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Binding affinity estimation from restrained 
umbrella sampling simulations
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Thallapuranam Krishnaswamy Suresh Kumar & Mahmoud Moradi     

The protein–ligand binding affinity quantifies the binding strength 
between a protein and its ligand. Computer modeling and simulations can 
be used to estimate the binding affinity or binding free energy using data- or 
physics-driven methods or a combination thereof. Here we discuss a purely 
physics-based sampling approach based on biased molecular dynamics 
simulations. Our proposed method generalizes and simplifies previously 
suggested stratification strategies that use umbrella sampling or other 
enhanced sampling simulations with additional collective-variable-based 
restraints. The approach presented here uses a flexible scheme that can be 
easily tailored for any system of interest. We estimate the binding affinity 
of human fibroblast growth factor 1 to heparin hexasaccharide based on 
the available crystal structure of the complex as the initial model and 
four different variations of the proposed method to compare against the 
experimentally determined binding affinity obtained from isothermal 
titration calorimetry experiments.

Accurate quantification of absolute binding affinities remains a prob-
lem of major importance in computational biophysics1–4. In principle, 
accurate binding-free-energy calculations should be the cornerstone of 
any study investigating protein–ligand interactions. However, the high 
computational costs that typically accompany such calculations neces-
sitate the improvement of the computational methods traditionally 
used to investigate complex biomolecular interactions3–5. Experimen-
tally determined binding affinities are commonly used as benchmarks 
to judge the accuracy of various computational binding affinity esti-
mation methods5. Several experimental techniques can be used to 
study protein–ligand binding equilibria5,6. For instance, isothermal 
titration calorimetry (ITC) can detect the interaction of binding part-
ners based on changes in solution heat capacity and binding partner 
concentration6–8. Other methods such as fluorescence spectroscopy 
rely on changes in fluorescence intensity upon ligand binding6,9,10. Sur-
face plasmon resonance can be used to calculate binding affinities 
based on changes in refractive index that occur when an immobilized 
binding partner interacts with a free binding partner6. Studies have 
found that experimental binding affinities can vary depending on the 
experimental method used5. Therefore, a thorough understanding of 
the experimental conditions used to generate reference data is essential 

when comparing computationally determined binding affinities with 
experimental values.

Several computational methods at varying levels of rigor and 
complexity have been used to determine binding affinities for biomo-
lecular interactions3,11–18. Knowledge-based statistical potentials and 
force-field scoring potentials are typically used to rank docked protein–
ligand or protein–protein complexes but can also be used for binding 
affinity prediction19–21. A major disadvantage of these methods is that 
they do not treat the entropic effects rigorously, which effectively 
decreases the accuracy of such binding affinity predictions5. This is also 
the case for methods such as molecular mechanics/Poisson–Boltzmann 
surface area (MM-PBSA) and molecular mechanics/generalized Born 
surface area (MM-GBSA), which combine sampling of conformations 
from explicit solvent molecular dynamics (MD) simulations with free-
energy estimation based on implicit continuum solvent models22–24. 
Adequate sampling of protein and ligand conformational dynamics as 
well as ligand roto-translational movements with respect to the protein 
is essential for accurately quantifying the entropic reduction arising 
from the binding event24–26. MM-PBSA and MM-GBSA methods typically 
neglect such entropic contributions to the binding free energy or do 
not treat them rigorously23,24. Binding Free-Energy Estimator 2 (BFEE2) 
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the US method as our enhanced sampling technique, the methodology is 
generalizable to other techniques as long as they can be combined with 
additional restraints. There are several important differences between 
our method and that of refs. 3,4. Our method includes: (1) providing a 
general scheme that can be easily adapted to any number of restraints; 
(2) the non-parametric reconstruction of the grid PMF, as defined below; 
and (3) the use of the unidimensional orientation angle of the ligand 
with respect to the protein as a collective variable for restraining, as 
opposed to the use of three Euler angles. We note that the method of 
refs. 3,4 can in principle be generalized as well; the generalization is not as 
straightforward as it is in our proposed method, particularly in removing 
some of the restraints. In other words, while adding more restraints is 
somewhat similar to our approach in the method of of refs. 3,4, removing 
some of the restraint requires less trivial changes to the formalism that 
makes it distinct from our method. We have used this methodology to 
calculate the binding affinity for the interaction of human fibroblast 
growth factor 1 (hFGF1) with heparin hexasaccharide, its glycosamino-
glycan (GAG) binding partner. hFGF1 is an important signaling protein 
that is implicated in physiological processes such as cell proliferation 
and differentiation, neurogenesis, wound healing, tumor growth and 
angiogenesis58–62. GAGs are linear anionic polysaccharides that interact 
with positively charged regions of FGF binding partners to regulate their 
biological activity63. The hFGF1–heparin complex is the most well-known 
and broadly characterized protein–GAG complex64,65. Heparin binding 
is thought to stabilize hFGF1 and impart protection against proteolytic 
degradation. In this study, we show that the absolute binding affinity 
for the hFGF1–heparin interaction calculated using our approach is in 
good agreement with binding affinity data from ITC experiments. Four 
alternative methods are used for estimating the absolute binding affin-
ity within the formalism presented here to determine the workings of 
the methodology and the effect of the application of different (or no) 
restraints. We also compare our results with those obtained from FEP 
simulations and show that although performing longer FEP simulations 
could improve the accuracy of binding affinity estimates when compared 
with short FEP simulations, our approach is still more accurate than FEP 
when similar simulation times are used.

