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Waste biorefining processes face significant challenges related to the variability of feedstocks. The

supply and composition of multiple feedstocks in these processes can be uncertain, making it difficult
to achieve economically feasible and sustainable waste valorization for large-scale production. Here,
we introduce a reinforcement learning-based framework that aims to control these uncertainties and
improve the efficiency of the process. The framework is tested on an anaerobic digestion process and
is found to perform better than traditional control strategies. In the short term, it achieves faster target
tracking with increased precision and accuracy, while in the long term, it shows adaptive and robust
behavior even under additional seasonal supply variability, meeting downstream demand with high

probability. This reinforcement learning-based framework offers a promising and scalable solution to
address uncertainty issues in real-world biorefining processes. If implemented, this framework could
contribute to sustainable waste management practices globally, making waste biorefining processes

more economically viable and environmentally friendly.

Waste has emerged as a significant challenge to both local and global sus-
tainable development. According to projections, annual solid waste gen-
eration is expected to increase by 70% by 2050, reaching 3.4 billion tons per
year'. Unfortunately, a substantial amount of the waste is not properly
managed, resulting in loss of resources and land, greenhouse gas (GHG)
emissions, environmental pollution, and adverse health effects. Currently,
non-sanitary landfills are the primary waste disposal method, accounting for
over 50% of global waste processing’. The uncontrolled waste disposal in
landfills causes the quality degradation of soil due to leachate penetration,
surface runoffs, and particulate matters from harmful chemicals. Landfills
also generate 1.6 billion tons of carbon dioxide (CO2) equivalent GHG
emissions, making them one of the largest anthropogenic sources of GHG
emissions’. Waste incineration, another common waste management
method, emits a large amount of toxic pollutants, including dioxins and
furans, into the atmosphere. To minimize resource loss and mitigate the
negative climate and environmental impact, there has been a growing
interest in harnessing and effectively utilizing waste.

Biorefining processes offer a sustainable solution for effective waste
utilization by converting low-cost biomass such as agricultural and forestry
residues, food waste, animal manure, and organic fraction of municipal solid

waste, into a range of value-added bioproducts, including biochemicals,
biomaterials, and bioenergy’. Biorefineries integrate waste valorization and
decarbonization concepts, reducing the reliance on fossil fuels and limiting
the introduction of additional carbon in the carbon cycle, making them a
promising approach to achieving a circular economy by closing the loop on
waste management, moving towards a zero-waste manufacturing model”.
However, biorefining processes face major challenges associated with
uncertainties that arise from highly variable feedstocks, fluctuation, and
complex process dynamics’. Variations in the composition, quality, avail-
ability, and external environmental factors, such as weather conditions and
market fluctuations, propagate through the process, resulting in significant
uncertainty in production. This can lead to serious consequences such as
unstable operations, suboptimal process performance, and safety concerns.
Traditional control strategies, such as proportional-integral-derivative
(PID) based controllers that are the most widely used controllers in
industry, often rely on linearization of system dynamics, estimation of the
state of the process, and external knowledge of the system, making them
unsuitable for handling a highly non-linear process with large uncertainties
associated with the feedstock and operating conditions”"”. Advanced con-
trol techniques, such as model predictive control’*** are hindered by the
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difficulty of measuring all the intermediate products associated with the
complex reactions, due to the partially observable nature of biorefining
process reactions. Therefore, a control algorithm capable of dealing with
uncertainties that arise from multiple sources in a highly non-linear bior-
efinery process is needed to increase production efficiency while main-
taining stability to ensure optimal production, leading to a resilient market
supply for energy, fuel, and other valuable products from renewable, low-
cost sources like biomass and waste.

