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Frequent pulse disturbances shape resistance and resilience in
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The Johor Strait separates the island of Singapore from Peninsular Malaysia. A 1-kilometer causeway built in the early 1920s in the
middle of the strait effectively blocks water flowing to/from either side, resulting in low water turnover rates and build-up of
nutrients in the inner Strait. We have previously shown that short-term rather than seasonal environmental changes influence
microbial community composition in the Johor Strait. Here, we present a temporally-intensive study that uncovers the factors
keeping the microbial populations in check. We sampled the surface water at four sites in the inner Eastern Johor Strait every other
day for two months, while measuring various water quality parameters, and analysed 16S amplicon sequences and flow-cytometric
counts. We discovered that microbial community succession revolves around a common stable state resulting from frequent pulse
disturbances. Among these, sporadic riverine freshwater input and regular tidal currents influence bottom-up controls including the
availability of the limiting nutrient nitrogen and its biological release in readily available forms. From the top-down, marine viruses
and predatory bacteria limit the proliferation of microbes in the water. Harmful algal blooms, which have been observed historically
in these waters, may occur only when there are simultaneous gaps in the top-down and bottom-up controls. This study gains
insight into complex interactions between multiple factors contributing to a low-resistance but high-resilience microbial
community and speculate about rare events that could lead to the occurrence of an algal bloom.
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INTRODUCTION
Microbial ecologists have been fascinated by the impact of
disturbances on microbial community succession, resistance, and
resilience for several decades. Although multiple definitions of
these terms have been proposed, it is generally agreed that
resistance refers to communities’ capability to remain stable
despite disturbances, and resilience refers to their ability to return
to that state after a disturbance-induced shift [1–3]. Many studies,
both observational and experimental, have been conducted on
disturbance and resilience, with several recent and comprehensive
reviews that provide a good overview on the topic [1–5]. This
wealth of research has yielded outcomes that might seem
conflicting at first glance. However, the apparent discrepancies
just emphasise the intricate nature of the natural communities,
which exhibits varying responses depending on the specific
characteristics and pace of each disturbance event.
The city-island-state of Singapore is bordered by two Straits: the

Singapore Strait on the southern side separates Singapore from
the Riau Islands of Indonesia, while the Johor Strait on the
northern side separates Singapore from Peninsular Malaysia. In the
1920s, a 1-kilometer causeway was built on the Johor Strait to
connect British Malaya with Singapore, accelerating the area’s
economic development. The causeway was built in the middle of

the Strait, with years of debris and disrepair preventing water from
flowing to either side. As a result, the waters in the inner part of
the strait have low turnover rates and nutrient build-up from
various anthropogenic inputs [6–10]. The Johor Strait is often
experiencing eutrophic conditions, with concentration of nutrients
(especially nitrogen) often higher than 10 µM for NOX and 40 µM
for NH4, 1 order of magnitude higher than that of the Singapore
Strait [11].
Ecologically, a community is governed both from higher trophic

levels (presence of predators or consumers) and lower trophic
levels (availability of nutrients or food) [12–15]. This is more
commonly known as the top-down and bottom-up control,
respectively. No natural microbial community is immune to
changes in environmental conditions, and the microbial commu-
nities of the inner Johor Strait are no exception. The Johor Strait is
home to many open cage fish farms, and seasonal harmful algal
blooms (HABs) have occurred in these waters, causing billions of
dollars in losses to the aquaculture industry [16–21]. However,
despite the nutrient load at levels favourable to the inception of
HABs, the microbial community in Johor Strait is under some sort
of dynamic stability as the water does not experience blooms
every day. While many observational studies on both bloom and
baseline conditions have been conducted in recent years, none of
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these studies were done from the perspective of disturbance/
resilience of a microbial community despite mentioning some of
these disturbances (e.g., sporadic and sudden changes in nutrient
inputs and salinity) [6, 8, 9, 17–21]. Moreover, as the Johor Strait is
influenced more by short-term environmental changes rather than
seasonal ones [11], the aforementioned studies were not
conducted in a high enough temporal resolution to see the
influences of the multitude of pulse disturbances on the microbial
community of the Johor Strait.
In this study, we analyse the short-term drivers that affect the

Johor Strait microbial populations. We focused on the community
compositional resilience (i.e., how the microbial composition
remains stable despite disturbances), in contrast to functional
resilience (i.e., how the same functions are retained even when the
microbial composition changes). We sampled water every other day
from four sites in the Johor Strait, sequenced the 16 S rRNA gene
amplicons, concurrently analysing various water quality parameters
and tidal conditions. We posit that, in response to repeated pulse
disturbances, the microbial community evolves to respond to new
disturbances with low resistance and high resilience, which
influence how and when blooms might develop in the Johor Strait.

