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Acid-triggered radical polymerization of 
vinyl monomers
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Zhipeng Pei    2, Michelle L. Coote    2 , Nghia P. Truong    1,4  & 
Athina Anastasaki    1 

Reversible addition–fragmentation chain-transfer (RAFT) polymerization 
is one of the most versatile and robust controlled radical polymerization 
methods owing to its broad material scope and high tolerance to various 
functionalities and impurities. However, to operate RAFT polymerization, 
a constant supply of radicals is required, typically via exogenous thermal 
radical initiators that are not only challenging to transport and store, but also 
primarily responsible for termination and end-group heterogeneity. Here 
we present an acid-triggered RAFT polymerization that operates in the dark 
and without any conventional radical initiator. Abundant acids (for example, 
sulfuric acid) are shown to have a dual role initiating and accelerating the 
polymerization. The polymers prepared have low dispersity and high end-
group fidelity. The method is compatible with a wide range of vinyl monomers 
and solvents, and can be applied to the synthesis of well-controlled high 
molecular weight block copolymers, as well as to free radical polymerization.

Reversible-deactivation radical polymerization methodologies, such 
as atom transfer radical polymerization (ATRP)1–3, nitroxide-mediated 
polymerization4 and reversible addition–fragmentation chain-transfer 
(RAFT) polymerization5,6, enable the synthesis of tailor-made poly-
mers with controlled molecular weight, dispersity and architecture7–10. 
Among them, RAFT is one of the most versatile owing to its ability to 
polymerize an extensive range of monomer classes, and as such it has 
been largely adopted to generate a wide variety of materials6. The 
attractiveness of RAFT lies in its mechanism, which can be thought of 
as a free radical polymerization (FRP) in the presence of a reversible 
chain-transfer agent (CTA). Through a degenerative chain-transfer 
mechanism the propagating species equilibrate with dormant species 
via a thiocarbonylthio compound, also referred to as a RAFT agent11.  
It is noted that propagating radicals are terminated during RAFT polym-
erization and the degenerative chain-transfer process does not create 
new radicals. As such, an external radical source is typically required 
to initiate the polymerization and also ensure a sufficient supply of 
radicals to achieve high conversions and polymerization rates12,13.

However, the necessity to use exogenous thermal radical initiators 
poses certain restrictions. First, the extent of termination in a RAFT 
polymerization is directly proportional to the amount of radical initia-
tor employed12. Unlike ATRP and nitroxide-mediated polymerization 
that operate through a reversible termination mechanism4,14, the RAFT 
process does not prevent the formation of dead chains15,16. As a result, 
the use of radical initiators leads to end-group heterogeneity (for exam-
ple, initiator-derived chains and RAFT-derived chains) and terminated 
chains. Such termination is further exemplified in the synthesis of block 
copolymers as a new aliquot of radical initiator is introduced together 
with the next monomer addition, thus leading to the gradual accumula-
tion of terminated chains and resulting in higher dispersities and impure 
block copolymers17. Another consideration of commonly employed 
thermal radical initiators, such as peroxides and azo-compounds, is that 
they are highly explosive chemicals and as such are quite challenging to 
not only transport but also to store18–21. In fact, this is an issue not only for 
RAFT polymerization but also for FRP, one of the most common polym-
erization methodologies in industry. Therefore, eliminating the use of 

Received: 30 May 2023

Accepted: 16 November 2023

Published online: 4 January 2024

 Check for updates

1Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, Zürich, Switzerland. 2Institute for Nanoscale Science and Technology, College 
of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia. 3Research School of Chemistry, Australian National University, 
Canberra, Australian Capital Territory, Australia. 4Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.  

 e-mail: michelle.coote@flinders.edu.au; nghia.truong@monash.edu; athina.anastasaki@mat.ethz.ch

http://www.nature.com/natsynth
https://doi.org/10.1038/s44160-023-00462-9
http://orcid.org/0000-0002-2332-3019
http://orcid.org/0000-0002-5378-6073
http://orcid.org/0000-0001-7699-541X
http://orcid.org/0000-0001-5628-7627
http://orcid.org/0000-0003-0828-7053
http://orcid.org/0000-0001-9900-2644
http://orcid.org/0000-0002-6615-1026
http://crossmark.crossref.org/dialog/?doi=10.1038/s44160-023-00462-9&domain=pdf
mailto:michelle.coote@flinders.edu.au
mailto:nghia.truong@monash.edu
mailto:athina.anastasaki@mat.ethz.ch