Results
Calculation of binding free energy using four different 
strategies
We have calculated the absolute binding free energy for the interac-
tion of hFGF1 with heparin hexasaccharide using four variations of 
the stratification scheme described above, based on a combination of 
steered MD (SMD) and BEUS simulations. The details of the methodol-
ogy are discussed in Methods. Four different methods are used with 
varying effectiveness in estimating the absolute binding free energy. 
These methods are: (1) the traditional distance-based BEUS simulations 
that do not employ any additional restraining; (2) distance-based BEUS 
simulations employing a restraint on the orientation of the ligand (Ω) 
defined based on the orientation quaternion formalism; (3) distance-
based BEUS simulations employing a restraint on the RMSD of both 
ligand and protein (rL and rP); (4) distance-based BEUS simulations 
employing a restraint on the RMSD of both ligand and protein as well 
as the orientation of the ligand (Ω, rL and rP). In each case, appropriate 
correction terms are calculated as discussed in the ‘Theoretical foun-
dation’ section and shown in Table 1.

We denote the PMF of the ligand at a given position x (with respect 
to the center of the heparin binding pocket) as the grid PMF, as the PMF 
is estimated at different grid points in this approach (Fig. 1). The aver-
age grid PMF profiles along the ligand–protein distance for the four 
different methods used here (as shown in Fig. 1) confirm the differential 
behavior of these methods (see Supplementary Fig. 1 for a schematic 
representation of these simulations). Note that since x = 0 is the grid 
point associated with the lowest PMF by definition, the average PMF 
along |x| has its global minimum at |x| = 0. The most successful method 

is a state-of-the-art protein–ligand binding affinity calculation software 
that addresses the substantial shift in configurational enthalpy and 
entropy that follows ligand–protein binding, which is hard to represent 
in brute-force simulations18,27. An energy–entropy approach, energy–
entropy multiscale cell correlation, has been introduced to compute 
the free energy of binding and has been applied for binding-free-energy 
calculations, which take into consideration the entropy of all flexible 
degrees of freedom in the system in a consistent and generic way28.

One of the best-known binding-free-energy estimation methods 
is alchemical free-energy perturbation (FEP), where scaling of non-
bonded interactions enables reversal decoupling of the ligand from 
its environment in the bound state as well as the unbound state29–32. 
Most entropic and enthalpic contributors to changes in binding affin-
ity are typically considered during FEP simulations, thus avoiding the 
approximations used by methods such as MM-PBSA and MM-GBSA5,33. 
A disadvantage of FEP is the fact that ligands tend to move away from 
the binding site during the decoupling process, which results in poorly 
defined target states of the FEP calculation being used as starting 
states for the re-coupling process34. Using receptor–ligand restraints 
to resolve this issue30,35–37 introduces some ambiguity to the way a 
standard state is defined, with a level of correlation between the size 
of the simulation cell and the standard state38. This can be corrected 
by the use of appropriate geometrical restraints39–41.