Recent developments in reinforcement learning (RL)” technologies
offer new possibilities for dealing with the uncertainties and complex
dynamics of biorefinery processes, particularly for centralized biorefineries
that use various waste feedstocks. RL has already demonstrated tremendous
success in fields like robotics™, biomedical sciences™, and plasma physics™.
RL is a model-free approach to decision-making that avoids explicitly
estimating the complex dynamical model required by state estimation or
prediction-based controllers. This relieves the strict assumptions on models
and uncertainties associated with the aforementioned algorithms. RL is an
end-to-end decision-making approach, which makes it simpler to analyze
and implement than methods that separately estimate the model and select
the optimal decision. In addition, the adaptive feature of RL enables the
control policy to change adaptively in response to environmental changes or
model uncertainties. Several studies have already employed RL in bior-
efinery processes to control specific uncertainty’’™', but these studies fall
short in considering control of processes where multiple uncertainties arise
simultaneously from multiple feed inputs, distinct feed composition, supply
variability, and feed inventory that mirrors actual production situations.

In this study, we developed a integrated framework to address the
challenge of uncertainty control in biorefining processes. The framework
utilizes data-driven techniques, specifically RL, to achieve stable production
despite the uncertainties from various sources both internally and externally
(Fig. 1). The framework focuses on two common production situations: 1)
short-term variable target tracking, and 2) long-term robust control of fixed
production targets with combined inventory control. The framework allows
accurate tracking of defined targets with minimal lagging despite the
complex reaction and process dynamics. Further, the uncertainties in
feedstock availability, storage, and compositions can be handled simulta-
neously, achieving a robust production with respect to the market demand,
and satisfying a customized objective function comprising production tar-
gets and costs.

The proposed data-driven reinforcement learning-based framework
aims to exploit the value of every data point for a more effective design and

integration of the control system. The framework transforms the feedstock
uncertainties and complex biorefining processes into probabilistic models to
achieve accurate and robust control of biogas production under uncer-
tainties, with reduced effort in conducting lab analysis and understanding
the specific reaction mechanism. The effectiveness of our framework was
demonstrated using a widely adopted, yet complex biorefining technology,
anaerobic digestion (AD) as a case study. This study contributes to the
enhancement and stability of more sustainable refinery techniques and
allows for more robust production from waste materials.

Results

Quantifying risks by uncertainty modeling

To evaluate the impact of feedstock uncertainty on biogas production, we
used elemental data to characterize FW, AW, and MSW and identified the
distribution of the key biochemical components such as carbohydrates,
proteins, lipids, and lignin. The use of the elemental compositions of feed-
stocks does not require complicated multi-step procedures found in a direct
biochemical composition analysis. First, a total of 268 data points of ele-
mental compositions were gathered from the literature, with details outlined
in Supplementary Data and Supplementary Note 6. We then made the
assumption, which is considered reasonable, that within each type of waste,
carbon (C), hydrogen (H), oxygen (O), and nitrogen (N) contribute to
carbohydrates, proteins, lipids, and lignin (Supplementary Note 5). An
optimization problem (Section "Feed Composition Analysis") was for-
mulated and solved for each data point with respect to the elemental bal-
ances to estimate the mass fractions of the key biochemical components that
best fit the ultimate analysis data (Fig. 2a). Each data point is assigned a
weight based on its category, following the statistics of waste streams studied
by EPA™. Finally, we employed the weighted kernel density estimation
(KDE) with Gaussian kernels™ to derive the distributions of the key che-
mical components including carbohydrates, lipids, proteins, and lignin in
FW, AW, and MSW.

The Anaerobic Digestion Model No. 1 (ADM]1) is used for the simu-
lation of reactor dynamics™. ADM1 is a widely used mechanistic model for
anaerobic digestion processes applied in the field of environmental engi-
neering and wastewater treatment™. It describes the biological processes
occurring in the digesters, which are used to treat organic waste and produce
biogas. ADM1 considers a network of microbial reactions, that can be
summarized into four stages, i.e., hydrolysis, acidogenesis, acetogenesis, and
methanogenesis, to simulate the conversion of organic matter into biogas™.
The model assumes the reaction to be carried out in a continuous stirred
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Fig. 1 | Overview of the data-driven framework for the anaerobic digestion

process to control biogas production. The framework is designed for the control of
biogas production and storage against the uncertainty associated with composition
distribution from various waste feedstocks and the long-term seasonal variation in

feed supply. The entire process will be modeled as a Markov decision process (MDP),
and subsequently controlled via RL policies. Two control policies are devised for the
control of two scenarios, short-term and long-term, that cover the majority of
situations during production.
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Fig. 2 | Analysis of feedstock composition distribution. a The flowchart shows the
process from collecting the ultimate analysis data of different kinds of waste from
literature to optimization and estimation of the biochemical compositions (proteins,
lipids, and carbohydrates). b Resampled distribution of proteins, lipids, and car-
bohydrates from kernel density estimation model for food waste (FW), agricultural
waste (AW), and municipal solid waste (MSW), with units in mass fraction. The

probability density at a specific location is indicated by the color of the sample.