METHODS
Data collection
Water sampling and data collection was conducted at the inner Eastern
side of the Johor Strait. Sampling sites were chosen due to their
accessibility to the Johor Strait waters, either on jetties or land parcels
that protrude into the Strait, as shown in Fig. S1 and Table S1. Sample and
data collection was conducted from 4 November through 28 December
2020, consistently on Monday, Wednesday, Friday, and Saturday inclusive
of these dates (except for samples SNB23 and STL23 on 14 December 2020
due to equipment breakdown).
At each site, surface water samples were collected at 1 m depth using a

portable pump and filtration system (OSMO) [22]. For DNA extraction, 1.5 L
of 150 µm pre-filtered water were filtered through sterile 0.22 µm
polyether-sulfone Sterivex filter units (Merck Millipore, Darmstadt, Ger-
many), after which approximately 2 mL RNAlater (Sigma Aldrich, Darm-
stadt, Germany) was added into the Sterivex, then stored in a dry shipper
charged with liquid nitrogen. Duplicate Sterivex samples were collected for
DNA extraction. Sample processing took at most 20minutes between the
start of water collection until the addition of RNAlater.
Temperature and salinity of the water was measured onsite (Extech

Instruments, Nashua, New Hampshire, USA). For dissolved inorganic
nutrient analysis, 12 mL of water from the Sterivex filtrate was collected
into acid-washed polypropylene centrifuge tubes, then flash-frozen in
liquid nitrogen. Flow cytometry samples were collected from the 150 µm
pre-filtrate, fixed with electron microscopy grade glutaraldehyde (0.5% v/v
final concentration, Sigma Aldrich) at 4 °C in the dark before flash-frozen in
liquid nitrogen [23, 24]. Chlorophyll samples for two size fractions were
obtained: completely unfiltered water, and <150 µm from the pre-filtrate.
For each size fraction, 50 mL of water sample was filtered slowly in a
dropwise fashion on a 25mm glass fiber filter (Whatman GE Healthcare
Life Sciences, Buckinghamshire, UK), then individually wrapped with
aluminium foil and flash-frozen in liquid nitrogen.
After each sampling trip, Sterivex filters, cryovials, and chlorophyll glass

fiber filters were stored at −80 °C whilst water samples for nutrient analysis
were stored at −20 °C until sample processing and analysis.

Tide and rain data acquisition. Half-hourly tide measurements were
acquired from the Maritime and Port Authority of Singapore (https://
www.mpa.gov.sg/) from the government-run Sembawang Tide station
(1.465° N, 103.835° E) (Table S2). Current strength and direction were
calculated by the slope of the tidal data, i.e., the change in tide height over
a unit of time. Dates of peak neap and spring tides were estimated from
moon phases, which were then used to calculate the number of days
between sampling and its nearest peak of neap/spring tide (Table S3). Rain
data was acquired from the Meteorological Service Singapore (http://
www.weather.gov.sg/climate-historical-daily/) using Sembawang Station
(1.4252° N, 103.8202° E) for eastern sampling sites and Admiralty Station
(1.4439° N, 103.7854° E) for western sampling sites.

Sample processing
Dissolved inorganic nutrient concentration. Samples for dissolved inor-
ganic macronutrients were thawed at room temperature and immediately
measured on a SEAL AA3 High-Resolution AutoAnalyser (SEAL Analytical,
Norderstedt, Germany). The nutrients measured were phosphate (PO4),
silicate (Si), ammonia (NH4), nitrite (NO2), and calculated nitrate (NO3), all in
µmol/L. Total Dissolved Inorganic Nitrogen (DIN) was calculated as
NO2+ NO3+ NH4.

Chlorophyll concentration. GF/F filter of each sample was placed into acid-
washed centrifuge tubes containing 90% molecular-grade acetone and
incubated in the dark at 4 °C overnight. Samples were then centrifuged at
500 × g for 10 min. The supernatant (2 mL) was then aliquoted into a
disposable cuvette for measurement using the FluoroMax spectrophot-
ometer (Horiba).

