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Antibiotic-resistant organisms establish reservoirs
in new hospital built environments and are related
to patient blood infection isolates
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Abstract

Background Healthcare-associated infections due to antibiotic-resistant organisms pose an

acute and rising threat to critically ill and immunocompromised patients. To evaluate

reservoirs of antibiotic-resistant organisms as a source of transmission to patients, we

interrogated isolates from environmental surfaces, patient feces, and patient blood infections

from an established and a newly built intensive care unit.

Methods We used selective culture to recover 829 antibiotic-resistant organisms from 1594

environmental and 72 patient fecal samples, in addition to 81 isolates from blood cultures.

We conducted antibiotic susceptibility testing and short- and long-read whole genome

sequencing on recovered isolates.

Results Antibiotic-resistant organism burden is highest in sink drains compared to other

surfaces. Pseudomonas aeruginosa is the most frequently cultured organism from surfaces in

both intensive care units. From whole genome sequencing, different lineages of P. aeruginosa

dominate in each unit; one P. aeruginosa lineage of ST1894 is found in multiple sink drains in

the new intensive care unit and 3.7% of blood isolates analyzed, suggesting movement of this

clone between the environment and patients.

Conclusions These results highlight antibiotic-resistant organism reservoirs in hospital built

environments as an important target for infection prevention in hospitalized patients.
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Plain Language Summary
Patients in hospitals often have a

suppressed immune system, putting

them at increased risk of infection by

bacteria that are resistant to anti-

biotics, some of which may come

from sources in the hospital envir-

onment. We sampled multiple dif-

ferent surfaces in an established and

a newly built intensive care unit and

collected patient infection samples.

We tested bacteria in these samples

for their resistance to antibiotics and

sequenced the genetic code of the

bacteria to identify relationships

between environmental and patient

infections. We found the most anti-

biotic resistant organisms in hospital

sink drains. Our sequencing data

revealed strains of a certain kind of

bacteria could form reservoirs and

survive in sink drains and also cause

patient infections. These results

highlight the importance of removing

these antibiotic resistant organism

reservoirs to prevent infections.
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Healthcare-associated infections (HAIs) are a global chal-
lenge, posing a particularly acute threat in intensive care
units (ICUs) where critically ill and immunocompro-

mised patients are at elevated risk for infection during their
stay1,2. Worldwide, HAIs are responsible for an estimated 2.5
million infections every year and are associated with increased
morbidity, mortality, and healthcare costs1,3–5. The COVID-19
pandemic is associated with further expansion of hospitalized
critically-ill individuals6. HAIs due to AROs in the ICU can be
difficult to treat due to limited treatment options; available
options are also associated with toxicity, are poorly tolerated
by patients, and may exhibit negative interactions with other
drugs1,7,8.

Many studies and initiatives have focused on trying to limit
HAIs through surveillance, prevention, and intervention1,9,10.
Recent studies have used culture-independent metagenomic
sequencing of hospital surfaces to generate an important catalog
of the diversity and composition of their resident microbial
communities11–15. However, metagenomic characterizations are
limited in their ability to track viable, antibiotic-resistant strains
and remain ambiguous to whether the taxa discovered on surfaces
are environmental- or patient-derived, and/or associated with
infections in patients. To better understand relationships between
viable antibiotic-resistant organisms (ARO) in the built envir-
onment and critically-ill patients, we must determine 1) what
hospital surfaces are acting as ARO reservoirs, i.e., surfaces where
an organism can be cultured from multiple time points; 2) what
are the spatial and temporal dynamics of reservoir colonization;
and 3) whether viable ARO strains colonizing the hospital built
environment can also be detected from human clinical infections.

There are multiple models proposed for ARO reservoir colo-
nization and transmission in hospitals (Fig. 1a)1,16–18. A promi-
nent model is that AROs are shed from colonized patients,
frequently through fecal contamination, to surfaces, instruments,
and shared equipment in patient rooms (Fig. 1a)19,20. High-touch
hospital surfaces can act as intermediate ARO reservoirs, and
transmission may occur from these reservoirs through patients,
healthcare staff, and visitors10,20–23. Another model is that AROs
are seeded from microbial communities which persistently colo-
nize hospital built environments, particularly plumbing sources,
where biofilms form and can act as a reservoir for potential
pathogens (Fig. 1a)24–27. These models are not mutually exclu-
sive. ARO reservoirs are likely dependent on a given facility’s
history and modes of transmission likely interact within a
hospital28. To better understand the colonization and transmis-
sion of AROs in the hospital built environment, we leveraged a
unique opportunity to sample a newly-built stem cell transplant
and oncology (SCT) ICU both before patient and staff occupancy
and for one year after ICU establishment. This allowed us to
identify and track persistent colonization of sink drains by AROs
that began prior to patient and staff occupancy, a facet that has
not been characterized in previous studies. As immunocompro-
mised cancer patients demonstrate prolonged duration of
ARO shedding and are at high risk of HAIs, the SCT ICU is a
critical environment to study ARO surface colonization and
transmission29–32. Additionally, we compared this new ICU
environment (new ICU) with environmental samples from the
established SCT ICU previously housing these patients and staff
(old ICU). While previous studies have longitudinally tracked
surface and patient samples within an ICU, they have been lim-
ited in their ability to discern the impact of the facility built
environment from the population of patients and healthcare
workers in the facility. Here, the same patients and healthcare
providers transitioned between the old and new buildings across
the study period, allowing for a direct comparison between their
ARO communities.

To track ARO transmission events between patients and ICU
surfaces, we collected remnant fecal samples from patients in the
SCT ICU who had laboratory studies ordered on fecal samples
and isolates from positive blood cultures ordered as part of
routine clinical care during the same collection period. From this
unique collection of environmental and patient samples, we used
selective microbiologic culturing and whole-genome sequencing
(WGS) to identify AROs, assess antibiotic resistance, and track
strains across time and location.

We found ARO contaminants were rare on most ICU surfaces
but prevalent in sink drains in both ICUs, with the old ICU
having significantly higher ARO burden in sink drains than the
new ICU. AR Enterobacterales, which are frequently associated
with fecal contamination, were rarely found on surfaces. In both
ICUs, Stenotrophomonas spp. and Pseudomonas spp. were the
two most frequently collected genera; however, different lineages
dominated each ICU. Stenotrophomonas maltophilia strains
formed months-long reservoirs in sink drains in the new ICU
with no evidence of strains association with bloodstream infec-
tions during our study time period. In contrast, Pseudomonas
aeruginosa strains formed persistent reservoirs for most of the
year in the new ICU in multiple sink drains and showed evidence
of shared strains across environmental samples and patient blood
cultures. These results provide evidence that sink drains in the
healthcare environment can serve as ARO reservoirs that are
associated with human clinical infections.