¢ Probability density distribution of biogas production rate at three different feed
flow rates using FW, AW, and MSW as feedstock respectively. Each run was carried
out in semi-batch mode with feed addition every 1 day lasting 30 days. The simu-
lation was carried out 10° times.

tank reactor with ideal mixing and accounts for various parameters such as
temperature, pH, and inhibition. More details on ADMI is shown in
Supplementary Note 3.

The results in Fig. 2b showed the differences in composition dis-
tribution for the three main biogas production waste sources including
carbohydrates, proteins, and lipids, with a negative correlation between
carbohydrates and proteins and between carbohydrates and lipids in feed-
stocks. The correlations of different biochemical compositions were visua-
lized by projecting the sampled distribution on a two-dimensional plane
(Supplementary Fig. 3).

We found that FW, AW, and MSW have varying biogas potentials due
to the different distribution of carbohydrates, proteins, and lipids, which
leads to different pathways during the digestion process (Supplementary
Note 2 and Supplementary Fig. 1). To quantify this effect, we performed
sensitivity analysis by re-sampling the calculated distributions and inputting
the samples into the AD model at three different feed flowrates without
control. The aggregated results of mean biogas production are shown in
Fig. 2c. The distribution of biogas production for all three sources of waste
displays some bi-modal behavior, with the existence of a second peak for
FW and MSW. FW potentially has the highest biogas production rate due to
its high lipid concentration. We employed the coefficient of variation (CoV)
as a metric to identify the degree of dispersion of the data. CoV is calculated
as the ratio between the standard deviation and the mean of the samples.

The large values of the CoV for all three feed sources (FW: 16%, AW: 20%,
MW: 22%) indicate a significant spread of the biogas production, empha-
sizing the necessity of efficient control algorithms for the AD process under
variable feedstocks. This effort in uncertainty modeling serves as an
important first step for devising the control policy of the AD process.

Anaerobic digestion in a reinforcement learning setting
To design an effective control policy for a complex AD system, it is essential
to have an understanding of both the feed and process characteristics. In
Section "Quantifying risks by uncertainty modeling’, the feedstock dis-
tribution analysis and uncertainty modeling enable us to understand the
input to the AD process. However, the AD process itself also presents several
computational challenges for optimal control, including high process
uncertainties, non-linear process dynamics, and low process state obser-
vability. To address these challenges, we leverage the Markov property,
which assumes that the next state of the system does not depend on the past
history when given the present state. By formulating the problem as a
Markov decision process (MDP), we can use a data-driven probabilistic
model instead of a mechanistic model, which reduces the need for detailed
modeling and parameter estimation. This approach allows us to develop
efficient numerical methods for solving the problem.

A finite-time MDP of horizon T is defined by the tuple
S, A, {Pt}tT: b {Ct}thl)’ where Sis the set of states a system can occupy at any
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time, A is the set of actions to the decision maker, P: Sx A — Ag is the
transition dynamics (where Ag is the probability simplex over S) at time f,
and¢, : SXA — Risthe cost/penalty incurred at time ¢ for a chosen action
atstate s € S. The goal of the decision maker is to find a policy 7(:|s) € Agfor
all states s, which assigns a probability for selecting an action at a state s, that
minimizes the cumulative penalty over the entire horizon, where the
expectation is taken with respect to the randomness from the transition
dynamics and policy (Equ. (1)).