Nature Synthesis | Volume 3 | March 2024 | 347–356 348

Article https://doi.org/10.1038/s44160-023-00462-9

the solution was heated at 70 °C and the reaction was allowed to com-
mence. 1H nuclear magnetic resonance (NMR) spectroscopy confirmed 
90% monomer conversion in 10 h while size exclusion chromatography 
(SEC) revealed a symmetric molar mass distribution with Ð = 1.13 (Sup-
plementary Fig. 1). As a control experiment, we attempted to polymer-
ize DMA without acid but no conversion was detected by 1H NMR, even 
after 3 days. These results suggest that neither the RAFT agent nor the 
monomer (for example, through autoinitiation) alone can be responsi-
ble for the initiation of the polymerization in the presence of acid. It is 
important to note that this acid-triggered polymerization operates in 
the absence of a conventional initiating system (for example, thermal 
initiation, photoinitiation, redox initiation and ionizing radiation).

To gain a deeper insight into this highly unusual reaction, we 
undertook a series of kinetic studies at various pH values monitored 
in situ by 1H NMR spectroscopy at 70 °C (Fig. 2b). In comparison with 
conventional batch sampling methods, this approach is uniquely 
suited to study fast reaction kinetics as it ensures sufficient time points 
throughout the polymerization, and permits accurate measurements 
to be taken without disturbing the reaction through continuous and 
potentially deleterious sampling34. At pH 6.5, the pH of the monomer 
and CTA aqueous solution (that is, no acid was added), no monomer 
conversion was detected, in line with the batch experiment, as shown 
in Fig. 2b, Supplementary Fig. 2 and Supplementary Table 1. When 0.1 
equiv. with respect to the CTA was added (pH 5.2), the reaction was 
successfully triggered and a controlled polymerization took place 
producing a well-defined poly(dimethylacrylamide) (PDMA) (Ð = 1.12) 
with just 20 ppm of sulfuric acid. The possibility to conduct a RAFT 
polymerization at such low concentrations of a highly abundant acid 
further highlights the simplicity of our methodology. Upon gradually 
increasing the amount of acid to 0.15 equiv. (pH 4.7) and 0.65 equiv.  
(pH 3.0), faster polymerization rates were monitored without compro-
mising the control over the polymerization (Fig. 2c and Supplementary 
Table 1). However, at higher acid concentrations (pH 1.7, 10 equiv.), no 
further increase in the reaction rate was observed. Overall, these kinetic 
experiments suggest that the rate of radical formation correlates with 
the amount of the acid added until a threshold is reached, after which 
no appreciable change in the polymerization rate is recorded.

thermal radical initiators would be highly beneficial to not only enhance 
the quality of the synthesized polymers but also to overcome transporta-
tion and storage issues. Some of the limitations of conventional thermal 
RAFT polymerization have been alleviated with the emergence of photo-
mediated polymerization processes such as photoinduced electron/
energy transfer RAFT22,23 or photo-iniferter polymerizations23–26. In addi-
tion, Matyjaszewski and coworkers have explored the possibility of using 
ATRP copper complexes to activate RAFT agents27–30. Yet, conventional 
thermal RAFT remains a very attractive polymerization methodology 
primarily due to its simple setup, compatibility with a wider monomer 
scope, the potential to synthesize well-defined block copolymers and 
the relative ease of scale-up13,31–33.

In this Article, we report an acid-triggered RAFT polymerization 
methodology that does not require light or thermal radical initiators. 
In the presence of low concentrations of highly abundant strong (for 
example, sulfuric) or weak (for example, citric) acids, a wide range of 
monomer classes (for example, (meth)acrylates and (meth)acryla-
mides) can be polymerized in a controlled fashion in both aqueous 
and organic media yielding well-defined polymers with narrow molar 
mass distributions and high end-group fidelity (Fig. 1). The dual role 
of the acid to not only initiate the polymerization but also to acceler-
ate the reaction rate allows for the synthesis of high molecular weight 
homo and block copolymers with reduced termination. In addition, 
our approach is compatible with conventional radical polymeriza-
tion, omitting the need to use highly explosive thermal initiators and 
rendering the methodology more widely applicable.

