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Time-series forecasting through recurrent topology
Taylor Chomiak 1,2✉ & Bin Hu1

Time-series forecasting is a practical goal in many areas of science and engineering. Common

approaches for forecasting future events often rely on highly parameterized or black-box

models. However, these are associated with a variety of drawbacks including critical model

assumptions, uncertainties in their estimated input hyperparameters, and computational cost.

All of these can limit model selection and performance. Here, we introduce a learning

algorithm that avoids these drawbacks. A variety of data types including chaotic systems,

macroeconomic data, wearable sensor recordings, and population dynamics are used to show

that Forecasting through Recurrent Topology (FReT) can generate multi-step-ahead forecasts

of unseen data. With no free parameters or even a need for computationally costly hyper-

parameter optimization procedures in high-dimensional parameter space, the simplicity of

FReT offers an attractive alternative to complex models where increased model complexity

may limit interpretability/explainability and impose unnecessary system-level computational

load and power consumption constraints.
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Predicting time-series data has numerous practical applica-
tions in many areas of science and engineering as well as for
informing decision-making and policy1–8. Both the com-

plex and evolving dynamic nature of time-series data make
forecasting it among one of the most challenging tasks in machine
learning9. Being able to decode time-evolving dependencies
between data observations in a time-series is critical for inter-
preting a system’s underling dynamics and for forecasting future
dynamic changes10,11.

Unlike classical memoryless Markovian processes that assume that
an unknown future event depends only on the present state12,
dynamical systems may retain long-lived memory traces for past
system behaviour with respect to its current state13. As detecting
these traces is particularly challenging for nonlinear systems, we tend
to look to increasingly more complex solutions (as a general
phenomenon14) or even black-box models to decode this type of
embedded feature9,13,15,16. However, whether increasing model
complexity actually increases forecasting performance has been
challenged15.Moreover, increasing complexity brings with it a variety
of drawbacks including various model assumptions, hypothesized
parametric equations, and/or vulnerability to overfitting6,15–22. There
are also often numerous hyperparameters/parameters that require
optimization and tuning in high-dimensional parameter space which
can have an impact on both a model’s carbon footprint and the cost
of machine learning projects6,15–23. Complex models have also cre-
ated another problem; a need to create methods of interpreting/
explaining these complex models rather than creating methods that
are interpretable/explainable in the first place24. In other words, in
addition to the interpretable/explainable concerns associated with
complex models24, there are multiple elements of these models that
need to be carefully considered which can limit model selection and
performance.

Here, a versatile algorithm for forecasting future dynamic
events is introduced that overcomes these drawbacks. Unlike
many other algorithms, Forecasting through Recurrent Topology
(FReT) has no free parameters, hyperparameter tuning, or critical
model assumptions. It effectively reduces to a straightforward
maximization problem with no need for computationally costly
optimization and tuning that are required by parameterized
models. FReT is based on learning patterns in local topological
recurrences embedded in a signal that can be used to generate
predictions of a system’s upcoming time-evolution.

Results
Proof-of-concept. FReT works by first constructing a distance
matrix based on an input time-series (Fig. 1a). The local topology, in
the form of a flattened two-dimensional (2-D) matrix, is extracted
from the distance matrix, which is then reduced to a one-
dimensional (1-D) weight vector that differentially weights the
importance of each part of the input data (Fig. 1a, also see Methods).
Each point along the 2-D matrix diagonal represents a point in the
signal sequence, and each point gets some context information from
every other point in the sequence to capture both long-range and
high-level patterns along its associated row vector. The last point in
the 2-D matrix diagonal and its associated row vector represent an
index of the system’s current state, with all other row vectors
representing prior states (Fig. 1b and d). The task is to find the prior
state that most closely matches the current state. When formalized in
this way, decoding local recurrent topological patterning effectively
reduces to a simple maximization problem where a set of topological
archetype(s) can be revealed. Once identified, these archetype(s) can
be used to create an embodied model of the system’s expected future
behaviour, illustrated here with simple sine wave data (Fig. 1c) and a
well-known book excerpt: Dr. Seuss’; Do you like green eggs and

ham I do not like them Sam I am I do not like green eggs and ham.
Here, text data corresponding to the integers 1-26 are used to code
the letters a to z (Fig. 1e).