Flow cytometry (FCM). Our FCM analysis protocol was optimised for
counting viruses based on Brussaard (ref. 23) and Brussaard et al. (ref. 24).
Briefly, glutaraldehyde-fixed samples were diluted using Tris-EDTA buffer
and stained using SYBR Green I (Invitrogen, Life Technologies, Eugene,
Oregon, USA). Samples were run at a slow flow rate (approximately 10 µL/s)
on the CytoFLEX benchtop flow cytometer (Beckman Coulter, Brea,
California, USA) equipped with blue (488 nm) and violet (405 nm) lasers
specifically to distinguish virus particles. Virus and bacterial populations
were gated using the CytExpert software (Beckman Coulter), validated
against fluorescent microscopy counts and serially diluted positive controls
(data not shown). The raw FCM data was then processed further in the R
statistical environment [25] using the package phenoflow [26].

DNA extraction, amplification, sequencing, and data processing. DNA
samples were extracted in random order to minimise bias and batch
effects. We followed the default factory protocols of the DNEasy Powersoil
Pro kit (QIAGEN, Germantown, Maryland, USA) with a few modifications.
Firstly, filter units were rinsed with 1X phosphate-buffered saline to
remove the RNAlater. The Sterivex casing was broken to expose the filter
inside, which was inserted into Powersoil Pro Bead tubes (prepared as per
the first step of the default protocols), then incubated at 70 °C, 500 rpm for
15min, twice. Molecular grade Phenol-Chloroform-Isoamyl Alcohol
(25:24:1 v/v) (Sigma Aldrich) was added into the bead tubes, after which
the samples were subjected to rest of the factory protocol starting at
the 10-minute vortexing step. DNA was eluted into 60 µL of nuclease-free
water and quantified using a Qubit 2.0 fluorometer (Invitrogen, Life
Technologies).
For each sample, PCR was done in triplicates using KAPA HiFi HotStart

ReadyMix (Roche, Cape Town, South Africa) with primers that have the
standard Nextera Illumina adapter attached at their 5ʹ end. The primer pair,
926WF (5ʹ-AAA-CTY-AAA-KGA-ATT-GRC-GG-3ʹ) and 1392 R (5ʹ-ACG-GGC-
GGT-GTG-TRC-3ʹ) [27] was used specifically because it targets the V6-V8
hypervariable region of the SSU rRNA gene of all three bacteria, archaea,
and eukarya at a considerably high coverage for environmental samples
[28, 29]. After 22 cycles of amplification, triplicate amplicons of the same
samples were pooled and then cleaned using KAPA HyperPure Beads
(Roche).
Amplicon library preparation and sequencing was conducted at the

sequencing facility of Macrogen APAC (South Korea). Briefly, a second
round of PCR was done to attach dual barcodes to each sample for
multiplexing. The pooled library was then sequenced on an Illumina MiSeq
machine. The demultiplexed.fastq files were returned to us and further
processed in the R statistical environment [25].
Adapter and primer sequences were removed from the reads using

cutadapt (version 3.4) [30]. The reads were then subjected to processing
using the DADA2 algorithm [31]. The SILVA rRNA database (version 132)
[32] was used to classify the taxonomy of each amplicon sequencing
variant (ASV), after which the PR2 database (version 4.14) [33] was used to
re-classify the eukaryote ASVs. Afterwards, chlorophyll and arthropod
sequences, as well as ASVs with less than 10 reads across samples were
removed. Chlorophyll sequences were removed to avoid duplicate counts
of photosynthetic organisms, whilst arthropods are usually bigger than
150 µm and thus the DNA detected most likely came from their body parts
or eggs. ASVs below a total abundance of 10 reads might be an artifact of
de-noising or wrongly read sequences. Afterwards, ASV abundances
between technical duplicates were normalised and averaged. As shown in
Fig. S2, the Bray-Curtis distance between different locations of the same
day is generally larger than the distance between technical replicates.
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Statistical analysis
The R package vegan [34] was used in most statistical analyses of the
processed sequencing data: calculation of alpha diversity indices (Shannon
& Simpson indices), pairwise community dissimilarity using the Bray-Curtis
distance, dimensionality reduction of these distances using non-metric
multidimensional scaling (NMDS), analysis of environmental parameters
using envfit, as well as Canonical Correspondence Analysis (CCA). For envfit
analysis, all environmental parameters were used as input and only those
with significant results (p < 0.005) were plotted. The packages phyloseq [35]
and ggplot2 [36] were also used to visualise the results of these analyses,
and ggpubr [37] was used to perform statistical tests between different
groups (Wilcoxon test for two groups, and Kruskal-Wallis test for multiple
groups). Co-occurrence networks were built using the SpiecEasi algorithm
[38] and analysed using igraph [39], all in the R environment. Networks
were then visualised and exported using Gephi [40].
Principal Components Analysis (PCA) was conducted using the princomp