Results and discussion
Acid-triggered RAFT polymerization
The acid-triggered polymerization of vinyl monomers was fortuitously 
discovered during the thermal RAFT polymerization of dimethyl acryla-
mide (DMA). The model reaction was composed of 2-(((butylsulfanyl)
carbothioyl)sulfanyl)propanoic acid (PABTC, CTA 1, 1 equiv.) as the 
RAFT agent, DMA as the monomer (500 equiv. with respect to the CTA), 
water as the reaction medium and sulfuric acid as a highly abundant acid 
(10 equiv.) (Fig. 2a). The pH of the solution was measured at 1.7. In the 
absence of any conventional radical initiator and upon deoxygenation, 

Molecular weight

ZS

S

R
+

70 °C

R
S Z

S

n

Radical
initiator H

ZS

S

R
+

ZR

S

SS

R

S

ZS

ZR

S

NS

NR2O NR2O

OO

R

OO

R

OH

O

OH

O OH
O

HO

O

OH

70 °C

Previous approach—thermal RAFT
a

Our approach—acid-triggered RAFT

Broad scopeHigh end-group fidelity

Trithiocarbonates

Dithiobenzoates

Dithiocarbamate

Acrylamides Methacrylamides

Acrylates Methacrylates

Monomers Solvents Acids

Water

Bulk

Dioxane

Ethanol

DMSO

Acetonitrile

H2SO4

Sulfuric acid

Citric acid

Acetic acid

b

dc

R
S Z

S

n

CTAs

Fig. 1 | Acid-triggered RAFT polymerization with a broad scope and high 
end-group fidelity. a,b, Conventional thermal RAFT polymerization12 (a) and 
acid-triggered RAFT polymerization (b). c,d, High end-group fidelity furnished 

by acid-triggered RAFT polymerization exemplified by chain extensions (c), and 
the broad scope of the technique including a wide range of CTAs, monomers, 
solvents and acids (d).
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Considering that sulfuric acid is a strong acid, we also examined 
the possibility of CTA degradation during the polymerization. A lower 
molecular weight PDMA was synthesized at pH 3 (Mn = 3,000, Ð = 1.12) 
and subsequently analysed by matrix-assisted laser desorption ioniza-
tion time-of-flight mass spectrometry (MALDI-ToF MS). Pleasingly, a 
single polymeric species was observed (Na+ and K+ adduct) correspond-
ing to the expected PDMA functionalized with CTA at both chain ends 
while no sign of CTA degradation was detected (Fig. 2d). In addition, 
when PDMA was chain-extended with N-acryloylmorpholine (NAM), 
the molar mass distribution clearly shifted to higher molecular weights 
yielding a well-defined PDMA-b-(poly(N-acryloylmorpholine)) (PNAM) 
diblock copolymer (Ð = 1.13; Fig. 2e and Supplementary Table 2). Taken 
altogether, these results suggest that acid-triggered RAFT polymeri-
zation leads to polymers with very high end-group fidelity due to side 
reactions and termination events being substantially suppressed.

Intrigued by this high end-group fidelity, we were interested in 
comparing our acid-triggered RAFT polymerization with conventional 

thermal RAFT polymerization. To exaggerate any potential differences 
between the two systems we targeted the synthesis of a relatively high 
molecular weight homopolymer (degree of polymerization (DP) 1,000). 
Optimized thermal RAFT was conducted at 70 °C in the presence of 0.03 
equiv. of 2,2′-azobis(2-(2-imidazolin-2-yl)propane) dihydrochloride 
(VA-044) as the radical initiator, resulting in PDMA with Ð = 1.45 (Supple-
mentary Fig. 3 and Supplementary Table 3). It is noted that 0.03 equiv. 
was the minimum amount of VA-044 required to reach relatively high 
monomer conversion (79%). Instead, when our acid-triggered RAFT 
polymerization approach was employed (10 equiv. of sulfuric acid, 
pH 2), narrower molar mass distributions (Ð = 1.13) were obtained at 
comparable monomer conversions (87%), highlighting the superior-
ity of our approach over traditional thermal RAFT polymerization.  
To probe the potential of this technique in maintaining high end-group 
fidelity in block copolymer synthesis, we subsequently targeted the 
one-pot synthesis of high molecular weight triblock copolymers with 
each block set at DP 200 (Fig. 3a). It is noted that the synthesis of such 
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high molecular weight block copolymers is rarely attempted by RAFT 
polymerization in the literature owing to the large extent of termination 
that gradually accumulates in the system35. Indeed, optimized thermal 
RAFT polymerization resulted in a triblock copolymer with a final Ð of 
1.28 in which obvious low molecular weight tailing could be observed 
by SEC as the main polymer distribution shifted to higher molecular 
weights (Fig. 3b and Supplementary Table 4). In contrast, when acid-
triggered RAFT polymerization was employed, the final Ð of the triblock 
was maintained at 1.16 with substantially less tailing observed (Fig. 3c 
and Supplementary Table 5). The differences in end-group fidelity 
between the two methods indicate that the acid may potentially possess 
a dual role and is not only responsible for the generation of radicals.