Methods
Sample collections and culturing. Environmental and fecal
samples received a non-human subjects determination by the
Institutional Review Board (IRB) of Washington University
(201712083). Blood culture clinical isolate collection was
reviewed and approved by IRB (201901053) and by the Siteman
Cancer Center Protocol Review and Monitoring Committee. We
received IRB approval and Siteman Cancer approval for clinical
isolates from patients. The IRB granted a waiver of informed
consent for the collection of these specimens because they had
been collected as part of routine clinical care. We sampled 6 SCT
ICU (old ICU) rooms 3 times over the course of 1 month in the
old building from December 2017 – January 2018. At each time
point, nine surfaces were sampled using Eswab collections
(Copan) pre-moistened with molecular water: the foam dispenser,
the gown and glove storage area, the bedside rail, the nursing call
button, the room floor, the light switch, the computer, the in-
room sink handles, and the in-room sink drain. Three swabs were
held together to simultaneously sample each surface. We also
collected 2 samples of 15 mL in-room sink water directly from the
faucet: 1 sample was collected immediately after turning the
faucet on, and 1 sample was collected after allowing the water to
run for 2 min.

We sampled 6 SCT ICU (new ICU) rooms and communal SCT
ICU areas every other week for 5 months and then every month
for 1 year in the new building for a total of 21 samplings (Fig. 1b).
Samples were collected twice during the first week of sample
collections in the new ICU building: the first after construction
terminal clean and the second after custodial terminal clean. Both
time points collected were before patients and staff had entered
the ICU. At each time point, the same nine patient room surfaces
as described above were sampled plus an additional 3 surfaces: the
sofa from the patient room, the bathroom toilet from adjoining
bathroom, and the sink drain from the adjoining bathroom. We
also collected 15 mL of in-room sink water and bathroom sink
water. At each time point, we also sampled four communal
surfaces: the housekeeping closet drain, the family area floor, the
soiled utility room drain, and the vending machine. For each time
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point in both buildings, we obtained remnant de-identified fecal
specimens that had been submitted to the clinical microbiology
laboratory for C. difficile testing from patients in the same unit as
surface swab collection.

Eswab specimens from surfaces, water samples and fecal
samples were cultured the same day of sampling. Eswab

specimens were vortexed and 90 µL of eluate was used for culture
inoculation per plate/test condition. For fecal specimens, 90 µL of
specimen was used for culture inoculation. For water samplings,
100 µL of vortexed water sample was used for culturing. All
samples were inoculated to each of the following culture medium:
Sheep’s blood agar (Hardy), VRE chromID (bioMerieux), Spectra
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Fig. 1 ARO reservoir colonization models and sample processing scheme. a Two models of reservoir colonization. Model 1 shows antibiotic-resistant
organism (ARO) transmission from patients to hospital surfaces and then to other patients. Model 2 shows ARO transmission from environmental
reservoirs to hospital surfaces to patients. b Sample collection time points and sample processing scheme from surface collections to WGS. In sample
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MRSA (Remel), HardyCHROM ESBL (Hardy), MacConkey agar
with cefotaxime (Hardy), Cetrimide agar (Hardy), and Sabouraud
dextrose+ chloramphenicol (Hardy). Plates were incubated at
35 °C in an air incubator and incubated up to 48 h prior to
discard if no growth (up to 7 days for sabouraud dextrose +
chloramphenicol). Two colonies of each colony morphotype were
subcultured and identified using matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry (MALD-TOF MS)
with the VITEK MS system. All isolates recovered were stored at
−80 °C in TSB with glycerol.

Isolates recovered from standard-of-care blood cultures during
the same time frame of the surface sampling were recovered from
frozen stocks in the clinical microbiology laboratory.

Antimicrobial susceptibility testing. Antimicrobial susceptibility
testing (AST) was performed using Kirby Bauer disk diffusion,
interpreted according to CLSI standards33. AST was performed
on gram negative bacilli using ampicillin, cefazolin, cefotetan,
ceftazidime, ceftriaxone, cefepime, meropenem, ciprofloxacin,
levofloxacin, piperacillin-tazobactam, ceftolozane-tazobactam,
ceftazidime-avibactam, ampicillin-sulbactam, trimethoprim-sul-
famethoxazole, gentamicin, amikacin, fosfomycin, colistin,
aztreonam, doxycycline, minocycline, and nitrofurantoin and
antimicrobials were interpreted/reported as appropriate for the
specific species. We also performed a carbapenamase inactivation
assay on all Enterobacterales and Pseudomonas isolates that were
resistant or intermediate to meropenem or imipenem.

Short read sequencing. Total genomic DNA was extracted from
cultured isolates using the Bacteremia kit (Qiagen, Gernmantown,
MD, USA) and DNA was quantified using the PicoGreen dsDNA
assay (Thermo Fisher Scientific, Waltham, MA, USA). A total of
5 ng/µL was used as input for Illumina sequencing libraries with
the Nextera kit (Illumina, San Diego, CA, USA). The libraries were
pooled and sequenced on a NextSeq HighOutput platform (Illu-
mina) to obtain 2x150bp reads. The reads were demultiplexed by
barcode and had adapters removed with Trimmomatic34. Reads
are available under BioProject PRJNA741123 (http://www.ncbi.
nlm.nih.gov/bioproject/741123). Processed reads were assembled
into draft genomes using SPAdes v3.11.035. Assemblies were
assessed for quality using Quast v3.236 and checkM v1.0.1337.
Assemblies were considered to have passed quality standards if
completeness was greater than 90% and contamination was below
5%. We used Prokka on the assembled genomes to identify and
annotate open reading frames38.

Long read sequencing. Isolates were streaked from frozen stocks
onto LB agar and allowed to grow at 37 °C for 48 h prior to
extraction. Lawns were scraped from plates into nuclease free
water. Genomic DNA was extracted using the bacteremia kit
(Qiagen, Gernmantown, MD, USA), with the modification of
limiting the vortex step to 2 min to preserve DNA fragment
length. A total of 1 ug DNA from each isolate was used as input
for library preparation using the Oxford Nanopore ligation
sequencing kit and native barcode expansion kits (Oxford
Nanopore Technologies, Oxford Science Park, OX4 4DQ, UK).
Libraries were pooled and sequenced on a MinION flow cell
(Oxford Nanopore Technologies, Oxford Science Park, OX4
4DQ, UK). Raw reads were preprocessed using Filtlong v0.2.039

with parameters –min_length 1000 –keep-percent 95 –target_bases
650000000. Hybrid assemblies were created by assembling long
read sequencing data in Flye v2.8.140 and polished with short
reads from Illumina sequencing41. Assemblies were assessed for
quality using Quast v3.236 and checkM v1.0.1337. Reads are

available under BioProject PRJNA741123 (http://www.ncbi.nlm.
nih.gov/bioproject/741123).

Genomic taxonomic identification. Following draft assembly, we
determined taxonomic identification by ANI, MASH, and MLST.
Species were determined if the genome had >75% aligned bases
and >95% ANI with the type genome. Assembled genomes were
considered to be the same genomospecies if they had >95%
pairwise match but no >95% match with a type genome. We
compared all assembled genomes against all assembled genomes
and all type genomes using dnadiff42. If no species were identi-
fied, we used Mash to determine genera by comparing assembled
genomes against all NCBI reference genomes43. After all phages
were removed, genera were considered to be the same as the hit/
hits with the highest identity. MLST was determined using mlst
v2.444,45.