function, while correlation analysis between environmental variables were
conducted using the cor function. Visualisation of correlations were done
using corrplot [41].
Distance-based phylogenetic trees were built to classify unclassified

Saprospiraceae ASVs. In-silico PCR (https://github.com/egonozer/
in_silico_pcr) was conducted on genomes downloaded from NCBI Refseq
[42] with primers as per the above primer pair. Alignment was calculated
using MAFFT [43] (Multiple Alignment using Fast Fourier Transform) using
its ‘accurate’ algorithm (L-INS-i), and trees were constructed using FastTree
[44], then visualised using FigTree (http://tree.bio.ed.ac.uk/software/
figtree/). E. coli strain KS-12 was used as an outgroup to root the
phylogenetic tree.

Comparison with community dynamics over longer time
periods
In a previous study, monthly sampling of the Johor Strait waters was
conducted over the span of 2.5 years [11]. The Sembawang sampling
station was found to be located less than 3.5 km away from the SBW
station in this study. To validate the magnitude of the dynamic community
resilience over longer periods of time, a total number of 25 SBW monthly
samples previously acquired by Chènard et al. [11], were re-sequenced
with the same library preparation and kit version, and then processed
similarly to the methods described above. The R packages vegan [34],
phyloseq [35], ampvis2 [45], and DESeq2 [46] were used in the statistical
analysis and visualisation of the sequences. Vegan was used to perform
NMDS, which was then visualised using phyloseq and ggplot2. Differential
abundance of organisms between the monthly SBW samples (of Chènard
et al. [11]) and bi-daily (every other day) SBW samples (of this study) before
batch-effect correction was conducted using DESeq2 and visualised with
ggplot2. Batch-effect correction between the monthly and bi-daily SBW
time-series was conducted using the ComBat function in the package sva
[47] without taking into account covariates such as nutrient and
rainfall data.

RESULTS
General overview
During the course of sampling, the average salinity and temperature
of the East Johor Strait waters were 24.2 and 30.2 °C, respectively.
Approximately 35 rain days were recorded during the duration of
sampling; the maximum number of days without rain was 4 days
(29 Nov – 2 Dec 2020, inclusive). This trend is consistent with
historical rain reports of Singapore (http://www.weather.gov.sg/
climate-climate-of-singapore/).
Despite receiving approximately the same amount of rain as

the western sites, the site closest to the mouth of the Strait
(SBW) had a significantly higher average salinity at 25.54
(p= 0.0057, Fig. S3). The eastern sites were always affected by
tidal mixing, while western sites were only mixed during spring
tides. A higher community dissimilarity was observed closer to
neap tides when tidal mixing was low (Fig. S4). Otherwise, there
were no consistent patterns in the nutrient concentration and
other observed environmental parameters between the sites.
While the concentrations of dissolved nutrients did vary
throughout the time series, variations were consistent across
the four sites (Fig. S5).

Amplicon Sequencing Results
From two technical replicates of the bi-daily data, a total of
27,543,728 sequencing reads were recovered overall. Meanwhile,
resequencing of Chènard et al. [11] monthly samples gave us
3,700,114 raw reads. After trimming and denoising, a total of 5,575
ASVs were recovered in 119 bi-daily and 25 monthly samples, with
an average of 43,029 reads per sample. Bacteria of the phyla
Bacteroidetes Cyanobacteria, and Proteobacteria make up the
majority of all organisms detected; while ASV0003 (Roseobacter
HIMB11), ASV0004 and ASV0007 (cyanobacteria PCC6307) were
the top three most abundant ASVs in the Johor Strait. Some past
HAB taxa detected in previous studies conducted in the region
[8, 16, 19–21, 48], were observed in our samples: dinoflagellates of
genus Chaetoceros and family Kareniaceae, as well as diatoms of
genus Thalassiosira. These taxa were only found in very low
amounts at a mean of 83 reads per sample, however, they were
present in all but 37 samples in our time series.