Mechanism and application to FRP
To get a clearer picture of the mechanism, we conducted a number 
of experiments in the absence of a RAFT agent, a process analogous 
to conventional FRP but without an initiator. Upon deoxygenating 
an aqueous mixture of DMA at 70 °C, no monomer conversion was 
detected by 1H NMR (Fig. 4b, pH 6.6, Supplementary Table 6) even after 
72 h, suggesting that no autopolymerization occurs in the absence of 
acid. However, the presence of just 32 ppm of sulfuric acid (pH 5.5, no 
CTA and initiator added; Fig. 4a and Supplementary Table 6) led to a 
rapid FRP yielding PDMA with Mn = 800,000 exhibiting a broad, yet 
relatively symmetrical, molar mass distribution (Ð = 2.0; Fig. 4c). In line 
with the acid-triggered RAFT polymerizations, addition of further acid 
led to a gradual acceleration of the reaction rate until a threshold was 

reached around pH 4.5, as seen in Fig. 4b. Increasing the acid content 
further (pH ≤4.5), did not result in faster polymerization rates. It is noted 
that comparable molecular weights and dispersities were reproducibly 
observed regardless of the amount of acid employed. Interestingly, 
when the identical experiments were conducted in the presence of a 
free radical initiator (no acid added), substantially lower molecular 
weights (Mn = 200,000) and broader molar mass distributions (Ð > 4) 
were obtained, as seen in Supplementary Fig. 4 and Supplementary 
Table 7. The higher molecular weights and lower dispersities obtained 
by acid-triggered FRP are attributed to less primary termination (that 
is, growing macroradicals terminated by azo-initiator-derived radi-
cals)36. We also conducted a range of acid-triggered FRPs at various 
temperatures and calculated the activation energy, which was found 
to be 39.1 kJ mol−1 (Supplementary Fig. 5 and Supplementary Table 8).

Collectively, these findings demonstrate that highly abundant 
acids can trigger an efficient radical polymerization that not only 
occurs in the absence of explosive chemicals but also improves the 
quality of the synthesized polymers by suppressing termination. The 
obtained data also exclude the possibility of any potential interactions 
of the acid with the RAFT agent and point towards an acid-triggered 
autoinitiation mechanism37 that involves direct interactions of the 
monomer with the acid. Considering that no autopolymerization 
was observed for DMA at 70 °C in the absence of acid, conventional 
autopolymerization can be precluded. The polymerization is almost 
certainly radical in nature as cationic pathways can be excluded since 
water was used as the reaction medium38. Acrylic monomers are known 
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to undergo autoinitiation at high temperatures (>200 °C) via a Flory-
type autoinitiation mechanism, whereby two monomers react via an 
open-shell singlet pathway to form diradical species (Fig. 5a)37,39–41. 
However, autoinitiation at lower temperatures has not been reported, 
and none was observed for DMA at 70 °C in the absence of acid. In addi-
tion, the rate of polymerization positively correlates with the amount 
of acid added to the system and hence the generation of radicals. We 
thus speculated whether acid might be protonating the monomer and 
thereby electrostatically catalysing this autoinitiation process. The 
ability of charged functional groups to stabilize radicals and catalyse 
radical processes is well known42–44. To test this proposal we used den-
sity functional theory (DFT) calculations to compare the autoinitiation 
barriers for DMA in water at 70 °C in the presence and absence of acid. 
In all cases, autoinitiation was found to proceed through an open-
shell singlet transition state, consistent with the Flory mechanism. 
Various protonation states were considered (Supplementary Fig. 10); 
all were catalytic, with the most effective, that involving protonation 

at nitrogen, leading to an increase in rate of 3.5 orders of magnitude. 
Based on the computed barrier, the predicted half-life of the catalysed 
reaction is approximately 82 min, consistent with efficient polym-
erization at this temperature (Fig. 5b). In line with these calculations, 
the polymerization of acrylic acid should proceed efficiently in the 
absence of any externally added acid and without a radical initiator. 
Indeed, acrylic acid could effectively polymerize at 70 °C yielding 79% 
monomer conversion while the addition of acid led to a comparable 
conversion (Supplementary Fig. 6).