To test whether FReT may represent a method for forecasting
upcoming dynamics, it was important to evaluate FReT on more
challenging tasks. For this, we first turn to complex dynamic systems
as chaotic or complex spatiotemporal behaviours are considered
particularly challenging to predict future events16. Here, the Rössler
attractor system was evaluated as it is often used as a benchmark for
testing techniques related to nonlinear time-series analysis25 (Fig. 2a).
Each signal from this multidimensional attractor was decoded, with
the forecasted portion being withheld for testing as the importance of
forecasting unseen data cannot be overstated16. As shown in Fig. 2b,
there was good correspondence between the algorithm’s predicted
trajectory and the unseen data, including topological equivalency of
the multidimensional signal (Fig. 2c).

Chaotic systems also exhibit patterns of emergent behaviours,
i.e., collective patterns and structures which are thought to be
unpredictable from the individual components11. Thus, whether a
single decoded topological archetype could infer unknown future
events in unseen dimensions was also tested. For this, another
common attractor system was used. Here, only the x-component
of the Lorenz attractor system was used to search for a single
x-dimension archetype (max(Sim)) which was then used for
predicting future events in all x, y, and z dimensions (Fig. 2d, e).
Indeed, it was possible to infer the system’s expected behaviour
across all dimensions from decoding the x-dimension component
(Fig. 2e, see Supplementary Fig. 1 for Rössler system). This cross-
dimensional approach may also help identify similar forecasts
with convergent trajectories (Supplementary Fig. 2). For these
multi-step-ahead forecasts, the normalized root-mean-square-
error was on the order of magnitude of 10−2, akin to optimized
next-generation reservoir computing (Fig. 2e)16. We can also see
the characteristic variability in prediction accuracy with increas-
ing forecasting trajectory length25 (Fig. 2e).

To illustrate the efficacy of FReT relative to parameterized
models, the multidimensional embedded version of the Mackey-
Glass time-series was used next. Mackey-Glass time-series data
(Fig. 3a) has real-world relevance as it was initially developed to
model physiological control systems in human disease26,27. Here,
forecasts of unseen test data (Fig. 3b) with commonly used
forecasting models of increasing model parameterization were
compared: FReT, the self-exciting-threshold nonlinear autore-
gressive (SETAR) model, an artificial neural network (NNET),
and a deep-NNET (D-NNET). SETAR, NNET, and D-NNET
hyperparameter optimization and forecast model selection for
these data are based on a grid search across 20 embedding
dimensions and 15 threshold delays (SETAR) or 15 hidden units
(NNET), and 3 layers deep for D-NNET. Variable forecast
horizons were also considered, and the root-mean-square-error
(RMSE) associated with each model forecast are shown in
Table 1. There we can see that a multi-step-ahead FReT forecast
was able to outperform these other models for all forecast
horizons (Table 1). In fact, despite its simplicity, FReT was also
comparable or better than several complex models in a recent
study forecasting Mackey-Glass time-series even with a greater
forecasting horizon (e.g., FReT 150 step-ahead RMSE= 0.0171
with comparable data normalization)28.

In this section we introduced FReT, an algorithm based on
decoding recurrent patterns in a series’ local topology that may offer
an effective approach to forecast time-evolving dependencies
between data observations in a time-series. To further showcase
the versatility of FReT and move beyond idealized systems, several
different types of real-world data were tested next that cover different
domains and reflect various spatiotemporal evolution patterns.
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Macroeconomic data. The initial set of real-world data that were
tested consisted of two well-known and easily accessible macro-
economic datasets available in R. The first dataset represents the
monthly U.S. and Canadian dollar exchange rate from 1973-1999
(Fig. 4a, b), while the second dataset reflects the monthly U.S.

unemployment rate from 1948-2004 (Fig. 4d, e)18,29,30. The last ten
months in each dataset were withheld for testing (Fig. 4b and e),
and the rest used for training (Fig. 4a and d). To provide additional
evidence that FReT can decode important information regarding
unseen future events, SETAR, NNET, and D-NNETmodel data are

Fig. 1 Basic premise of the FReT algorithm. a Schematic of the key aspects of the Forecasting through Recurrent Topology (FReT) algorithm. A distance
matrix (D) is first generated based on an input time-series. Local topology (T’) in the form of a flattened 2-D matrix is then extracted from D (Eqs. 2–3),
which is reduced to a 1-D weight vector (Sim) by evaluating x