Correlations
Pearson correlation analyses were conducted between environ-
mental parameters, as shown in Fig. 1. A notable correlation
interaction can be observed in pairs between the tides,
chlorophyll and nitrogen ratios (DIN:P and DIN:Si). Higher
chlorophyll concentrations were observed during spring tides
when tidal-driven mixing was the highest. Vice versa, a lower
chlorophyll concentration was observed during neap tides.
Interestingly, chlorophyll concentrations were positively correlated
with the N ratios but not with the raw N values. The rain also
brought higher N ratios, which was unexpectedly not followed by
the increase in chlorophyll concentrations.
Across the domains, viral counts showed a positive correlation

with bacteria, in both the FCM gated counts and chlorophyll
concentrations: high viral counts were found when high bacterial
counts were also observed, and vice versa. This is further seen in
Fig. 2 where the viral and bacterial FCM counts from nearly all
points were in sync with each other in their increases and
decreases.

Trajectory of community succession
Dimensionality reduction of the Bray-Curtis distance using non-
metric multidimensional scaling (NMDS, Fig. 3) which shows the
community succession between one sampling day and the next
seemed to revolve around a common stable state, circling the
midpoint of (0,0). Furthermore, envfit analysis revealed many water
quality parameters that were highly correlated with the samples.
No significant autocorrelation of environmental parameters were
observed (Fig. S6).
Principal components analysis (PCA) returned the variables that

contributed heavily to the variation in the data in attempt to
reduce its dimensionality (Fig. S7, Table S4). The first axis
represents 40.6% of the variation found in the data, which was
mostly contributed by two ASVs related to Cyanobium PCC 6307
(88.49%). The second axis represents 13.77% of the variation,
which is mostly explained by changes in the abundance of two
Cand. Nitrosopumilus ASVs (82.08%). These two taxa represented
the organisms that explained most of the variation in our time
series.
Canonical correspondence analysis (CCA) showed how each

ASV might have been influenced by nutrients as well as the
salinity of the water (Fig. S8), with summarising the sensitivity of a
few notable taxa. To illustrate this further, Fig. 4 shows a time
series of these taxa and the relative concentrations of nutrients for
comparison. No taxa seemed to become dominant in the
community for an extended period of time; as the abundance of
one species rose, others fell, and vice versa. For example, the small
peak of HIMB11 after the 1st of December was characterised by
the lower abundance of other taxa, and coincided with the
relatively high DIN:Si, Salinity, and DIN:PO4.
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Our results were validated against SBW samples from Chènard
et al. (ref. 11) to show the dynamic community resilience over
longer periods of time. After adding the monthly SBW samples
from Chènard et al. (ref. 11), all 4 sites still displayed a distribution
comparable to Fig. 3 but with an additional cluster of monthly
SBW samples. The probable artifact may be attributed to a batch-
effect (Fig. S9) because samples had been collected with a
different methodology. Comparison of bar plots between phyla
across the two time series, as well as ampvis barplot analysis
demonstrate that the median abundance value of each family in
the bi-daily time series falls comfortably within the range of the
monthly time series, and vice versa, with differences in relative
abundances of each family attributed to the differences in
environmental variables in the two time series (Fig. S10).
Differential abundance analysis was performed with DESeq2 to
identify the extent of the batch effect and identified only 29

genera, belonging to the rare members of the community, that
were significantly different between the monthly and the bi-daily
samples (Fig. S11). Following batch correction, we noticed that the
bi-daily data appears to orbit around the central point (0,0), as
illustrated in Fig. 3, while the monthly data from Chènard et al.
(ref. 11) had no discernible pattern or direction. (Fig. S13).

Network analysis
Co-occurrence networks show potential interactions between taxa,
such as predatory (−), parasitism (+), symbiosis (+), and antimicro-
bial (−) relationships. However, networks could not differentiate
between the different types of interactions; they do not make a
distinction between parasitism and symbiosis as both are positive
relationships. Furthermore, it is very difficult to experimentally
confirm these relationships, and thus co-occurrence networks are
more useful to generate hypotheses rather than to test them [49–51].