Based on theory and experiment, acid thus appears to catalyse 
autoinitiation of radical polymerization to such an extent that it occurs 
readily at 70 °C instead of the high temperatures normally required. 
However, the reaction reaches a threshold at a certain pH value below 
which no further rate enhancement is observed. As such, the acid may 
not only be responsible for generating radicals but may potentially play 
an additional role. This dual role of the acid is further supported by the 
fact that both RAFT and free radical acid-triggered polymerizations 
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exhibit suppressed termination as opposed to traditional approaches 
in which thermal radical initiators are employed. We propose that 
the monomer protonation may also lead to an acceleration of the 
propagation reaction rate, reducing the overall radical concentration 
required and thus minimizing termination events. A rate accelera-
tion phenomenon has previously been reported in conventional and 
controlled radical polymerizations with addition of Lewis acids, with 
DFT calculations indicating an electrostatic origin for the catalytic 
effect43,45–49. Indeed, our DFT calculations indicate that the propagation 
rate coefficient of DMA at 70 °C in water increases by approximately 
one order of magnitude upon protonation of the monomer (Fig. 5c).

To further investigate the rate acceleration effect of the acid we con-
ducted additional experiments. First, the FRP of DMA (no acid added) 
was performed at 70 °C using VA-044 as a thermal radical initiator 

(Supplementary Table 9). The recorded apparent rate constant of 
polymerization (kp

app) was 0.013 min−1. In another reaction, without 
the addition of a thermal radical initiator, the acid-triggered FRP of DMA 
gave a kp

app of 0.025 min−1. By then combining the total amount of VA-044 
and sulfuric acid previously employed in a single experiment, a kp

app of 
0.038 min−1 would be expected assuming that the acid is solely acting as 
a radical source. Instead, when employing identical concentrations of 
combined VA-044 and sulfuric acid, a kp

app of 0.059 min−1 was observed, 
which is appreciably faster than the individual rates combined (Fig. 4d 
and Supplementary Table 9). This synergistic rate enhancement was 
also evident at higher VA-044 concentrations, and for acid-triggered 
RAFT polymerization (Fig. 4e and Supplementary Table 9). A similar 
rate enhancement was also observed when PEG acrylate was polym-
erized, thus suggesting that this effect is not limited to acrylamides 
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(Supplementary Table 10 and Supplementary Fig. 7). In contrast, when 
styrene was instead polymerized in the presence and the absence of 
acid, no rate enhancement was observed, as expected from a monomer 
that has no propensity to protonate (Supplementary Fig. 8 and Supple-
mentary Table 11). Taken altogether, these data confirm the dual role 
of acid to not only effectively trigger the initiation but also to enhance 
the polymerization rate, therefore requiring a lower overall radical 

concentration to reach comparable conversions, which subsequently 
results in less termination and narrower molar mass distributions.

The scope of acid-triggered RAFT polymerization
To expand the scope of this study, we subsequently investigated the 
compatibility of our approach with various monomers, RAFT agents, 
solvents and acids. Firstly, we switched from DMA to NAM utilizing 
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the commercially available RAFT agent 3-((((1-carboxyethyl)thio)car-
bonothioyl)thio)propanoic acid (CTA 2). A well-defined PNAM was 
obtained in aqueous media with Ð = 1.13, as seen in Supplementary 
Fig. 9 and Supplementary Table 12. A well-controlled acid-triggered 
RAFT polymerization was also observed in a range of polar solvents 
commonly employed for RAFT polymerization including dioxane, 
ethanol, dimethyl sulfoxide (DMSO) and acetonitrile resulting in poly-
mers with narrow molar mass distributions (Ð < 1.2; Supplementary  
Fig. 9 and Supplementary Tables 12 and 13). Notably, the polymerization 
could also be successfully performed under bulk conditions without 
compromising the control over the reaction (Fig. 6b).