*

m against all x
*

i (e.g., i, ii, iii, iv) using Eq. 5. Topological archetype detection ( s
*

i) effectively
reduces to a simple maximization problem where a set of topological archetypes can be identified from all prior states ( x

*

i) that are similar to the system’s
current state ( x

*

m) (Eq. 6). b Embedded patterns in a parametric curve’s (sine wave) surface topology. Different colours signify different local topological
neighbourhoods which are coded as integer values 1–6. c Once prior states are identified (i.e., archetypes), they can be used to generate an embodied
model of unseen future events (e.g., 30-point forecast plotted in red, while the observed data is plotted in black). d Identification of encoded events using a
well-known Dr. Seuss book excerpt. e Using a single topological archetype, the predicted (red) letters for this book excerpt are shown.

Fig. 2 Local topological recurrences and chaotic systems. a 3-dimensions of the Rössler attractor system used for archetype identification. b Forecasted
trajectory for each dimension on unseen data (black: observed ground truth, red: forecast). c Multidimensional trajectory of the 50-point Forecasting
through Recurrent Topology (FReT) forecast of the unseen test data. d The x-dimension of the Lorenz attractor system used for archetype identification.
e Predicting future events in all x, y, and z dimensions from a single x-dimension archetype across several Lyapunov times. The average normalized root-
mean-square-error over approximately one Lyapunov time was close to 11 × 10−3, approaching optimized next-generation reservoir computing
performance (≈ 2-17 × 10−3). Panel e, left to right: increasing forecasting inaccuracy with increasing Lyapunov times of the 100-point forecast.
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shown for comparison. While several models performed reason-
ably well on these data (Fig. 4b and e), FReT was able to reveal some
subtle system behaviours regarding the future unseen events
(Fig. 4c and f).

Gait kinematics. Given that sensor-aided forecasting of gait
kinematic trajectories can improve assistive ambulatory device
functionality and user safety1,31–39, we next evaluated whether
FReT could be used to forecast gait kinematics through the use of
wearable motion sensor data. Here, using a single wearable sensor
located on the thigh40 (Fig. 5a), collected gait data were analyzed.
Applying a window of <2 s for input training data (50 data
points), FReT was able to outperform SETAR, NNET, and
D-NNET in forecasting just over 400 ms of unseen test data even
when these models were individually optimized to each indivi-
dual’s gait (Fig. 5b, c and Supplementary Fig. 3). Moreover, the
accuracy of FReT was also comparable or better than recently and
independently developed neural network-based models forecast-
ing gait kinematics at half the time horizon (i.e., 200 ms), all of
which report average RMSE values based on z-score normalized
gait-cycle data using wearable sensor data1,2.

Computational Efficiency. Although the general effectiveness of
complex parameterized models in the prediction of time-series is
well-established, there are also often numerous hyperparameters
that require optimization and tuning that can limit computational
efficiency. To illustrate, estimates of the average computational
time and memory usage associated with each of the models used
here are shown in Fig. 6. We can see that while on average there is
limited advantage in terms of memory usage, FReT does offer a
distinct advantage in terms of execution time. This is not sur-
prising given there is no need for hyperparameter optimization
with FReT. This represents an important difference between
FReT and these other models.

Population Dynamics. Finally, the Canadian lynx dataset is a
well-known dataset that has long been associated with time-series
analysis4,18. It has been recently and independently benchmarked
using a variety of forecasting techniques including neural
network-based models41. The dataset consists of the annual
Canadian lynx trapped in the Mackenzie River district of North-
West Canada for the period 1821-1934 that reflect fluctuations in
the size of the lynx population4,18. As shown in Fig. 7a, the most
striking feature of the plot is the presence of persistent oscillations
with a period of about ten years. However, there are substantial
irregularities in amplitude, which although familiar to biologists,
shows no systematic trend4. Using similar data normalization and
forecast horizon, a single multi-step-ahead forecast (Fig. 7b) was
able to outperform these independently benchmarked models
(Fig. 7c and Supplementary Table 1). In fact, the RMSE of FReT
was almost half that of the best-performing models (Fig. 7c).

Discussion
Forecasting time-series data has often relied on highly para-
meterized or black-box models that bring with them a variety of
drawbacks. The performance of these models highly depends on
their architecture and chosen hyperparameters28. Appropriate
design of these models is, therefore, critical. Even with the
appropriate design, however, we are not guaranteed better
performance15,20. In fact, despite its simplicity, the ability of FReT
to make comparable or even better forecast predictions than
parameterized models further highlights the misconception that
more complex models are more accurate, and thus complicated
black-box models are necessary for top predictive performance24.