Fig. 1 Correlation of various biotic and abiotic factors for all sites. Correlation plots showing Pearson correlation values of all biotic and
abiotic factors measured during the study.
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Despite its many limitations, one interesting point can be noted
from the results of our co-occurrence network in Fig. S14. The
family Saprospiraceae (especially ASV0037) has an Eigenvector
Centrality of 1, meaning that its node is well connected to other
well-connected nodes, making it a very influential node. As shown
in Fig. S15, the phylogenetic tree developed from Saprospiraceae
16 S rRNA genes extracted from the NCBI RefSeq database and
amplicons in this study, showed that the most abundant
Saprospiraceae-related ASV (ASV0037) was found to be most
closely related to Aureispira maritima, a motile Saprospiraceae first
isolated from barnacle debris in Thailand [52].

DISCUSSION
Stability of Johor Strait microbial community
While numerous studies have been conducted on disturbances
and community resilience, many of them focus on a single
disturbance event [2, 53]. Philippot et al. (ref. 2) has suggested to
separate compounded disturbances into individual components,
including their properties, intensity, frequency, and order of
occurrence.
At our study site in the Johor Straits, isolating these

disturbances is unfeasible, as they repeatedly unfold in a random,
interconnected pattern, in some instances even occurring
simultaneously. Yet, during the duration of the study, the
community structure remained in a relatively stable state, with
no single taxa becoming dominant for an extended period of time
during the sampling period, despite the frequent perturbations
experienced in the area (i.e., irregular nutrient-enriched freshwater
pulses from various sources, the temporally consistent saline
seawater intrusion that comes with the tidal currents, among
other factors) (Fig. 3).
Since bottom-up disturbances from abiotic factors are all

naturally-occurring phenomena that can be safely assumed to
have been occurring long before sampling, we propose that

repeated disturbances may have driven selection, adaptation,
and/or diversification of the community. As a result, the microbial
community that we observe today is resilient and able to tolerate
these frequent disruptions. A history of repeated disturbances
may promote community resilience through these methods,
according to earlier studies and evaluations [1, 2, 54, 55].
Moreover, comparison with samples taken from a similar

location three years prior further supports that low resistance of
the microbial ecosystem (Fig. S13) is inherent and complementary
to its resilience. While perturbations do not cause massive, bloom-
level changes, they do affect the microbial community structure to
a certain extent with multiple similar, but not identical, stable
communities. A clear succession path for the bi-daily data in
Fig. S13 shows that the bi-daily sampling is able to capture the
effect of individual disturbances, i.e. the disturbance happening
over a ~2-day time scale. Nevertheless, both the monthly and bi-
daily sequencing data show similarly stable communities, i.e.
none of the samples are bloom samples, which may reveal that
the stable state (where no blooms happen) varies quite widely: the
microbial ecosystem is highly resilient towards changes to
become a bloom-dominated state, but it has a low resistance
towards changes in community composition in a non-bloom state.
The most common taxa in the Johor Strait (i.e. PCC6307,

HIMB11, cand. Nitrosopumilus) alternately became numerically
dominant, but none of them ever dominated the community for
an extended period (Fig. 4). This suggests that the changing
environmental conditions constantly reshape the available niches
(sensu Hutchinson (ref. 56)) and, as a result, rebalance the
abundance of each taxon. Non-dominant populations persist in
low numerical abundance, until new conditions favour their
growth. The changing peaks in Fig. 4 are mostly made up of
organisms related to HIMB11, Nitrosopumilus, PCC6307, and on a
few instances, Saprospiraceae. Each population would need
unattainable rates of growth, acclimation, and adaptation to keep
up with the ever-shifting environmental conditions and nutrient

Fig. 2 Flow cytometry counts of bacterial & virus-like particles. The line plot shows the high degree of correlation between bacteria and
viral abundance in all 4 sampling sites.
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Fig. 4 Time-series of nutrients and 4ew of the most abundant taxa, note the changing peaks of the nutrient availability and dominant
taxa. A Nutrient data have been normalised between 0 to 100 to set everything on the same scale and order of magnitude for easier
comparison. B Amplicon reads have been normalised to the median total read count. The asterisks (*) note down the position of the HIMB11
peak mentioned in the main text.

Fig. 3 Non-metric multidimensional scaling (NMDS) on the Bray-Curtis distance between each sample. Arrows show envfit results, while
the red numbers in grey boxes show the centroids of each sampling day. The overlapping envfit arrows located around (−0.45, −0.85) are DIN,
NH4, and Silicate measurements.
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availability. Essentially, Fig. 4 showcases the rapid emergence of
slightly different niches that are promptly filled by the most suited
and quickest colonizing population.