According to our preliminary DFT calculations, autoinitiation 
caused by monomer protonation is not exclusive to acrylamides but 
can in principle also occur with a wider range of monomer families 
such as acrylates, methacrylates and methacrylamides. Calculations 
demonstrating acid-catalysed autoinitiation of methyl methacrylate 
in dioxane (Supplementary Fig. 12) and DMSO (Supplementary Fig. 13),  
and of 2-methoxyethyl acrylate in water (Supplementary Fig. 14), are 
provided in Supplementary Information as examples. To investigate 
this scenario experimentally, poly(ethylene glycol) methyl ether 
acrylate (PEGA480) was polymerized with dithiocarbamate methyl 
2-[methyl(4-pyridinyl) carbamothioylthio]propionate (CTA 4) as the 
RAFT agent (Ð = 1.18; Fig. 6d and Supplementary Table 12). In a similar 
fashion, 2-cyanopropan-2-yl N-methyl-N-(pyridine-4-yl)carbamod-
ithioate (CTA 5) was employed to polymerize N-(2-hydroxypropyl)
methacrylamide (HPMA) with SEC, revealing a monomodal molar mass 
distribution Ð = 1.19 at very high monomer conversions (Fig. 6e and 
Supplementary Table 12). It is noted that this is a challenging monomer 
typically exhibiting much slower polymerization rates under previously 
reported literature conditions50. Glycerol monomethacrylate was cho-
sen as a model methacrylic monomer, and upon polymerization using 
4-((((2-carboxyethyl)thio)carbonothioyl)thio)-4-cyanopentanoic 
acid (CTA 3), a well-defined PGMA (Ð = 1.13; Fig. 6f and Supplementary  
Table 12) was obtained. Interestingly, even the relatively hydrophobic 
methyl methacrylate could be polymerized in DMSO utilizing dith-
iobenzoate 2-cyano-2-propyl benzodithioate (CTA 6) as the RAFT agent 
(Ð = 1.18; Supplementary Fig. 9 and Supplementary Table 13). Last but 
not least, sulfuric acid was replaced with weaker and more biocompat-
ible acids such as acetic acid and citric acid without compromising the 
control over the molar mass distributions (Fig. 6c, Supplementary 
Tables 12 and 13, and Supplementary Fig. 9). Taken altogether, these 
experiments highlight the robustness and the versatility of our acid-
triggered RAFT polymerization to successfully operate under a range 
of different monomer classes, RAFT agents, solvents and acids.

Conclusion
To summarize, we have presented an acid-triggered RAFT polymeriza-
tion that operates in the absence of light and exogenous thermal radical 
initiators such as peroxides and azo-compounds. Using small amounts of 
either strong or weak acids, well-defined polymers can be obtained with 
excellent control over the molecular weight and dispersity. The method 
was successfully applied to a range of monomer classes (for example, 
(meth)acrylates and (meth)acrylamides), solvents (for example, DMSO, 
dioxane, acetonitrile and water) and RAFT agents (for example, trithi-
ocarbonates and dithiobenzoates) and was also compatible with con-
ventional radical polymerization. The superiority of the acid-triggered 
RAFT over previous thermal approaches was demonstrated through 
the synthesis of homo and block copolymers with faster polymeriza-
tion rates, narrower molar mass distributions and suppressed termina-
tion. Mechanistically, the reaction was proposed to proceed through a 
Flory-type autoinitiation mechanism triggered by monomer protona-
tion resulting in radical generation. The protonation was also found to 
accelerate the polymerization rate, yielding polymers with improved 
end-group fidelity. We believe that this acid-triggered polymerization will 
emerge as a powerful alternative to conventional thermal RAFT and FRP.

Methods
Synthesis of PDMA homopolymer with DP 500 in water with 
H2SO4

In a 5-ml vial, 9.24 mg (38.8 μmol, 1 equiv.) of PABTC (CTA 1) was added 
and dissolved in 2 ml of DMA (19.4 mmol, 500 equiv.), and then 1 ml of 
water was added. Subsequently, 21.57 μl of sulfuric acid (0.39 mmol, 
10 equiv.) and a stirrer bar was added. The solution was purged with 
nitrogen for 15 min, and then the polymerization was conducted in 
an oil bath at 70 °C for 10 h with a 350 r.p.m. stirring rate to reach a 
conversion of 90% by 1H NMR spectroscopy.