Phylogenetic analyses. To create core genome alignments, the gff
files produced by Prokka were used as input in Roary46. Roary
alignments were used to create an approximate maximum like-
lihood tree with FastTree47. Branch length precision was rounded
to 0.0001 substitutions per site. The output newick files were
visualized and annotated with isolate source data using ggtree
(R)48,49. Roary pangenome sequences were further annotated
using EggNOG v5.050.

Isolate groupings based on SNP pairwise distances. Snippy
v4.4.351 was used to map forward and reverse reads for isolates to
the type strain complete genome assembly and to call SNPs. To
determine groups, we compared pairwise SNP distances between
each isolate pairs of the same species. Isolates were grouped into
perfectly reciprocal groups at every pairwise distance cutoff
between isolates using igraph52. The SNP distance cutoff was set
at the lowest SNP value where number of groups plateaued for
many thousands of SNPs, indicating that the members of these
groups are much more closely related to one another than other
isolates.

Antibiotic-resistant gene identification and analyses. We
identified acquired antibiotic resistance mutations against ami-
noglycosides, amphenicols, β-lactam, folate pathway inhibitors,
fosfomycin, macrolides/lincosamides/streptogramins, quinolones,
rifamycin, tetracycline, and vancomycin using ResFinder53.

Bayesian phylogenetic analysis of molecular sequences using
BEAST 2. Group 1 isolates were long-read sequenced and quality
filtered as described above, and the core genome alignment was
constructed as above. The core genome alignment was composed
of 5964 core genes out of 6986 total genes, which we used as input
genes for our time-measured phylogenetic analysis in BEAST
v2.6.554. The core genome alignment was converted to a Nexus
file using MEGA X55. We used BEAUti v2.6.5 from the BEAST
v2.6.554 software package to convert the Nexus file into a.xml file
for input into BEAST. We chose to use the HKY site model
because it allows for some flexibility in substitution rate for dif-
ferent types of substitutions, and catches most major biases56. We
also used a strict clock model because our sequences are all from
the same hospital within just over a year of each other, so we have
no reason to suspect different substitution rates for different
lineages56. Tip dates were determined as the number of days
between each sample and the first sample collected. Model
diagnostic information and parameter distribution were viewed
using Tracer v1.7.257. Individual trees were visualized using
FigTree v1.4.458 and the consensus tree was visualized using
DensiTree v2.2.759.
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Statistics and reproducibility. Comparative statistics between
old and new building samples were normalized by number of
samplings. Generalized linear mixed models were used for sig-
nificance testing, with Room and Week as random effects. In
Fig. 2c, d, isolate frequencies were collapsed by Room and then
averaged. Error bars indicate standard error. For all main text
phylogenetic trees, branches with less than 80% bootstrap support
were collapsed, and branches with 80–90% bootstrap support
were labeled as such. Supplementary Figures containing phylo-
genetic trees (Supplementary Figs. 1c, d, 2, and 3a) have a
minimum resolution of 0.00055.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
AROs were collected and cultured from ICU surfaces, fecal
samples, and clinical blood cultures in an old and new ICU. To
test models of ARO reservoir colonization and transmission in a
hospital built environment setting, we collected 1594 surface
samples and 72 patient fecal samples at 24 time points from 6
ICU rooms in 2 buildings. Full metadata for 829 collected isolates
has been included as Supplementary Data 1. The first building
was the SCT ICU that was located in a well-established hospital
building, the old ICU. The second was a newly constructed SCT
ICU (new ICU); after construction was completed on the new
ICU, the same staff and patients from the old ICU were all
relocated to the new ICU. The old ICU rooms were sampled 3
times, with a week between samplings, during the final month of
ICU occupancy (Fig. 1b). New ICU rooms were sampled twice
(two days apart) after the completion of construction while the

rooms were unoccupied, then once every other week for the first
5 months of patient and staff occupancy (n= 11 samplings), then
once every month for the rest of the first year of occupancy
(n= 8 samplings) (Fig. 1b). For both ICUs, we swabbed 10 high-
touch ICU surfaces (with an additional 4 surfaces from attached
bathrooms in new ICU rooms). We also obtained remnant fecal
samples submitted for routine Clostridioides difficile testing as
well as isolates recovered from standard-of-care blood cultures
from patients in the ICU. We utilized selective microbiologic
culture on surface and fecal samples to enrich for and culture
AROs, including 1) organisms that form colonies on antibiotic
media, which we later assessed for resistance phenotypes by
antibiotic susceptibility testing (AST), and 2) organisms that are
inherently resistant to antibiotics, including Pseudomonas, Ste-
notrophomonas, and C. difficile60–62. Results from AST can be
found in Supplementary Data 2. Blood culture isolates were
recovered in the clinical laboratory as part of routine clinical
methods (i.e., not selectively cultured for ARO) and were retro-
spectively obtained for during 46 different weeks of the study
spanning 61 weeks total. We recovered 566 AROs from surface
environmental samples and 164 AROs from fecal samples, and we
obtained 99 isolates from clinical blood cultures in the clinical
microbiology laboratory.

Sink drains had a high ARO burden compared to other ICU
surfaces. To identify potential ARO surface reservoirs, we mea-
sured ARO burden (defined as number of different ARO isolates/
morphotypes per samples collected) on different surfaces. Cul-
tured bacteria were identified using VITEK MS matrix assisted
laser desorption ionization-time of flight mass spectrometry
(MALDI-TOF MS) (bioMerieux). ARO burden was significantly
higher in sink drains than on other ICU room surfaces in both
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Fig. 2 Variation in isolate collection location, identity, and timing across all sampling. Error bars indicate standard error of intensive care unit (ICU)
rooms. ** indicates generalized linear mixed-modeling (GLMM) p-value <0.01. a In-room and bathroom sink drains have significantly more isolates per
collection than other surface locations in both the old and new ICU buildings (n= 566 surface isolates). Locations in light gray were not collected in old
ICU. b Genus of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF) species identification of all collected isolates in
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in-room sink drain sample collection for all time points, n= 429. f Variation in number of isolates collected per other surface sample collection across all
time points (excludes sink drain, fecal, and communal samples, n= 137). Gray bars indicate weeks with incomplete sampling of surfaces. BP before patient
and staff move-in.
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the old and new ICUs (Fig. 2a, GLMM: p < 0.001, marginal
R2= 0.942, conditional R2= 0.945). All other ICU room surfaces
had at least a 6-fold lower ARO burden (mean old ICU sink
drains: 4.02 isolates/sample collection, mean old ICU other sur-
faces: 0–0.64 isolates/sample collection, mean new ICU sink
drains: 1.59–1.72, mean new ICU other surfaces: 0–0.21). ICU
sink water had low ARO burden (mean range of 0–0.02 isolates/
sample collection) (Fig. 2a).