It has traditionally been thought that techniques that exhibit
top performance are difficult to explain/visualize. Neural net-
works, for instance, can have layered architectures that effectively
model complex data features but are hard to explain using formal
logic42. On the other hand, linear methods are easy to explain

Fig. 3 Increasing model parameterization. a Mackey-Glass time-series
training data. b 150-point forecasts of unseen test data with models of
increasing parameterization: FReT (red), SETAR (grey), NNET (yellow), and
D-NNET (blue). Unseen observed test data shown in black. FReT forecast
based on an identified archetype (max(Sim)) from each dimension of the
Mackey-Glass time-series (cross-dimensional approach). FReT, Forecasting
through Recurrent Topology; SETAR, Self-Exciting-Threshold Nonlinear
Autoregressive Model; Artificial Neural Network (NNET); Deep-NNET (D-
NNET).

Table 1 Comparison of root-mean-square-error between
models and increasing forecast horizon for the Mackey-
Glass dataset.

Model 50 Steps-
aheada

100 Steps-
aheadb

150 Steps-
aheadc

SETAR Naïve 0.0082 0.0521 0.0652
SETAR Bootstrap 0.0097 0.0575 0.0708
SETAR Block-Boot 0.0093 0.0553 0.0729
SETAR Monte-
Carlo

0.0090 0.0513 0.0759

NNET 0.0099 0.0407 0.1048
D-NNET 0.0115 0.0158 0.0472
FReT 0.0054 0.0129 0.0150

FReT, Forecasting through Recurrent Topology; SETAR, Self-Exciting-Threshold Nonlinear
Autoregressive Model; Artificial Neural Network (NNET); Deep-NNET (D-NNET). For the
SETAR models, different forecasting methods were used for testing including Naïve, Bootstrap
resampling, Block-bootstrap resampling, and Monte-Carlo resampling. Grid search across 20
embedding dimensions and 15 threshold delays (SETAR) or 15 hidden units (NNET), and 3
layers deep for D-NNET.
aModel hyperparameters for 50-steps-ahead: SETAR mL= 16, mH= 16, thDelay= 14; NNET
architecture 17-9-1; D-NNET architecture 7-12-9-4-1.
bModel hyperparameters for 100-steps-ahead: SETAR mL= 17, mH= 16, thDelay= 14; NNET
architecture 18-8-1; D-NNET architecture 7-14-14-3-1.
cModel hyperparameters for 150-steps-ahead: SETAR mL= 15, mH= 16, thDelay= 14; NNET
architecture 18-8-1; D-NNET architecture 7-9-13-3-1.

ARTICLE COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00142-8

4 COMMUNICATIONS ENGINEERING |             (2024) 3:9 | https://doi.org/10.1038/s44172-023-00142-8 | www.nature.com/commseng

www.nature.com/commseng


because they can be described using linear equations. However,
data in the real world are often nonlinear, so linear methods often
do not perform as well42,43. Consequently, there has been a surge
of interest in recent years in studying how complex models work,
and how to provide formal guarantees for these models and their
predictions19,42.

It has been proposed that models should exhibit four key
elements. First, they should be Explainable: The inner workings of
produced predictive models should be interpretable, and the user
should be able to query the rationale behind the predictions.
Second, they should be Verifiable: The compliance of the pro-
duced models with respect to user specifications should be for-
mally verifiable. Third, they should be Interactable: Users should
be able to guide the learning phase of predictive models so that
the models conform with given specifications. Finally, the models
should also be Efficient: Models should only consume reasonable
resources to complete learning and prediction tasks42. All four of
these elements depend on model complexity. That is, with
increasing model complexity, efficiency and explainability tend to
decrease, while the need for verifiability and interactability tend to
increase. FReT offers a simple approach for time-series fore-
casting that lacks model complexity, avoiding critical user spe-
cifications and a real need for verifiability and interactability.
Users are also able to both visualize and query the rationale
behind the predictions (e.g., Supplementary Movie 1), and the
lack of optimization and tuning procedures for specifying
hyperparameters in high-dimensional parameter space can
improve computational efficiency. Thus, the development of
algorithms such as FReT that do not require optimization and
tuning procedures represent an important step towards prior-
itizing computationally efficient algorithms21,22.