T

min, J(m) := B | Y (s, a)lseir ~ PyCls ) a, ~7Cls) | (1)

t=1

Within the context of AD, one can choose the states as S € Rf to model
the concentration profiles of all reactants within the AD reactor, the actions
as A C Ri for the three controlled feedstock flowrates, the transition
dynamics as P,=P(:|s,, a;) defined by the AD process (with feed inputs
drawn from an approximate distribution over the uncertain feedstock
estimated from Section "Quantifying risks by uncertainty modeling"), and
the costs as ¢, = ¢,(s;,a,) :=|| II(s,) — II(s})ll,, which is proportional to
the MAE, where IT selects a subset of target profiles, e.g., biogas, and sf is
target state.

An added complication arises from the fact that not all concentration
profiles of the AD process can be observed, which implies that certain states
of the MDP cannot be directly observed. To solve this issue, one can utilize a
partially observable MDP (POMDP). At a high level, a POMDP incorpo-
rates a set of beliefs, or probabilities, over the possible states of the system
that the decision-maker perceives. However, since there are over twenty
species that cannot be immediately observed in the reactor, even with dis-
cretization, the state space and belief space become too large. To overcome
this challenge, we identify and exploit critical features as an estimate for the
unobservable state variables. This enables us to leverage the MDP for-
mulation without directly estimating all states. Thus, we can employ RL
algorithms, which are designed to efficiently solve MDPs, to devise control
policies for both short (Section "Variable production control") and long-
term (Section "Robust production control”) AD scenarios.

N

FW

Supply &
Composition Variation

Storage

Fig. 3 | Flow diagram of the simulated centralized biogas production process. The
AD process of interest comprises four categories of units: an AD reactor, three
reservoirs for incoming waste feedstocks of food waste (FW), agricultural waste
(AW), and municipal solid waste (MSW), an RL-enabled control system, as well as
electromechanical devices such as sensors, pumps, and actuators. Starting from the

Variable production control

We first demonstrated the performance of our framework in controlling the
biogas in a centralized AD process (Fig. 3) over a short time period, where
target changes are predefined without the effect of long-term supply var-
iation. This can happen in circumstances when precise tracking of the
production target is needed, e.g., during the process ramping up stage, the
addition or elimination of a feed source, or time periods for demand side
management where production is adjusted responding to fluctuations in
energy market”.

Based on the importance and ease of measurement, the biogas pro-
duction rate is used as the observation space for the MDP, reliving the
necessity of additional sensors for other intermediates in the reactor. We
then formulate the state space of the problem by combining two consecutive
observations of the biogas production rate. Using consecutive observation
inherently incorporates the gradient information into the state, which allows
a better estimation of the actual state of the reactor, at the cost of more
computational effort due to the enlarged state space. The input flow rates of
FW, AW, and MSW are defined as actions. The detailed simulation settings
can be found from Supplementary Note 4. A backward dynamic pro-
gramming (DP) algorithm, trained offline, is used for this finite-horizon
control problem. For comparison, we carry out additional experiments with
a discrete PID controller.

We designed the performance metrics by comparing the actual biogas
production with the target production over a predefined time period.
Accuracy describes if the desired biogas production target is achieved by
calculating the MAE between the actual production and the target. Precision
measures the variance or spread of biogas production by calculating the
CoV of all simulation runs at each time step. Lag identifies the degree of
lagging between the actual production and the target using dynamic time
warping (DTW) loss”** (Supplementary Note 1). To test the framework’s
ability to handle uncertainty, we sampled three feed inputs each from a
distribution and carried out 10* simulations. Our results show that the RL-
based control policy (Fig. 4a), dynamic programming (DP), outperforms a
PID policy (Fig. 4b) in all three performance metrics. Specifically, the RL-
based policy achieved a 48% increase in accuracy, a 22% increase in preci-
sion, and a 28% reduction in lag on average. The distribution of all three
metrics from simulation results (Fig. 4c) favored smaller values with nar-
rower and taller peaks, indicating better and more uniform performance.