Pseudomonas was the most frequently detected genus,
comprising 235/696 (33.8%) of all isolates cultured from the
new ICU and 48/133 (36.1%) from the old ICU (Fig. 2b). The
second most frequently identified genus was Stenotrophomonas
(115/696 (16.5%) in the new ICU and 13/133 (9.8%) in the old
ICU). Both genera were found primarily in sink drain samples
(215/283 (76.0%) of Pseudomonas and 114/128 (89.1%) of
Stenotrophomonas). Enterobacterales made up 77/696 (11.1%)
and 20/133 (15.7%) of all isolates from the new and old ICUs,
respectively, but only 7/97 (7.2%) were isolated from surface
samples (Fig. 2b). Candida spp. isolates were identified in both
the new ICU (64/696 (9.2%)) and old ICU (12/133 (9.0%)) with
isolates primarily coming from fecal samples (50/76 (65.8%)) and
room floor (10/76 (13.2%)). Gram positive AROs, including
genera Enterococcus, Staphylococcus, and Clostridium, were found
in both the new ICU (63/696 (9.0%)) and old ICU (23/133
(17.3%)). Clostridium was recovered from in fecal samples
(n= 5). Staphylococcus and Enterococcus were found primarily
in blood and fecal samples (52/81 (64.2%) of Staphylococcus and
Enterococcus) and never found in sink drains. (Fig. 2b). These
data suggest that in both buildings, sink drains are areas of
substantial concern since they persistently yield cultures of
Pseudomonas spp. and Stenotrophomonas spp., which both
include strains capable of causing human infection63,64.

ARO burden did not increase after patients and staff move in
or over one year of sampling in new ICU. Next, we compared
ARO burden across ICUs, patient and staff occupancy, and time
points. Since there were large differences in ARO burden across
surfaces, we separated environmental samples into 2 groups: sink
drains and other (Fig. 2c, d). First, we compared ARO differences
between the old ICU and new ICU before and after patient
occupancy. We found ARO burden was higher in the old ICU
than in the new ICU in sink drains (Fig. 2c, GLMM p < 0.001,
R2= 0.59) but not on other surfaces (Fig. 2d, GLMM p > 0.05,
R2= 0.07). Further, there was no difference in ARO burden
before and after patient occupancy (Fig. 2c, d, GLMM p > 0.05).
When we compared ARO burden in sink drains over time, we
found no significant differences between the first week of col-
lection after patients’ occupancy in the new ICU and any other
time point collected (Fig. 2e, Wilcoxon signed-rank test p > 0.05).
The same was true for other surface collections (Fig. 2f, Wilcoxon
signed-rank test p > 0.05), although ARO burden for other sur-
faces had high variation across weeks (mean range 0.02–0.35).
Together, this suggests that there were environmental-associated
differences in ARO burden between the old and new ICUs, and
that ARO burden did not change after patient occupancy in the
new ICU nor significantly increase or decrease during 1 year of
collections.

No evidence of AR Enterobacterales reservoirs on surfaces in
either ICU. To determine taxa-specific patterns in reservoir
colonization, we performed WGS of Enterobacterales, Pseudo-
monas, and Stenotrophomonas isolates from environmental, fecal,
and blood samples from both ICUs. AR Enterobacterales are
some of the most feared AROs for HAIs8 and many are associated

with human fecal colonization65–67. We collected 97 isolates from
4 genera of Enterobacterales: Escherichia, Klebsiella, Citrobacter,
and Enterobacter (Supplementary Fig. 1A). Isolates were recov-
ered primarily from fecal samples (45/97 (46.4%) of Enter-
obacterales) and from blood cultures (45/97 (46.4%) of
Enterobacterales) (Supplementary Fig. 1A). Escherichia coli was
the most frequently detected Enterobacterales species (37/97
(38.1%)), followed by Klebsiella pneumoniae (18/97 (18.6%))
(Supplementary Fig. 1A). Notably, from 1594 surface samples
over 24 time points, there were only 7 instances of an Enter-
obacterales isolate being cultured from an ICU surface sample
(Supplementary Fig. 1B). Of the 7 isolates, 2 were different
morphotypes of Citrobacter freundii isolated from the same
sample with high average nucleotide identity (ANI) (99.99%),
suggesting closely-related organisms or morphovariants. Apart
from those 2 C. freundii isolates, no 2 surface Enterobacterales
were the same species and no 2 Enterobacterales were found on
the same surface twice (Supplementary Fig. 1B). These data
suggest AR Enterobacterales do not represent ARO reservoirs on
any of the sampled ICU surfaces, despite being present in many
patient fecal samples.

To determine within species isolate similarity, we compared
strain genomes and antibiotic resistance profiles across the two
most frequent Enterobacterales species: E. coli and K. pneumo-
niae. When we compared multi-locus sequence typing (MLST)
profiles of E. coli isolates, we found one instance of shared
sequence type (ST131) between a surface isolate and a blood or
fecal isolate. In a core genome phylogenetic tree, we found no
phylogenetic clustering based on isolate type or ICU, except for 3
different E. coli morphotype isolates all taken from the same fecal
sample and sharing 99.98% ANI (Supplementary Fig. 1C). To
determine if antibiotic resistance profiles vary by sample type or
location, we determined phenotypic susceptibility and identified
antibiotic resistance genes (ARGs) using Resfinder68,69. By Kirby
Bauer disk diffusion, interpreted according to Clinical and
Laboratory Standards Institute (CLSI) standards, 2/37 blood E.
coli isolates were not resistant or intermediate resistant to any
tested antibiotics. AST profiles varied across the E. coli isolates
with isolates frequently resistant to ampicillin (23/37), cefazolin
(20/37), ciprofloxacin (19/37), and levofloxacin (19/37) (Supple-
mentary Fig. 1C). We found 9/37 E. coli isolates were resistant to
cefepime, including the 1 surface isolate, and no E. coli isolates
were resistant to meropenem. We found 24/37 E. coli isolates
were resistant to multiple antibiotics with 20 isolates resistant to
four or more drugs. E. coli isolates harbored various ARGs
(Supplementary Fig. 1C), but ARG profile did not vary by sample
type or location.

In K. pneumoniae isolates, we also found no phylogenetic
clustering based on isolate type or ICU building (Supplementary
Fig. 1D). Only one K. pneumoniae isolate, which was recovered
from patient blood culture, demonstrated meropenem resistance,
but it was negative for carbapenemase activity using the
Carbapenem Inactivation Method33. 3/18 K. pneumoniae isolates
were resistant to cefepime. 10/18 K. pneumoniae isolates were
resistant to multiple drugs with 7 isolates resistant to four or
more antibiotics. fosA, oqxA, and oqxB were found in a majority
of isolates, 14/18 (78%), 17/18 (94%), and 17/18 (94%)
respectively (Supplementary Fig. 1D). Together, these data show
that while AR Enterobacterales were recovered from fecal
specimens and can be a cause of blood stream infection in
patients in the ICUs, these isolates were rarely found on surfaces,
with no clear relationships between source of isolation and MLST,
building, or antibiotic resistance. This suggests patient fecal
contamination of sampled surfaces in these ICUs was rare and
did not lead to ARO reservoir formation.
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Stenotrophomonas maltophilia strains are found persistently
across one year of sampling in single ICU rooms. While S.
maltophilia is predominantly found in environmental water
sources, the species is an emerging pathogen associated with
HAIs, particularly in immunocompromised patients; these
infections are associated with substantial case fatality rates64,
primarily because of the intrinsic antimicrobial resistance of this
microorganism and the vulnerable patient population that it
affects. Stenotrophomonas spp. were isolated from every week
sampled, except for the first week of collection in the old ICU,
although the ratio of Stenotrophomonas isolates to all collected
isolates varied over time (Fig. 3a). Among 128 isolates identified
as S. maltophilia by MALDI-TOF MS, ANI species identification
and MASH genus identification typed them as 54 S. maltophilia
isolates, 1 S. lactiubi, and 53 Stenotrophomonas spp. (not other-
wise specified) in 9 genomospecies groupings (Fig. 4b). When we
compared MLST and core genome phylogeny of S. maltophilia
isolates, we found that sequence type and phylogenetic clades
were not shared across ICUs (Fig. 3c, d, Supplementary Fig. 2).
Only two sequence types were identified on the same respective
surface over multiple weeks, suggesting that these surfaces acted
as reservoirs (Fig. 3c, blue sequence types). S. maltophilia of ST27
was found 9 times over 35 weeks, and S. maltophilia of ST1 was
found 13 times over the course of a year (56 weeks), including