FReT also has a unique property in that the identification of
topological archetypes may also be used for cross-validation
across multidimensional systems. For example, when individual

archetypes converge on a similar forecasted trajectory across
dimensions (i.e., the greater number of archetypes from different
dimensions that forecast similar events), we can be more con-
fident that those events are likely to occur. This feature may be
particularly advantageous when model output is highly sensitive
to the chosen input hyperparameters, or under more practical
situations when we truly do not know the ground truth values.
That is because it would be difficult to trust the predictions of
these models without testing how much they depend on their
estimated input hyperparameters.

It is important to note that FReT forecasts are based on the
original data. Therefore, forecasts are related to the original scale.
This eliminates any potential transformation bias when con-
verting back to the original scale in situations when transfor-
mations are needed for model fitting44. The scaling/normalizing
of data in this study was only done to compare to previous data.
A limitation of this approach, on the other hand, is its depen-
dence on recurring patterns. The requirement that the system
must have experienced the forecasted state (or a closely
approximated state) at some prior point in time may therefore
require longer duration temporal sequences for more accurate
forecasting. This may be particularly relevant for more complex
signals. Nevertheless, common ground between many different
types of time-series data resides in their shared property of
embedded patterns45.

Our data indicate that FReT can provide accurate forecasts
while offering a distinct computational advantage compared to
highly parameterized models such as artificial neural networks.
FReT is also able to do this while avoiding the drawbacks asso-
ciated with artificial neural networks including vulnerability to
overfitting, random matrix initializations, and the need for opti-
mization and tuning techniques. In fact, application of learning
through the proposed FReT framework may offer a simple
approach for continuous model updating capabilities.

Fig. 4 Monthly CAN/U.S. dollar exchange rate and U.S. unemployment rate time-series data. a Monthly U.S.-Canada dollar exchange rate from 1973 to
1999. b The unseen test data (black) and forecasted exchange rate data for March to December (1999) for the FReT method (red), as well as the SETAR
(grey), NNET (yellow), and D-NNET (blue) models. c Root-mean-square-error (RMSE) for all models. Model hyperparameters for SETAR: mL= 16,
mH= 2, and threshold delay= 14. NNET architecture 14-1-1. D-NNET architecture 8-14-9-4-1. d Monthly U.S. unemployment rate from 1948 to 2003.
e The unseen test data and forecasted unemployment rate data for June 2003 to March 2004 for all models. f RMSE for all models. Model
hyperparameters for SETAR: mL= 20, mH= 13, and threshold delay= 10. NNET architecture 20-9-1. D-NNET architecture 8-13-13-6-1. All forecasts
represent a 10-month forecast. FReT, Forecasting through Recurrent Topology; SETAR, Self-Exciting-Threshold Nonlinear Autoregressive Model; Artificial
Neural Network (NNET); Deep-NNET (D-NNET).
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For instance, gait kinematic trajectory prediction using wearable
sensors can be used to solve numerous problems facing robotic
lower-limb prosthesis/orthosis1. However, a limiting factor for
the implementation of accurate gait forecasting in the design of
next-generation intelligent devices is the inability of modern
forecasting models to support continuous model updating.
Continuous model updating would enable adaptive learning to
continuously incorporate user-specific46,47 and current dynamic

signal information to increase device functionality and user
safety31–34, while avoiding prediction errors when pretrained
optimized models are used under conditions that have not been
included in the initial training process48,49. This is particularly
relevant for gait which is dynamically modulated to adjust for
differing environmental conditions, and to meet the needs of
ever-changing motor demands50. Thus, unlike FReT, the com-
plexity of modern prediction models poses a tangible barrier as
these models can consume extended durations for hyperpara-
meter optimization (Supplementary Fig. 3), negating the potential
for continuous model updating.

In conclusion, this paper introduces FReT, a prediction algo-
rithm based on learning recurrent patterns in a series’ local
topology for forecasting time-series data. The proposed method
was tested with a variety of datasets and was compared to several
parameterized and benchmarked models. With no need for
computationally costly hyperparameter optimization procedures
in high-dimensional parameter space, FReT offers an attractive
alternative to complex models to reduce computational load and
power consumption constraints.