Reinforcement Learning
Based Control System

Biogas

3
>

Digestate

Sludge Pump

upstream supply stored in the waste reservoir, the three feedstocks under uncertainty
will be mixed, with their proportion and total volumetric flow rate determined by the
control system and fed into the AD reactor. The process will undergo cycles of
continuous feeding followed by batch reaction with a semi-batch operation
procedure.
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Fig. 4 | Results and performance metrics of variable biogas production controlled
by dynamic programming. a Biogas production controlled by dynamic program-
ming (DP) policy. b Biogas production controlled by proportional-integral-
derivative (PID) policy. a, b Feed composition variation is considered in this sce-
nario, without seasonal variation. Controlled biogas production for 10* simulations.
Black dotted line: production target, red line: mean of the biogas production, orange

CoV (Precision)

DTW Loss (Lag)

shaded area: one standard deviation from the mean, pink lines: 100 sample trajec-
tories of simulation results. ¢ Performance metrics to quantify accuracy using mean
absolute error (MAE), precision using coefficient of variation (CoV) and lag using
dynamic time warping loss (DTW) for DP and PID policies. The shaded areas
indicate the probability density distribution of errors regarding the performance
metrics.

The DP algorithm, which takes advantage of data-driven off-line training,
achieved better performance in all three metrics, making it suitable for
tracking predefined biogas production targets for a short period of time.

Robust production control

To improve the resilience of biogas production over a longer period, a policy
mirror descent (PMD)” based RL algorithm is applied. PMD is a general
class of policy gradient methods to offer state-of-the-art total sample
complexity for RL problems by separately handling the bias and expected
error of the gradient, which allows one to decrease the bias more quickly. A

smaller bias leads to more accurate solutions when the gradient is unknown,
as is the case in non-linear dynamic systems such as the AD process. In
addition to the feed mixing problem stated in Section "Variable production
control", we also consider the inventory control problem for separate storage
tanks of FW, AW, and MSW under the disturbances in feed supply. This
simulates the situation of a centralized co-digestive facility, where the
uncertainties come from the feed composition, and also the upstream
supply due to seasonal variation (Fig. 5a), with details shown in Supple-
mentary Note 4. Considering the routine production of biogas within the
AD facility over a long period of time, we expect to maintain a stable and
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and municipal solid waste (MSW), subject to long-term variation with uniform
random noise. b Biogas production rate. The black dotted line indicates the simu-
lated downstream demand for biogas. ¢ Feed holdup in storage tank for AW. The
black dotted line indicates the max allowed holdup. Enlarged figures are shown in
Supplementary Fig. 2

sufficient biogas production rate at a relatively steady state, subject to the
downstream consumer demand. We formulated a cost function (Equ. (2))
with four terms representing the performance of the RL algorithms. The first
term applies a mild penalty in mean absolute error (MAE) if the biogas
production (y*) is higher than the defined target (y'). The second terms

applies a stronger penalty in MSE if the biogas production (y~) is not
meeting the required target, which increases the biogas production
robustness. The third term represents the operating cost which is assumed to
be proportional to the process throughput denoted by the total flowrate
variable (Fr). The fourth term represents cost due to storage overflow. It
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applies a penalty for the wasted feed Ax when the max storage volume of the
tank is exceeded.

cost = wo(yt — ¥y ) +w, |y =y~ ||§ + wyFr + wyAx. ?)

On average, the PMD-based control scheme achieves a demand satisfaction
rate of more than 99%, with a mean biogas production rate generally more
than one standard deviation above the target (Fig. 5b) and a reduced CoV of
10%. At the same time, the storage for the feed is maintained at a level where
overflow seldom happens. Figure 5¢ shows the storage holdup for FW, AW,
and MSW. The storage overflow for all three tanks is almost 0 on average.
This finding demonstrates that the policy is robust and can minimize the
probability of satisfying demand under large feed uncertainties while
reducing the chance of storage overflow.

Discussion

Connection with real-world applications

Our framework can be applied to real-world co-digestion facilities with
various waste feedstocks. The employment of the RL-based framework in
real-world practice requires two crucial sets of information. First, we should
know the local waste feedstock composition distribution and their seasonal
trends of supply. Second, we need to have the estimation of parameters for
the ADM1 model.