before patient and staff occupancy (Fig. 3c). Both sequence types
remained in the same room, with no evidence of crossover
between rooms in the new ICU (Fig. 3c). Phenotypic susceptibly
demonstrated no isolates with trimethoprim-sulfamethoxazole or
minocycline resistance, one isolate with levofloxacin resistance,
and 34/54 isolates with colistin resistance.

P. aeruginosa were diverse and found persistently across one
year of sampling and in all 6 new ICU rooms. While commonly
found in the environment, Pseudomonas spp. have a long history
of causing HAIs60,70–73. Studies have shown that P. aeruginosa
reservoirs established in hospital built environments can lead to
infections and outbreaks74–78. However, it is unclear when these
reservoirs became established, relative to patient or staff occu-
pancy of the healthcare environment, and how pervasively
Pseudomonas spp. may colonize ICU surfaces. We recovered
more Pseudomonas spp. isolates than any other genus during our
collections (Fig. 2b). MALDI-TOF MS identified 283 Pseudomo-
nas spp. isolates. Pseudomonas spp., and particularly P. aerugi-
nosa, isolates were collected at every time point in the study
period, including before patient occupancy (Fig. 4a, b). After ANI
species identification and MASH genus identification, we found
155 P. aeruginosa isolates, 71 Pseudomonas spp. isolates in 13

a
MLST

No Strain Type

1

27

28

5

84

New

Old

Building

b

Rm1 in-room sink drain

Rm2 light switch

Rm3 in-room sink drain

Rm3 bedside rail

Rm4 in-room sink drain

Rm3 bathroom sink drain

Rm4 bathroom sink drain

Rm4 in-room sink drain

Rm5 bathroom sink drain

1 3 5.5 6 8 10 12 14 16 22 24 26 30 35 39 44 48 51 57 61
Week

MLST
1
27
28
5
84

c 7820−6−C
3

7820−8−C
1

7820−12−C
2

7820−26−E2

7820−30−E3

7820−10−E2

7820−10−E1

7820−30−C1

7820−51−C2

7820−61−C2
7820−35−C3

7820−39−C5

7820−44−C47820−51−E2

78
18

−1
6−

E2

78
18

−4
8−

E2

78
20

−2
0−

C1

78
20

−6
−C

1

89
15

−1
−D

3

89
17

−1
−D

5

8919−3−D7

89
17

−3
−G

1

8918−3−J27821−48−E2
7821−57−E1

7824−57−C2
7824−61−C1

7820−12−E2

78
20

−1
4−

E1

78
20

−4
8−

C2

7820−24−C2

78
20

−1
4−

E4

78
20

−6
−E

5
78

20
−8

−E
3

78
20

−T
5B

−C
1

78
20

−2
2−

E1

7820−12−E6
7820−24−E3
7820−16−E2

7820−22−C2

7820−12−C3

7820−16−C2

7820−8−C5

NBTerm5B−P3
NB−Term5B−P6

7817−48−E2

7817−30−E1

7817−26−E1

7817−57−E2

7817−22−E1

7817−35−E2

7817−39−E3

7817−24−E1
7817−44−E4

0.87
0.904

0.813

0.918

0.831

0.879

0.886

0.808

0.889

0.861

0.824 0.919

0.887

0.862

d

Old New

0 1 2 3 4 5 0 10 20 30 40 50

Stenotrophomonas lactitubi
Stenotrophomonas spp 9
Stenotrophomonas spp 3
Stenotrophomonas spp 8
Stenotrophomonas spp 7
Stenotrophomonas spp 5
Stenotrophomonas spp 6
Stenotrophomonas spp 4
Stenotrophomonas spp 1
Stenotrophomonas spp 2

Stenotrophomonas maltophilia

Isolate Count

Sp
ec

ie
s Sample Type

In-room sink drain
Bathroom sink drain
Blood
Other surface
Stool

0.00

0.25

0.50

0.75

1.00

0 1 3 5 5.5 6 8 10 12 14 16 18 20 22 24 26 30 35 39 44 48 51 57 61
Week

S
te

no
tr

op
ho

m
on

as
 / 

al
l i

so
la

te
s 

ra
tio

Old NewBP
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genomospecies groupings, and 54 isolates from other Pseudo-
monas species (Fig. 4c). Most P. aeruginosa isolates were from
surface samples (80%); 11% were from fecal samples; and 9%
were from blood cultures (Fig. 4c). We did not find overlap
between any other Pseudomonas spp. isolates from patient blood
cultures and environmental samples.

When we compared MLST and core genome phylogeny of P.
aeruginosa isolates, we find that isolates from different ICUs fall
into different clades and strain types (Fig. 4d, e, Supplementary
Fig. 3). To understand the genomic context of P. aeruginosa
isolates, we compared the genomes of isolates recovered from
surface and patient sampling with 172 reference P. aeruginosa
genomes downloaded from NCBI (Supplementary Data 3).
Reference genomes were phylogenetically diverse and fell into 3
categories: (i) isolates from clinical infections, (ii) AR isolates

from the CDC with known antibiotic resistance, and (iii)
environmental isolates that had been collected from water and
waste projects. The isolates we collected from both the old and
new ICUs spanned most of the diversity of P. aeruginosa with no
distinct clustering between collected ICU surface isolates and
environmental, clinical, or AR isolates (Fig. 4d). Although there
were no distinct clades based on isolate building or surface
source, we do find that our isolates form a number of clades with
highly-related surface isolates (Fig. 4d). These frequently
corresponded with sequence type. There were two cases of
overlap in sequence type between the old and the new building
(Fig. 4e). ST17 was found in sink drains in both the old and new
ICU and found in a blood culture in the new ICU. ST170 was
found in surface samples in the old ICU and a patient fecal
sample in the new ICU (Fig. 4e). Notably, P. aeruginosa of
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ST1894 was recovered from the same sink drain beginning before
patient occupancy and continuing through for the full year of
collection in the new ICU. This repeated isolation of
ST1894 suggests that it may have established a continuous
reservoir in this room in the new ICU. Furthermore, isolates of P.
aeruginosa of ST1894 were also recovered from sink drains in all
6 sampled ICU rooms and were found across 5 or more time
points in 5/6 sampled ICU rooms (Fig. 4e), suggesting this
colonization and persistence is more widespread. Finally, we
found that 3 blood culture isolates (3.7% of all blood culture
isolates tested) also belonged to ST1894, which prompted a higher
resolution comparative analysis of all ST1894 strains, due to its
potential to contaminate the environment and be associated with
bloodstream infections.