Kinetics of PDMA homopolymer with DP 500 in deuterated 
water (pH 1.7)
In a 5-ml vial, 4.6 mg (1 equiv.) of PABTC (CTA 1) was added and dissolved 
in 1 ml of DMA (500 equiv.), and then 4 ml of D2O with 10 μl of H2SO4 
(18 M, 10 equiv.) was added. An aliquot of 500 μl was transferred to an 
NMR tube and sealed with a septum. The solution was purged with nitro-
gen for 8 min in an ice bath. The polymerization was then conducted 
in the NMR (Bruker 400) that had been stabilized at 70 °C beforehand.

Synthesis of triblock copolymer with DP 200 per block in 
water with acid
In a 5-ml vial, 18.5 mg of CTA 2 (73.0 μmol, 1 equiv.) was dissolved in 
1.50 ml of DMA (14.55 mmol, 200 equiv.). Subsequently, 0.74 ml of 
water and 4 μl of sulfuric acid (72.7 μmol, 1 equiv.) were added and a 
stirrer bar was inserted into the reaction vial. The vial was then sealed 
with a septum, before deoxygenation by nitrogen bubbling for 15 min. 
Polymerization was conducted in an oil bath at 70 °C for 20 h with a 
200 r.p.m. stirring rate, to reach a conversion of 96% by 1H NMR spec-
troscopy. In a separate vial, 1.83 ml (14.55 mmol, 200 equiv.) of NAM, 
1.03 ml of water and 8 μl of sulfuric acid (145.4 μmol, 2 equiv.) were 
added and degassed under nitrogen atmosphere for 15 min before 
addition to the polymerization mixture via a nitrogen-purged syringe. 
The polymerization was left to proceed for 40 h, yielding a diblock 
copolymer (Ð = 1.14). Similarly, a third aliquot was prepared containing 
1.50 ml of DMA (14.55 mmol, 200 equiv.), 0.67 ml of water and 12 μl of 
sulfuric acid (218.1 μmol, 3 equiv.), and was deoxygenated for 15 min. 
Then, the aliquot was added to the polymerization solution and the 
reaction was left to proceed for 24 h at 70 °C and then for 3 h at 80 °C, 
yielding a triblock copolymer with 94% conversion by 1H NMR spec-
troscopy and Ð = 1.16.

Kinetics of PDMA synthesized via FRP in deuterated water  
(pH 1.3)
In a 5-ml vial, 1 ml of DMA was inserted, and then 4 ml D2O with 10 μl 
H2SO4 (18 M) was added. An aliquot of 500 μl was transferred to an NMR 
tube and sealed with a septum. The solution was purged with nitrogen 
for 8 min in an ice bath. The polymerization was then conducted in 
the NMR (Bruker 400) that had been stabilized at 70 °C beforehand.

Computational procedures
Geometry optimizations of all equilibrium and transition structures 
of interest along the potential energy surfaces of the catalysed and 
uncatalysed self-initiation and propagation processes in water were 
performed at the M062X (ref. 51)/6-31g(d,p) level of theory using the 
‘solvent model - density’ (SMD)52 solvent model and an explicit water 
molecule. Frequency calculations at the same level of theory were 
employed to confirm equilibrium structures as having all real harmonic 
frequencies and transition structures as having a single imaginary 
frequency. Intrinsic reaction coordinate calculations53 were further 
employed to verify the connectivities of the optimized transition struc-
tures to the respective minima of interest. To obtain more accurate 
electronic energies, single point energy calculations in implicit water 
were performed at the wB97X-D (ref. 54)/aug-cc-pVTZ level of theory 
with the SMD solvent model. Gibbs free energies were calculated using 
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the ‘direct method’55 in which ideal gas partition functions were applied 
to the solution-phase geometries and frequencies, and include a cor-
rection for the change of state from 1 atm to 1 M (ref. 56). All geometry 
optimizations, frequency, intrinsic reaction coordinate and single 
point energy calculations were performed using the Gaussian 16 soft-
ware package57, three-dimensional representations of chemical struc-
tures were generated using CYLview58, and thermochemistry data were 
calculated with the aid of the Shermo program59.

Data availability
The authors declare that the data to support the findings of this study 
are available within the paper and its Supplementary Information. 
Source data are provided with this paper.
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