The local waste composition distribution plays a crucial role in training
the AD process and would change for different regions. Our framework
provides an effective approach to estimating this feedstock distribution
through an analysis of the historical waste feedstock data specific to the
region. To streamline this calculation, we employ the optimization and KDE
techniques described in Sections "Feed composition analysis" and "Dis-
tribution analysis". In situations where data is insufficient, we resort to a
baseline feedstock model outlined in Section "Quantifying risks by uncer-
tainty modeling”, which is derived from literature data and distribution
patterns. In this context, we utilize a weighted KDE approach, assigning
greater weights to local real-world data and lesser weights to the baseline
literature model.

The subsequent step to employ our framework in real-world practice
involves parameter estimation for the ADM1 model. It is noteworthy that
RL can be trained purely using operational data (state, action, disturbance,
and action-value pairs) without the need for a mechanistic model. Fitting the
ADMI model for training can be seen as a method for augmenting data with
physics-informed insights when a substantial amount of data is unavailable.
While ADM1 has demonstrated its effectiveness across various processes, it
may overlook certain crucial factors like phosphate, sulfur, heavy metals,
microbial activity, and feedstock density’””. When applying ADM1 to a
specific process or region, if these additional complexities are found to be
significant, one should consider using ADM1 with modifications to address
these factors before parameter estimation. In cases where no such obser-
vations are found, direct parameter estimation can be employed. Model
modification with parameter estimation proves to be effective across
numerous processes”. For the practical application of ADM], historical
digestion data can be used to estimate the model parameters in real-time
practice.

During the execution stage, we integrate RL using the ADM1 model,
feedstock composition distribution, and feedstock seasonal trend as a
simulator. The optimal policy resulting from training can subsequently be
applied to real-world production processes to enhance stability under var-
ious uncertainties such as feedstock compositions and seasonal supply
trends. The biogas production rates at predefined time intervals will be
recorded as observations. These observations will be fed into the RL optimal
policy function, which generates recommendations for actions that can be
executed.

Analysis and future perspectives
We have introduced a data-driven framework for achieving the control of
biorefining processes with multiple uncertainties to enhance production

resilience. Using a centralized anaerobic co-digestion process as an example,
we have developed a framework consisting both short-term and long-term
control strategies to address several common situations that could arise
during real-world biorefining or waste valorization processes. In this sec-
tion, we present the analysis and future perspectives of our data-driven
framework.

With recent technological advancements in data science, we aim to
investigate the use of data for controlling sustainable chemical processes
with high uncertainty. In biorefinery processes, especially those utilizing
various sources of waste for feed supply, knowledge of the biochemical
compositions of waste feedstocks is crucial for the process control and
optimization, as the process dynamics are closely related to the reactant
components™. For the anaerobic digestion process, the carbohydrate, lipid,
and protein components in the waste feedstocks determine the process
dynamics and biogas generation rate. However, this information is rarely
available in literature and waste is often characterized only in the form of
elemental analysis, H, C, O, and N compositions®. Therefore, we propose a
solution that uses optimization techniques to establish the relationship
between the biochemical and elemental compositions, followed by machine
learning techniques to identify the probabilistic model of the feed bio-
chemical compositions. This data-centric method allows for the estimation
and distribution of the complex feedstocks without time-consuming lab
analysis in a real-world waste refining and valorization process. This analysis
is crucial for designing process control schemes under feedstock variability
and for advancing biorefineries under these conditions. Without extensive
system controls, waste utilization and biorefining, which have high feed
variability and system uncertainty”', cannot compete with non-renewable
resource production, which has low feed variability and high process
stability™.

To resolve this issue, we employed data-driven RL algorithms to
improve the process resilience in a model-free manner, rather than tradi-
tional control schemes such as PID or expert systems that rely heavily on the
accuracy of the model and knowledge of the process. Specifically, DP and
PMD are applied for the control of the AD process. The potential of these
algorithms is not limited to the cases considered in this study, although the
existence of a process model is assumed for simulation purposes. For an
existing real-world process, the historical operational data such as feed
supply, feed composition, reactor sensor signals and production rate can be
effectively used for the construction of a transition model and the state-
action-value function of the RL algorithms for training or pre-training. This
creates an alternative pathway for understanding the complex physical
reaction process with a probabilistic model, handling complex interactions
and lags associated with process variables such as the concentration profiles
within the reaction system.