Antibiotic resistance in P. aeruginosa isolates varies between
the two ICUs. To determine if antibiotic resistance profiles vary
by location, we determined phenotypic susceptibility using anti-
biotic susceptibility testing (AST) and identified ARGs in
assembled genomes using Resfinder53. P. aeruginosa are defined
as AROs because of their intrinsic resistance to many ami-
noglycosides, tetracyclines, β-lactams, and quinolones;60,79 we
performed ASTs for 14 antibiotics for all Pseudomonas isolates to
measure acquired resistances to β-lactams, cephalosporins, car-
bapenems, penicillins, fluoroquinolones, aminoglycosides, and
polymyxins. AST profiles were similar across P. aeruginosa of the
same sequence type (Fig. 5). P. aeruginosa isolates of ST1894 were
largely not resistant to the antibiotics tested. P. aeruginosa isolates
of ST282 were resistant to meropenem (11/15) and gentamicin
(15/15). P. aeruginosa isolates of ST308 were resistant to mer-
openem (6/8), imipenem (5/8), ciprofloxacin (8/8), levofloxacin
(8/8), and gentamicin (8/8). As different sequence types domi-
nated the different ICUs and resistance profiles were similar
across sequence types, we found trends in resistance to be dif-
ferent between the two ICUs with isolates from the old ICU

having a higher percentage of resistance to meropenem and
imipenem than P. aeruginosa isolates from the new ICU (new
ICU: 7% imipenem, 7% meropenem and old ICU: 40% imipe-
nem, 55% meropenem) (Fig. 5).

Much like the AST profiles, the ARG profiles also appeared to
be linked to sequence type (Fig. 5). Nearly all P. aeruginosa
isolates carried the resistance genes aph(3’)-IIb (153/155), blaPAO
(154/155), catB7 (151/155), and fosA (155/155). Isolates from
ST282 were the only identified to contain the aminoglycoside
resistance genes aac(6’)-IIb (15/15) and aadA1b (15/15), which
could explain the phenotypic resistance to gentamicin. All isolates
from ST 1894 carried the β-lactam resistance gene blaOXA-396
(52/52), while it was less common in other sequence types (35/
103). P. aeruginosa is also capable of developing resistance to
carbapenems (meropenem, imipenem), fluoroquinolones (cipro-
floxacin, levofloxacin), and aminoglycosides (gentamicin) by
chromosomal point mutations, rather than acquisition of
ARGs80,81.

P. aeruginosa Group 1 strain was found across 1 year of
sampling and in both environmental and patient samples.
While MLST has been used previously to describe strains and
outbreaks, it is limited to a small number of genes or alleles and
does not enable genome-resolved understanding of strain relat-
edness. Accordingly, here we utilized WGS data for each P. aer-
uginosa isolate to perform an in-depth analysis of similarity
across genomes. We calculated pairwise SNP distances by map-
ping quality filtered short-reads from all P. aeruginosa isolates to
a high-quality, long-read sequencing-assembled genome of the
first temporal occurrence of ST1894, with a mean of 89.8% of
reads mapped to the genome. We then used a grouping technique
on P. aeruginosa isolates to find fully reciprocal groups82. We
compared pairwise SNP distances between P. aeruginosa isolate
pairs and iterated through each unique SNP distance cutoff to
filter the isolate pairwise network list (Fig. 6a, b). For each SNP
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cutoff, we determined the number of complete subgraph groups,
defined by each node in the group was connected to every other
node in the group, and isolates per group. The number of P.
aeruginosa groups rose initially from 3 to 18 groups as SNP
distances increased from 0 to 377 SNPs. After a peak at 756 SNPs
with 20 groups, the total number of groups slowly decreased to a
plateau of 14 groups at 2743 SNPs (Fig. 6c). From this, we
determined an appropriate SNP cutoff that separated closely-
related isolates from other groups was 2743. Using this definition,
P. aeruginosa isolates fell into 14 groups, with the largest group
(Group 1) including 53 isolates (Fig. 6d). Only three groups had
isolates that spanned patient and environmental isolates: Group
1, Group 6, and Group 12. Group 1 had no more than 11 SNPs
between isolates and included isolates from blood cultures and
environmental samples. 52/53 of the isolates in Group 1 were
ST1894, and the remaining isolate was unidentified but had 5/6
alleles identical to ST1894. The isolates in this group persistently
and pervasively colonized new ICU sink drains and were cultured
from sink drains 49 times across 56 weeks (Fig. 6f). Aside from
sink drains, Group 1 was also found in 3 patient blood cultures, 1
of which was isolated from a different ward in the same building
(Fig. 6f). 1 isolate from Group 1 was isolated from the gown and
glove personal protective equipment box located just outside the
room. All isolates within this group were within 11 short-read
SNPs of each other. Group 2 (ST17) was found once in a sink
drain in the old ICU, 7 times in the bathroom sink drain of Room
5 in the new ICU, and once in a blood culture isolate. Group 12
(ST241) was found once in a sink drain in the new ICU, and once
in a blood culture isolate. This highlights 3 instances where a sink
drain isolate was found within the same genome-resolved group
as a blood culture isolate of a patient in the ICU.

When we compared the accessory genomes of our cultured
isolates and reference P. aeruginosa genomes, we found a mean of
4018 (range 3221–5003) accessory genes per genome. Group 1
isolates have a mean of 3947 (range 3885–4022) accessory genes,
suggesting average accessory genome size. To compare variation
in accessory genomes across P. aeruginosa we used a principal
component analysis (PCA). We found distinct clustering between
Group 1 isolates and the rest of the P. aeruginosa isolates
(PERMANOVA: p < 0.001) (Fig. 6e). There were 36 accessory
genes with high loading scores on PC1 that are unique to Group
1, of which only 7 could be characterized by EggNOG
(Supplementary Data 4, Supplementary Data 5)50.

P. aeruginosa Group 1 isolate lineages clustered by room. SNP
analysis from short reads allows us to accurately estimate geno-
mic relatedness and group highly-related genomes, but obtaining
fully-resolved genomes is necessary to identify transmission and
reservoir persistence in sink drains. Our short-read data indicated
<11 SNPs between Group 1 isolates, which is well within pre-
viously established probable transmission for P. aeruginosa83.
Indeed, our phylogenomic tree building grouped isolates similarly
to this analysis (Fig. 4d, Supplementary Fig. 3). To investigate
reservoir formation of P. aeruginosa Group 1 isolates over time at
higher genomic resolution, we obtained long-read sequencing
data for the 53 isolates in Group 1. We created hybrid assemblies
of each genome (assemblies had between 1–11 and an average of
4.32 contigs) and found the core genome to consist of 4863 genes
out of 9714 total genes. By examining the accessory genome, we
identified 4 additional isolates that were responsible for a large
portion of the accessory genome and removed them from ana-
lysis, as they were unlikely to be part of the same lineage. The
remaining 49 Group 1 isolates consisted of 5964 core genes from
6986 total genes.