Methods
The main goal of time-series prediction is to collect and analyze
past time-series observations to enable the development of a
model that can describe the behaviour of the relevant system28.
SETAR models have a long history of modelling time-series
observations in a variety of data types3,6,7,17,18,51–53. They are
nonlinear statistical models that have been shown to be com-
parable or better than many other forecasting models including
some neural network-based models on real-world data3,6,7,17,51,52.
SETAR models also have the advantage of capturing nonlinear

Fig. 5 Gait kinematic forecasting with FReT. a A schematic of gait
kinematic data collection. A single wearable sensor was placed just above
the patellofemoral joint line with the use of a high-performance thigh band.
b An example of FReT (red), SETAR (grey), NNET (yellow), and D-NNET
(blue) forecast of unseen test data (black). FReT forecast based on
(max(Sim)). SETAR model: mL= 2, mH= 6, threshold delay= 4. NNET
architecture: 17-2-1. D-NNET architecture: 4-5-3-2-1. c Summary (mean)
root-mean-square-error (RMSE) data of model forecasts across subjects.
FReT, Forecasting through Recurrent Topology; SETAR, Self-Exciting-
Threshold Nonlinear Autoregressive Model; Artificial Neural Network
(NNET); Deep-NNET (D-NNET).

Fig. 6 Relative computational time and memory usage across methods.
A comparison of the estimated average computational time and memory
usage associated with each of the models used.

Fig. 7 Annual record of Canadian lynx trapped in the Mackenzie River
district of North-West Canada. a Annual lynx trapped from 1821 to 1923
illustrating persistent oscillations and substantial irregularities in amplitude
which shows no systematic trend. b Forecasted data from 1924 to 1934.
Black denotes real data and red denotes Forecasting through Recurrent
Topology (FReT) forecast of unseen data. c Root-mean-square-error
(RMSE) of a multi-step-ahead FReT forecast compared to several recently
and independently benchmarked models: Maximum Visibility Approach
(MVA), Mao-Xiao Approach (MXA), Autoregressive Integrated Moving
Average (ARIMA), Hybrid Additive ARIMA-ANN (HAAA), Hybrid Additive
ETS-ANN (HAEA), Long Short-Term Memory (LSTM), Multilayer
Perceptron (MLP), and Support Vector Machine (SVM). Similar data
normalization and 11-year forecast horizon was used. Source: Moreira
et al. 2022.
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phenomenon that cannot be captured by linear models, thus
representing a commonly used classical model for forecasting
time-series data3,6,7,17,51–53.

The most common approach for SETAR modelling is the
2-regime SETAR (2, p1, p2) model where p1 and p2 represent the
autoregressive orders of the two sub-models. This model assumes
that a threshold variable is chosen to be the lagged value of the
time-series, and thus is linear within a regime, but is able to move
between regimes as the process crosses the threshold7,17,18. This
type of model has had success with respect to numerous types of
forecasting problems including macroeconomic and biological
data3,6,7,17,51–53. However, SETAR model autoregressive orders
and the delay value are generally not known, and therefore need
to be determined and chosen correctly6.

In recent years, machine-learning methods, including NNET
models have attracted increasingly more attention with respect to
time-series forecasting. These models have been widely used and
compared to various traditional time-series models as they
represent an adaptable computing framework that can be used for
modelling a broad range of time-series data6,41,43. It is therefore
not surprising that NNET is becoming one of the most popular
machine-learning methods for forecasting time-series data6,43.
The most widely used and often preferred model when building a
NNET for modelling and forecasting time-series data is a NNET
with a Multilayer Perceptron architecture given its computational
efficiency and efficacy6,18,43,54,55 and its ability to be extended to
deep learning1. There are two critical hyperparameters that need
to be chosen, the embedding dimension and the number of
hidden units18. For deep learning, there is a third critical
hyperparameter that also needs to be selected; the number of
hidden layers. The choice of the value of hidden units depends on
the data, and therefore must be selected appropriately. Perhaps
the most crucial value that needs to be chosen is the embedding
dimension as the determination of the autocorrelation structure
of the time-series depends on this6. However, there is no general
rule that can be followed to select the value of embedding
dimension. Therefore, iterative trials are often conducted to select
an optimal value of hidden units, embedding dimension, and
number of hidden layers (for deep learning), after which the
network is ready for training1,6,18.