Moreover, our framework utilizes a policy gradient algorithm, PMD,
which employs an online (or model-free) and on-policy scheme with a
theoretical justification for its efficiency™. This enables adaptive control due
to unforeseen changes in process dynamics, operations, reactor environ-
ment, or objective functions (costs, production, environmental impacts etc.)
for biorefining processes. As mentioned in Section "Robust production
control’, the RL algorithm is usually applied to a process with a fixed target
and mechanics. However, the online and on-policy scheme allows the
control policy to adaptively change with respect to the variability such as
updates in long-term biogas production targets and changes in seasonal
temperature, further increasing the resilience of the process. We demon-
strated a case study of changing objective function in Supplementary Fig. 4,
showing that the new target can be met in a relatively fast manner without
re-training the algorithm. The adaptive behavior is controllable by adding a
regularization term into the objective function, allowing for regularization of
the deviation from the initial control policy at a cost of tuning effort.

Furthermore, the framework has the potential to increase the applic-
ability of a limited data case. Recent advancements in transfer learning and
robust learning bring new possibilities for the efficient reuse of the trained
models and algorithms in limited data conditions. We have used KDE on
the literature data and EPA statistics in the U.S. for feed composition study,
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formulating a generic or baseline model. The true distribution of feedstock
composition differs depending on geolocation, seasons, and feedstock
sources. However, we can still utilize the baseline model to reduce the
amount of data needed for training at another biogas plant by applying
weightings to the samples. Similarly for RL, various transfer learning tech-
niques with modification or mapping of policy, action-value function, and
reward"™™** can be carried out to reduce the training effort on other AD
processes. Applying robust learning techniques** can increase the resi-
lience of the RL policies in new environments. The potential of transfer
learning and robust learning largely increase the applicability of this fra-
mework in real-world processes.

Method

Feed composition analysis

We have collected initial data to build a probability distribution that accu-
rately represents the heterogeneity of the feedstock data. In particular, we
have focused on the ultimate analysis data, which includes elemental
composition (C, H, O, and N) sourced from different categories such as
municipal solid waste (e.g., sanitary textiles, office papers), food waste (e.g.,
coffee grounds, apple peels), and agricultural waste (e.g., rice husk, straw,
manure). By utilizing this preliminary data, we were able to determine the
corresponding biochemical compositions (protein, lipid, carbohydrate, and
lignin) from the data. To estimate the biochemical composition quickly and
accurately, we formulated an optimization problem using mass balance
relationships.

Within each waste type, we carried out the mass balance calculations
on the primary elements C, H, O, and N, as shown in Equ. (3), we obtained
the composition of total C, H, O, and N from the ultimate analysis of
literature values. The variable x; represents the composition of element i (i.e.,
sugar, lipids, proteins, and lignin) within the waste. To ensure that the
composition of all substances is greater or equal to zero, we added additional
bounds.

suga.rcsuga.r + Xlipids C]ipids + xprotemscprotems + 'xligninclignin = Ctotal

sugarHsugar + xlipidsHlipids + xproteins Hproteins + xlignin Hlignin = Htotal
O

sugar sugar + xhplds thnds + xprotems proteins + xhgnm Ohgnm - Ototal

(3)
= Nl

o
xsuga.rNsugar + xhpldSNllpldS + xprotemszroteins + xlignianignin
sugar + xlipids + xproteins + xlignm 1

X sugar Xlipids » Xproteins » xlignin 20

The linear system has four variables, five equality constraints, and four non-
negativity constraints on variables, making it impossible to solve directly
(Equ. (4)). Therefore, we reformulated the problem into a constrained least-
square problem, with the objective of minimizing the residual.

1
min - || Ax — b3
x 2

2 %=1 @

x;20

Vi € {sugar, lipids, proteins, lignin}

Distribution analysis

We employed kernel density estimation (KDE) with Gaussian kernel to
identify the probability distribution of proteins, lipids, and sugar con-
centration for each type of waste (i.e., MSW, FW, AW). By using KDE for
data analysis, we were able to create a model that better mirrors the dis-
tribution of raw data without the need to assume independent and identi-
cally distributed variables for uni-variate distribution fitting.