In our time-measured phylogenetic analysis using BEAST54,
we created a consensus tree of estimated time since most recent
common ancestor (TMRCA) using the Group 1 core genome
(Supplementary Fig. 4). As we do not have isolates collected this
far back, confidence in branch divisions is low (Supplementary
Fig. 5) and the TMRCA of 8034 days was largely driven by one
isolate, which was removed from further analysis. The remaining
isolates formed a consensus tree (Fig. 6g) with a TMRCA of
2752 days with a 95% highest posterior density interval (HPD) of
1523–4362 days. 38/48 of these isolates were taken from the in-
room sink drains; 7 were found in the sink drains from the
attached bathroom; and 3 were isolated from blood infections.

The majority (40/48) of these isolates are contained under
Node 1 and have a TMRCA of 778 days with a 95% HPD of
488–1122 days. This clade displays 3 unique evolutionary
patterns. Descending from Node 2, eight isolates cluster together.
7/8 of these isolates were taken from the in-room sink drains in
Room 1 within the first 2 weeks of the study, suggesting the
diversity shown represents heterogeneity within a given sink
rather than in-room evolution. We also found two likely instances
of within room evolution, marked by Nodes 3 and 4. These
isolates branch off from one lineage as time progresses, suggesting
an evolving, single reservoir. Outside of these main features, the
remaining isolates under Node 1 were from mixed rooms and
collection weeks with low confidence in the branching (Supple-
mentary Fig. 4). The commingling and low confidence in
branching suggests strain exchange between rooms of a common
pandemic strain throughout the sampling period.

Interestingly, one of the blood isolates clustered with an
environmental isolate within the clade under Node 1, but the
other two were further removed from the bulk of Group 1. While
all isolates were collected from patients in this ward at some point
during their stay, this isolate was collected two days before the
patient moved into Room 5. The other two blood isolates were
further removed from Node 1 environmental isolates. However,
there are possibly different evolutionary pressures within each
sample type, which could drive different mutation rates. The
overall close relation of the blood and surface isolates implies
direct correlation within the duration of the study period and
potentially presents a great risk to patient safety.

Discussion
The process of ARO reservoir colonization of the hospital built
environment is dependent on complex interactions, and trans-
mission events to vulnerable patients are not well
understood27,84,85. In this study we investigated the microbiologic
changes in a new SCT ICU before and after patient or staff
occupancy and tracked ARO strains cross ICU surfaces and
patients. We identified a mechanism of ARO colonization
development that occurred prior to patient or staff move-in,
which could promote the necessity of future surveillance inves-
tigations. We compared these colonization patterns to equivalent
microbial sampling in the corresponding old SCT ICU during its
final month of occupancy, before patients and staff moved from
there to the new ICU, to obtain a unique comparison of distinct
hospital built environments following relocation of patients and
hospital staff. We found ARO reservoirs were rare on most
hospital surfaces apart from sink drains. Non-sink drain surfaces
showed no difference in ARO burden between the two buildings,
but sink drains in the old ICU had a significantly higher burden
than those in the new ICU. Further, reservoir colonization and
transmission varied by taxa and between buildings, with evidence
in P. aeruginosa of shared strains across multiple sinks and
human clinical infections in the new ICU.
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Recent studies have focused on better understanding and
characterizing the hospital microbiome using metagenomics11–15.
These characterizations find correlations between samples of
hospital surfaces, patients, and staff, particularly in skin- and gut-
associated taxa such as Enterobacterales and Staphylococcus,
suggesting the microbiomes of humans and the hospital built
environment influence each other11–15. Further, strain tracking
using metagenomic analyses indicates that similar strains may be
present on surfaces over time, suggesting potential reservoir
colonization on surfaces11,13. Building on these studies, we
focused on high-resolution, temporal, genomic and phenotypic
investigation of viable AR strains which colonize or infect sur-
faces and patients in ICUs. We found that AROs isolated from
patient stools were rarely found on ICU surfaces, and with the
exception of sink drains, we do not find persistent reservoir
colonization of most ICU surfaces. In contrast we found multiple
instances of ARO reservoir colonization of ICU sink drains, with
highly-related strains of these AROs also recovered from patient
blood cultures.

We found AROs more frequently in sink drains in the old ICU
compared to the new ICU. There are many possible reasons for
these differences, including: building material and layout differ-
ences, water sources, natural history, and extended time for
establishment and accumulation of AROs86–89. In the new ICU,
AROs were found before patient or staff occupancy, and ARO
burden in both sink drains and other surfaces did not sig-
nificantly change after 1 year of patient occupancy. This baseline
level of ARO burden in an ICU suggests that patients are not the
primary source of AROs found on surfaces nor do they cause
significant increases in ARO burden during the first year of ICU
establishment. Further, these results have important implications
for remediation strategies that involve removing or rebuilding
infrastructure and suggests such strategies may not always be
successful.

When comparing ICU room surfaces, we found AROs more
frequently on sink drains and rarely on any other ICU room
surface. While studies in low to medium income countries have
found high ARO burdens on hospital surfaces, our results are
consistent with other studies in the United States (US) that have
found low ARO burden on ICU surfaces and high ARO burden in
sink drains82,90. While it is possible that our sampling methods
may miss some AROs, the sparsity and inconsistency of AROs on
surfaces suggests that most surfaces other than sink drains are not
acting as persistent reservoirs for AROs. It may also be that some
AROs do not survive well on dry ICU surfaces where they cannot
easily form biofilms88,90. However, other studies have found ARO
colonization on these types of surfaces for long periods, sug-
gesting that colonization is possible82,91–93. Instead, high stan-
dards of cleaning, self-disinfecting equipment, and special
training in high income countries such as the US may be effective
at removing and limiting ARO reservoirs on most commonly-
touched surfaces91,94,95. While national standards and studies
have suggested protocols for cleaning many hospital surfaces95,
there are no standardized protocols for cleaning sink drains. This
may lead to variable and inconsistent decontamination of these
areas compared to other commonly-touched surface areas. Fur-
ther, sink drains are often difficult to clean as liquid disinfectant is
less effective when poured down the drain without coating the
drain surface, and the drains are often covered by a drain cover
and cannot easily be wiped down or scrubbed96,97.

Reservoir colonization by AROs in sink drains appears to be
specific to particular taxa. While we cultured a wide diversity of
AROs from sink drains, only two species had strains that formed
reservoirs in sink drains: S. maltophilia and P. aeruginosa. These
results corroborate previous work identifying Pseudomonas spp.
and Stenotrophomonas spp. as capable of long-term colonization

of sink drains74–77. In contrast, we did not find evidence of
persistent colonization of sink drains by Enterobacterales species,
which have commonly been associated with hospital built
environment outbreaks17,28,88,98–100. It is possible these organ-
isms were present but weren’t isolated because they were not
resistant to the antibiotics used in selective culturing.

