu/

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.



2

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data of microcystin concentrations and environmental parameters is part of the Environmental Protection Agency (EPA) National Lake Assessment (NLA) surveys 
conducted in 2007, 2012 and 2017 and publicly available online under: https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-
surveys.  
Data for climate simulations was downloaded from the NASA Earth Exchange Global Daily Downscaled Projections (see: https://doi.org/10.7917/OFSG3345 and 
https://doi.org/10.1038/s41597-022-01393-4 and references in the manuscript) and merged with NLA data.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Data analysis of microcystin risk in the US and changes in risk under global warming.

Research sample Microcystin concentrations paired with environmental conditions at several thousand lakes in the US measured during the National 
Lake Assessment (NLA).

Sampling strategy Survey design of the NLA data is described in:  
https://www.epa.gov/national-aquatic-resource-surveys/what-waters-are-included-national-aquatic-resource-surveys#nla  
and  
https://www.epa.gov/national-aquatic-resource-surveys/national-lakes-assessment-design-documents 
 
Data of climate models can be found under:  
https://doi.org/10.1038/s41597-022-01393-4

Data collection see Data section

Timing and spatial scale Information about spatial scale and timing of data from the NLA can be found at:  
https://www.epa.gov/national-aquatic-resource-surveys/national-lakes-assessment-design-documents

Data exclusions Only data points with complete measurements of environmental predictors and microcystin concentrations were used. Wrong 
entries such as surface temperatures of 273 °C were removed from the data.  

Reproducibility Predictions from our model can be done here: https://algal-risk.dge.carnegiescience.edu/  
All packages and functions used are publicly available (see Code section).

Randomization N/A
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Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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