Many parameterized prediction models, including SETAR and
artificial neural networks, are often limited in that performance of
these models highly depends on the chosen hyperparameters such
as embedding dimension, delay value, or model architecture.
These types of models can also require tuning and optimization
in high-dimensional parameter space which can have an impact
on model selection, performance, and system-level constraints
such as cost, computational time, and budget23. Thus, the moti-
vation for this work was to overcome these drawbacks and
develop a simple, yet effective general-purpose algorithm with no
free parameters, hyperparameter tuning, or critical model
assumptions. The algorithm is based on identifying recurrent
topological structures that can be used to forecast upcoming
dynamic changes and is introduced next.

Forecasting through Recurrent Topology (FReT). As dynamic
systems can exhibit topological structures that may allow pre-
dictions of the system’s time evolution11,56, an algorithm that can
reveal unique topological patterning in the form of memory
traces embedded in a signal may offer an approach for dynamical
system forecasting. Local topological recurrence analysis is an
analytical method for revealing emergent recurring patterns in a
signal’s surface topology40. It has been shown to be capable of
outperforming neural network-based models in revealing digital
biomarkers in time-series data40, and may therefore offer a

computational tool to decode topological events that may reflect a
system’s upcoming dynamic changes. However, to be able to
forecast based on recurring local topological patterning, we would
first need to find prior states that share overlapping recurring
patterns with respect to the system’s current state. Importantly,
we need to be able to do this using a 1-D time-series. This would
eliminate the need for time-delay embedding hyperparameters
and the uncertainty associated with their estimation. If these
overlapping recurring patterns, or archetypes, can be identified,
they could be used for decoding complex system behaviours
relevant to a dynamic system’s current state, and thus its expected
future behaviour.

For instance, consider a data sequence where x represents a
1-D time-series vector with xn indexing the system’s current state:

x ¼ ðx1; x2; x3; ¼ ; xnÞ ð1Þ
With local topology, this 1-D signal is transformed into a local

3 × 3 neighbourhood topological map based on the signal’s
distance matrix:

Tij ¼
Di�1j�1 Di�1j Di�1jþ1

Dij�1 Dij Dijþ1

Diþ1j�1 Diþ1j Diþ1jþ1

0
B@

1
CA ð2Þ

where Dij represent the elements of the n ´ n Euclidean distance
matrix. This approach represents a general-purpose algorithm
that works directly on 1-D signals where the 3 × 3 neighbourhood
represents a local point-pair’s closest surrounding neighbours40.
While different neighbourhood sizes can be used, a 3 × 3
neighbourhood provides maximal resolution. The signal’s local
topological features are then captured by different inequality
patterning around the 3 × 3 neighbourhood when computed for
all Tij by constructing the matrix (T ’) that represents an 8-bit
binary code for each point-pair’s local neighbourhood:

ðT 0
ijÞ8 ¼ ∑

8

q¼1
sðgq � g0Þ2q�1;s xð Þ ¼ 0; x < 0

1; x ≥ 0

�
ð3Þ

Here g0 represents ðDijÞ and gq ¼ fg1; ¼ ; g8g are its eight-
connected neighbours40. Each neighbour that is larger or equal to g0
is set to 1, otherwise 0. A binary code is created by moving around
the central point g0 where a single integer value is calculated based on
the sum of the binary code elements (0 or 1) multiplied by the eight
2p positional weights. This represents 8-bit binary coding where there
are 28 (256) different possible integer values, ranging from 0 to 255,
that are sensitive to graded changes in surface curvature of a dynamic
signal40. The range is then divided into sextiles to create 6 integer
bins that are flattened into a 2-D matrix (Fig. 1) where this 2-D
m ´m matrix (m ¼ n� 2) can be thought of as a set of integer row

vectors (x
*

i) with the last row vector (x
*

m) representing the system’s

current state. We can then determine the similarity of x
*

m to all other

prior states, x
*

i:

x
*

i ¼ x1i ; x
2
i ; ¼ ; xmi ð4Þ

using a simple Boolean logic-based similarity metric Sim:

Sim ¼ ∑m
m¼1½a x1i � x1m

� �
; a x2i � x2m
� �

; ¼ ; a xmi � xmm
� ��

m
;

a xð Þ ¼ 1ðTrueÞ; x ¼ 0

0ðFalseÞ

� ð5Þ

Here, each element-wise difference in row vectors x
*

m and x
*

i
are computed, generating a 1 (True) if their difference equals
zero, otherwise 0 (False). This Sim similarity metric, which
differentially weights the importance of each part of the input
data, can therefore range from 0 to 1, with values approaching 1
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being weighted stronger. This produces a 1-D weight vector with
respect to the system’s current state where higher values represent
topological sequences that more closely align with the system’s
current state (e.g., Supplementary Movie 1). The operations
associated with Eqs. 2 and 3 are therefore important as they
enable local contextual information to distinguish between signal
data points with similar scalar values. In other words, they help
reveal archetypes based on topological sequence patterning rather
than the closest points in state space which requires the
assumption that future behaviour varies smoothy.