Top-down controls
Predatory/algicidal bacteria. By having an Eigenvector Centrality
of 1, Saprospiraceae is a potential ‘keystone taxa’ in the
microbiome of the Johor Strait, that is, it has the potential to
have a crucial role in community structuring. Keystone taxa do not
need to be the most abundant species in the community; there
are documented instances where rare microbial taxa in the
microbiome are disproportionately important for the well-
functioning of the entire ecosystem [57].
Based on our phylogenetic tree (Fig. S15), the most abundant

ASV related to Saprospiraceae (ASV0037) was found to be most
closely related to Aureispira maritima (NR_041537). Aureispira-
related strains have been found to exhibit algicidal and predatory
activity [58], making ASV0037 a potential top-down controller of
the Johor Strait microbial community. In general, many members
of the family Saprospiraceae were found to have algicidal or
predatory properties [58]. Thus, some studies have suggested to
use Saprospira-like organisms to control cyanobacteria blooms,
but this has never been experimentally shown nor attempted
[58–60].

Viruses. One other source of top-down control are viruses. What
viruses lack in biomass, they make up for in abundance [61]. As
viruses lack their own machinery for reproduction, they hijack
bacterial cells and reproductive abilities for their replication [62].
This intrusion releases a confetti of new virions, various cellular
parts, and dissolved organic matter in the process. In this way,
viruses relate the top-down controls of a community by predation
to the bottom-up controls by way of nutrient availability: marine
phages recycle an estimated 20% of all microorganisms every day,
therefore making them a major driver in ocean biogeochemistry,
and thus its biology and community structure [62].
The positive correlation between viral counts and bacterial

abundances (Fig. 2), as well as the fact that no algal blooms nor
any microbial abundance that is out of proportions were
observed, supports the well-known Kill-The-Winner hypothesis
[63]. In this model of phage top-down control of microbial
communities, more viruses are infecting the fastest-growing strain
of microbes, killing the potential winner. No one species is allowed
to dominate the community, which allows other microbes to
persist and thus increasing the diversity and resilience of the
system. This method of top-down control may be the primary
mechanism of keeping the community structure in check.

Bottom-up controls
Limiting nutrient availability. Chlorophyll measurements are a
proxy for microbial biomass, especially photosynthetic microbes,
and nitrogen limitation has been observed in previous studies in
the region [17, 19]. We saw strong positive correlations between
chlorophyll and N ratios (N:P and N:Si) that were consistent across
all sites (Fig. 1). As the increase in N compared to P or Si also
results in an increase in microbial biomass, we also suggest that
nitrogen is the limiting nutrient in preventing the over-
proliferation of photosynthetic microorganisms.

Interplay between biotic and abiotic factors controlling algal
blooms in Johor Strait
HAB species that were detected in previous studies
[8, 16, 19–21, 48] were also observed in 81 out of 118 samples
in our time series. Similar to the more common taxa alternating
more rapidly in the Johor Strait (i.e. PCC6307, HIMB11, cand.
Nitrosopumilus), these HAB taxa occur in very low numbers.
However, the latter were not observed to dominate during the
course of our sampling. Thus, we propose that a HAB event may

develop only when two specific conditions are met: [1] an open
niche is available and [2] top-down controls are no longer
controlling the HAB population.
Two lines of evidence support the above hypothesis. Firstly, our

results show that despite rapid and significant changes in the
environmental conditions, the overall community structure
recovers rapidly towards a stable centre-point. Moreover, changes
in environmental parameters alone do not cause the microbial
ecosystem to crash and turn into a HAB-dominated community,
showing the community’s resilience towards disturbances. Sec-
ondly, there is strong evidence for the community to be controlled
from the higher trophic levels by predation and viral lytic
activities. While we do not have data on larger predators such
as copepods and other zooplankton, viruses show changes that
are synchronized with the variations in the bacterial populations
(Fig. 2).
The dominant species in the Johor Strait microbial community

was shown to alternate between a few species depending on the
nutrient conditions of the water (Fig. 4). Changing environmental
factors, coupled with the fact that HAB species were nearly always
present in low amounts in the water, support the hypothesis that
a HAB event may happen due to an available, open niche. A 2019
Singaporean study had proposed something similar: an observed
dinoflagellate Karenia bloom may have happened due to a niche
being opened whereby the abundance of diatoms had previously
decreased [20].
While the system seems to be able to adapt to changes in