S. maltophilia is an environmental organism that is emerging
as a serious concern for HAIs and other infections64. For our
purposes, we defined reservoirs to mean surfaces where at least 2
isolates from the same sequence type were isolated from con-
secutive samplings. We found reservoirs of S. maltophilia in at
least 3 sink drains. S. maltophilia ST1 established reservoirs in
two surfaces of the same ICU room, suggesting a similar source or
the spread of one strain type to a different location. However, we
find little evidence of strain transfer to sink drains in other rooms
in the same ICU, and no evidence of transmission to patients. In
fact, while we found 3 Stenotrophomonas isolates in blood cul-
tures, when we used ANI to identify species, none of these were
identified as S. maltophilia. This may have broad clinical appli-
cations as poor identification of blood isolates could potentially
lead to inappropriate treatment. However, even though we find
no evidence of transmission of S. maltophilia sink strains to
patients, since S. maltophilia has been shown to be a pathogen in
immunocompromised patients, it is still important to identify
methods to remove sink drain reservoirs of these organisms.

P. aeruginosa has long been characterized as an opportunistic
pathogen that inhabits environmental sources, particularly water
sources, as well as the human gut60,70–73. When compared to
diverse P. aeruginosa genomes from other studies, we found no
distinct clustering with environmental or clinical isolates, sug-
gesting that our isolates are not coming from a strictly environ-
mental strain pool. Instead, the strains we characterized were
phylogenetically diverse, indicating that the adaptations necessary
to survive in sink drains in the ICU are not restricted to a single
clade. Further, there was limited apparent transfer of surface
isolates between ICUs as patients and staff moved from one
location to the other, as strains were unique between surfaces in
the old and new ICU.

Remarkably, the genomic diversity of P. aeruginosa isolates
from ST1894 in sink drains was incredibly low, even after one
year or sampling. P. aeruginosa ST1894 was first described in
2014 in a cystic fibrosis patient in Spain (Isolate RC19, id:2398)44.
Since only the MLST was done for this isolate and not WGS, it is
impossible to determine if this isolate and our ST1894 isolates
have similar ancestry. The ST1894 isolates from our study are not
only capable of surviving well in sink drains but also of colonizing
multiple sink drains; our collection scheme documents Group 1
P. aeruginosa of ST1894 first being cultured from a single room,
but after 17 weeks of sample collection, was found in all six ICU
rooms samples. Our initial short read-based WGS approach
provided the resolution to cluster isolates into groups based on
whole-genome SNP distances, which has been the mainstay for
transmission dynamics up until this point83,101,102. However, our
long-read sequencing analysis elucidated the more nuanced
relationships necessary for transmission and reservoir coloniza-
tion dynamics. Specifically, our phylogenetic analysis with high-
quality hybrid assemblies indicates key cases of a ST1894 strain
inhabiting one sink drain before patients move into the hospital,
and then spreading and exchanging between all rooms sampled.
Our sampling illuminated the diversity and evolution of this
lineage across time and space during the course of the study
period. We also found evidence of 3 instances where this strain
was found in blood cultures from hospitalized patients, high-
lighting ST1894 as an urgent threat to this healthcare facility and
associated immunocompromised patients. The bias for these
isolates originating from the in-room sink drains rather than the
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bathroom sink drains also suggests that the water source system,
which is common to all drains, is not a likely source of reservoir
contamination. This, in association with the patient sample that
was collected outside the sampling ward, lead us to suspect this
strain may be more widespread in this healthcare system than our
sampling area. Our genomic analyses indicate that P. aeruginosa
ST1894 has a very unique accessory genome compared to other P.
aeruginosa, thus leaving a long list of candidate genes that might
explain its prevalence in sink drains. Further investigation into
these genes and other similar strains will help us better under-
stand the genomic evolution that might have allowed for its
environmental pathogenicity.

Globally, antibiotic resistance in P. aeruginosa isolates is a
growing concern, with infection mortality rates of 33–71% in
carbapenem-resistant infections81. P. aeruginosa is capable of both
intrinsic chromosomal modifications and acquisition of mobile
ARGs that encode resistance to all classes of antibiotics currently
used in P. aeruginosa treatment. However, carbapenem resistance
in P. aeruginosa has only been acquired through the acquisition of
mobile ARGs, most commonly metallo-β-lactamases (MBLs) and
are typically encoded on plasmids, integrons, and mobile
cassettes81. In general, carbapenem resistance was rare in P. aeru-
ginosa isolates collected in the new ICU, while it was common in P.
aeruginosa isolates collected in the old ICU. P. aeruginosa ST1894
was generally susceptible to the suite of antibiotics we tested
against, with only 2 instances of resistance observed. Fortunately,
this means there are currently a number of viable antibiotic
treatment options against the existing reservoirs of ST1894 in our
healthcare system. However, the presence of other Pseudomonas
spp. with much higher AR burdens in this same hospital envir-
onment, and the known ease of resistance transmission in Pseu-
domonas spp., emphasizes the risk that this widely disseminated
ST1894 reservoir could evolve into a greater ARO threat.

Despite our success in identifying multiple reservoirs with our
current methods, it is plausible that we are under sampling the
genomic diversity and persistent colonization through the cross
section of time points sampled. For example, in our identification
of reservoirs by Group 1 of P. aeruginosa (Fig. 6f), we believe the
strain was likely still present even when it appears to skip certain
weeks. Even with selection of multiple isolates per selective plate,
further work could improve these methods, such as a metage-
nomics based approach, and reveal additional reservoirs.

It is intriguing that many AROs were found in sink drains even
prior to patient relocation to this unit. Previous work has sug-
gested sources of contamination such as patient or hospital staff
carriage of P. aeruginosa103, or diffusion through water
pipes103,104, but these don’t address contamination identified
prior to patient or staff move-in. Other studies have identified
water contamination as a potential source75,76,105, but our sam-
pling did not indicate water as the source of these AROs. Further
research is necessary to understand the origins of the strains.
Regardless of their origins, these findings highlight the need for a
more thorough decontamination procedures, both during the
terminal clean and regular operation of ICU facilities.

In conclusion, our investigation of ARO reservoirs allowed us
to assess and compare models of colonization and transmission in
an old and new hospital built environment with the same patient
and staff populations, including before and after patient or staff
occupancy. Our approach of selective microbiologic culture
combined with WGS analyses provide for a detailed analysis of
ARO variation across one year of sampling in an SCT ICU.
Together these data provide a high-resolution characterization of
AROs in the hospital built environment, highlighting that SCT
ICU sink drains are a major reservoir for AROs with direct links
to patient infections. Most pressingly, the surprisingly rapid
development of P. aeruginosa colonization and association with

patient infections emphasizes the need for future work to
decrease the spread of AROs in hospital built environments,
completed by efforts towards decolonizing and eliminating sink
drain ARO reservoirs.

Data availability
All genomic reads generated during and/or analyzed during the current study are
available under BioProject PRJNA741123. Other source data for the main figures can be
found in Supplementary Data 1–5.
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