We can now define a set of Sim threshold values ranging from

around 0.6 to 1.0 with which to maximize to find s
*

i, a row vector

from the set of all x
*

i that is highly similar to the local topology

state changes of the system’s current state, x
*

m:

f s*i � Z1 ´m j P s
*

i � x
*

m

� �
;with Sim threshold maximizationg

ð6Þ
Thus, topological archetype detection effectively reduces to a

simple maximization problem where the row index of s
*

i + 3 (to
account for the m ´m matrix dimensions and a forecast starting
at n+ 1 in the future) equals the index of the encoded archetype
in x (Eq. 1). In principle, threshold maximization will find the
archetype (row vector) with greatest similarity. However, for
more robust point estimates, we can subject the maximization to

the constraint: a minimum of ≥3 s
*

i. This was used in this study
unless otherwise stated. Under this condition, the element-wise
average of the signal trajectory extending out from the encoded
regions are used to model the forecast, where the standard error
can be used as a metric of uncertainty. For nonstationary long-
run mean data, the encoded signal is first centred before the
element-wise average is computed, and the modelled forecast
remapped to the current state by adding the difference between
the last data point of the series and the first point of the centred
forecast.

Datasets. For the initial illustrative examples, a simple sine wave
was constructed by a sequence of 300 points ranging from 0.1 to 30
with an interval of 0.1. For the string of text, a well-knownDr. Seuss
book excerpt that has been used for time-series analysis was used57.
For more complex dynamic systems, the Rössler (a= 0.38, b= 0.4,
c= 4.82, and Δt= 0.1) and Lorenz (r= 28, σ= 10, β= 8/3, and
Δt= 0.03) attractor systems were used with initial parameters
based on previous values10,25. Every second data point was used for
analysis of these time-series, so the same duration was covered, but
with only half the data points. The publicly available embedded
versions of the Mackey-Glass time-series were also used in this
study27.

Both the population and macroeconomic datasets used in this
study are available in R4,18,29. The lynx data consists of the annual
record of the number of Canadian lynx trapped in the Mackenzie
River district of North-West Canada for the period 1821-19344,18.
The macroeconomic datasets used here correspond to the U.S.-
Canadian dollar exchange rate from 1973 to 199918,29, and the
month U.S. unemployment rate from January 1948 to March
200418,30.

Gait data were analyzed from a heterogeneous sample of five
young to middle-aged adults without gait impairment40 using a
single wearable sensor58. The sensor system is based on using
motion processor data consisting of a 3-axis Micro-Electro-
Mechanical Systems (MEMS)-based gyroscope and a 3-axis
accelerometer. The system’s firmware uses fusion codes for
automatic gravity calibrations and real-time angle output (pitch,
roll, and yaw). The associated software application utilizes sensor

output for gait biometric calculations in real-time while recording
gait-cycle dynamics and controlling for angular excursion and
drift58–60. The sensor is attached to the leg just above the
patellofemoral joint line through the use of a high-performance
thigh band which is the optimal location for this sensor
system58–60.

Data analysis. In addition to recent benchmark data generated in
the literature, SETAR, NNET, and D-NNET models were also
used for FReT comparative analysis. For the SETAR models,
different forecasting methods were used for testing (Naïve,
Bootstrap resampling, Block-bootstrap resampling, and Monte-
Carlo resampling)18. For macroeconomic model building, a
logarithmic transformation (log10) was first applied to the data as
commonly done61. Specific model details and network archi-
tectures are noted when presented. For FReT, data were log-
transformed after forecasting to enable comparison to SETAR,
NNET, and D-NNET models.

Data availability
The datasets used in this study can be found at https://github.com/tgchomia/ts.

Code availability
R software (R Core Team. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria) and associated source code and
packages (https://www.R-project.org/) are publicly available. Data and FReT example
with code can be found at https://github.com/tgchomia/ts. NNET and SETAR code is
available in R package tsDyn18. D-NNET code is available in R package nnfor62.
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