nutrient availability (bottom-up controls), it does not show
adaptations to changes from the top-down (predators). We
speculate that this may be because top-down controls are more
reactive in nature than causative; top-down controls do not
initiate changes in the organisms at lower trophic levels, rather,
top-down controls respond to the varying abundance of
organisms at the lower trophic levels. When bottom-up controls
make way for an open niche, HABs may be prevented from
happening by the presence of predators limiting the uncontrolled
growth of the HAB species. However, if their growth is somehow
not inhibited by the top-down controls, the HAB species may take
over and eventually dominate the microbial community, and thus
leading to an occurrence of a HAB. This top-down control of algal
blooms has been reported in several studies, be it the onset of
blooms due to the decrease in grazer populations [64–67] or the
termination of blooms due to viral lytic activities [62, 68–71].
Irigoien et al. (ref. 67) have also proposed the “loophole theory” in
which blooms are formed when they are able to find a ‘loophole’
and escape the grazing control. Finally, the Oksanen–Fretwell
theory [72] suggests that highly productive environments, such as
the Johor Strait, should be under top-down control, therefore the
growth of bloom organisms should be limited by predatory
bacteria and viruses rather than nutrient availability.
In the Johor Strait, the performance of these top-down controls

may be affected by two mechanisms, that is, the low rates of water
mixing in the Johor Straits and the high ammonia concentration in
the water. As mentioned in the section above (Results – General
overview), water mixing in the Johor Strait is primarily driven by
tides (Fig. S4). Previous studies have also concluded that blooms
happen more frequently during neap tides when tidal mixing is at
its minimum, due to the higher cell densities during a stable water
column [17, 19]. However, we propose that stratification during
minimum tidal mixing may also prevent the predators (grazers,
viruses) from reaching their target preys. Sufficient tidal mixing
would prevent the isolation of HAB species, thus exposing them to
predators and inhibiting the HAB species’ proliferation when they
find an open niche.
Secondly, ammonia (NH4) is traditionally known to be toxic for

aquatic grazers such as copepods and other zooplanktons [73–77].
Grazers perish from the toxicity when NH4 concentrations rise
above a certain concentration, whose 48-hour LC50 has been
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observed to be anywhere between 0.17 mg/L and 2.94mg/L
depending on the species and maturity of the copepods
[73, 75–77]. NH4 may enter the water through runoff from land,
sewage, and industrial water discharge. Knowing that the Johor
Strait is bounded by two highly urbanised regions with anthro-
pogenic nutrient inputs [6–10], this source of grazer mortality is
not entirely improbable.

Limitations & further study
Sampling was conducted every other day to stretch resources to
cover a sampling period of 2 months. Therefore, any change with
a resolution of less than 2 days could not be observed, thus
limiting our study. Furthermore, we have been focusing on
compositional rather than functional resilience, which could have
distinguished between active and inactive bacteria. Future
research in this direction will reveal which genes are activated
under various conditions in response to specific disturbances and
determine whether these genes are, in fact, contributing to the
dynamic resilience of Johor Strait and the key to mediating the
effects of the perturbations.

CONCLUSION
Frequent disturbances may have shaped the Johor Strait microbial
community by selection, adaptation, and diversification of
organisms that can withstand these perturbations. The result is
a diverse and relatively-stable community, adapted to living in a
constantly changing environment. The increased importance of
top-down controls in a highly productive environment such as the
Johor Strait is in accordance with the Oksanen–Fretwell (ref. 72)
theory, where the growth of bloom organisms is limited by
predatory bacteria and viruses. Blooms may happen when an
extreme disturbance is introduced into the system and changes
both bottom-up or top-down controls, i.e., when an available
empty niche temporally coincides with the demise of grazers or
viral predators that keep the bloom populations in check. While
we were not able to completely disentangle the effects of the
different disturbances, this study further highlights that complex
interactions between perturbations play a key role in regulating
microbial community structure.

DATA AVAILABILITY
Raw sequencing data have been deposited to SRA under Bioproject number
PRJNA848014 for the bi-daily data and PRNA929445 for the monthly data. Processed
data and scripts are available on https://github.com/winanonanona/2020-Time-
Series.
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