A reinforcement learning approach to solve the MDP

The goal is to obtain a policy 7 that approximately solves problem (1), ie.,
J(7r) — min J(7) < e for some accuracy tolerance € > 0. One approach is to
use backward induction (or backward dynamic programming). We suc-
cessively solve for the following value function from ¢ = Tdown to ¢t = 1, and
u},, = 0 is the placeholder terminal reward (Equ. (5)).

uy(s)) = max{r, (s, @) + B, [, (s0)] | )

If the state and action spaces are not too large and the expectation can be
computed exactly, such as in a finite support of uncertainty with known
probabilities, the problem can be solved efficiently and exactly. However,
when controlling the AD process, the true distribution of the transition
dynamics may not be known, making RL techniques necessary to solve an
MDP. In this study, we use an optimization-based approach that combines
PMD with a conditional temporal difference learning method™"". These
methods offer start-of-the-art total sampling complexity and ensure the
gradient estimation error bias is small, resulting in a more efficient
algorithm.

The PMD algorithm is conceptually simple. Starting with an arbi-
trary initial policy m, and iteration counter k =0, PMD finds the next
policy 7y 1(-|s) that solves the minimization problem (Equ. (6)).

min

pCls)ea {'7"[<Q"k(s’ ), pC19) + phP(s) + 7,.D7 ()] + Dﬁk(s)} Vse$
-|s)e 1Al

(6)

Then we increment k and repeat the update. Here, Q,(s, a) is called the
Q-function that is defined as the expected cost when we start the system at
state s € S with action a € A and continue running under policy 7. Since the
Q-function is not known in advance, it can be estimated either by Monte
Carlo simulation via independent trajectories or a stochastic iterative
method such as temporal difference (TD) learning®. In our simulation, we
utilized a recently developed conditional TD learning that extends TD
learning by reducing the bias quickly”. The function /*(s) is a general convex
regularization term with respect to a policy p at state s that can model
constraints or enforce some sparsity in the policy. The distance measures D,
is the Bregman divergence between two policies p and 7, and the constants
{e 7o u} correspond to the step size, perturbation term, and strong
convexity term, respectively. The incorporation of a perturbation term helps
accelerate the convergence of the algorithm. Since the minimization
problem (Equ. (6)) is strongly convex, there exists a unique solution, and it is
known in closed form when the Bregman divergence is properly chosen.
One such distance is the Kullback-Leibler divergence, or KL-divergence,
defined in Equ. (7).

n(als)

DL(s) =) n(als)log——= 7l @)

acA
Suppose the initial policy 7, is chosen as uniformly random over all actions,
ie, my(als) = 1/]A| for all a € A and s € S. Then choosing the KL-divergence
as the Bregman divergence D}, and the convex regularization term #” as zero,
the next policy 7y, can be analytically computed from Equ. (8).

®)

- (als) e {log(”k) - rlenk(sv a)}

k+1 Xp HeTe + 1
where the notation o« means “proportional to” so that 7 1(:|s) is a prob-
ability distribution over the actions A. Intuitively, the update above implies
that if the Q-function at state s and action a has a large positive value, then
the likelihood of selecting action a at state s in the new policy 7 should be
decreased. Conversely, if Q,, (s, @) has a small or a large negative value, we
should increase the likelihood of selecting that action.
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Statistics and reproducibility

Simulations lasting 30 days were carried out 10° times for biogas production
sensitivity analysis. Simulations lasting 20 days were carried out 10* times for
short-term production control. Simulations lasting 20 days were carried out
10° times for long-term production and inventory control. Probability
distribution, mean absolute error, coefficient of variance, and dynamic time
warping loss were employed for statistical analyses of the results.

Data availability
The feedstock data supporting the findings of this study are available within
the supplementary Data file.

Code availability

The code for the reinforcement learning algorithms used in this work is
available on GitHub at https://github.com/TongSustainabilityGroup/ADRL.
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