Unrestrained long-timescale MD simulations should theoreti-
cally allow for the investigation and quantification of protein–ligand 
or protein–protein binding events42,43. While microsecond-level MD 
simulations provide a more accurate description of protein confor-
mational dynamics compared with shorter simulations44, efficient 
sampling of the conformational landscape remains a major issue and 
requires access to timescales beyond the capabilities of current MD 
simulations45,46. Several methods have been developed to tackle the 
sampling problem. Markov state models allow the sampling and char-
acterization of native as well as alternative binding states57. Similarly, 
weighted ensemble simulations sample the conformational landscape 
along one or more discretized reaction coordinates based on the assign-
ment of a statistical weight to each simulation47,48. More traditionally, 
umbrella sampling (US) along such reaction coordinates can be used 
to guide the binding or unbinding of a ligand, after which algorithms 
like the weighted histogram analysis method can be used to calculate 
a unidimensional potential of mean force (PMF) that quantifies ligand 
binding and unbinding along a reaction coordinate49,50. Better conver-
gence of the calculated free-energy profiles can be achieved by the 
exchange of conformations between successive US windows as in the 
bias-exchange umbrella sampling (BEUS)51–53. Other methods based 
on similar principles include umbrella integration54, well-tempered 
metadynamics55, adaptive biasing force (ABF) simulations56 and vari-
ations of these techniques.

Incomplete sampling of important degrees of freedom, such as 
orientation of the ligand with respect to the protein, remains a major 
disadvantage of unidimensional PMF-based methods3,4. To resolve 
this problem, ref. 3 reported a method wherein explicitly defined 
geometrical restraints on the orientation and conformation of the 
binding partners are used to reduce the conformational entropy of 
the biomolecular system being studied3,4. This results in improved 
convergence of the PMF calculation3,4. The introduction of a restrain-
ing potential based on the root-mean-square deviation (RMSD) of the 
ligand relative to its average bound conformation reduces the flex-
ibility of the ligand and the number of conformations that need to be 
sampled3,4. This method avoids the need to decouple the ligand from 
its surrounding environment as required by alchemical FEP3,4,29–32. 
Recent studies4,57 have described applications and extensions of the 
methodology proposed by ref.3.

In this Article, we describe a purely physics-based enhanced sam-
pling method based on biased MD simulations, which is similar in prin-
ciple to the stratification strategy proposed by refs. 3,4. Although we use 
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is expected to be the one employing restraints on Ω, rL and rP (Table 1 
and Fig. 1). The largest contributor to the free energy is the difference 
between the grid PMF associated with the heparin hexasaccharide at 
a grid point at the center of the binding pocket and at any grid point in 
the bulk, which is −17.0 ± 0.5 kcal mol−1 (Fig. 2a and Table 1).

The PMF calculations above are based on the BEUS simulations 
along the protein–ligand distance; however, the orientation and RMSD 
of the ligand and the RMSD of the protein are restrained to speed up 
convergence. To account for the orientation bias, a correction term 
needs to be applied, which is calculated from the PMF associated with 
the ligand orientation angle at the bulk and binding pocket (Fig. 2b). 
The orientation bias is estimated to be 4.4 ± 0.3 kcal mol−1 (Table 1). 

Similarly, a correction term is calculated based on the PMF of the ligand 
RMSD and that of the protein (Fig. 2c). These correction terms are esti-
mated to be 0.7 ± 0.1 kcal mol−1 and 0.4 ± 0.1 kcal mol−1 for the ligand 
and protein, respectively (Table 1).

Finally, another term is needed to account for the difference in the 
volume accessible to the ligand in the binding pocket and in the bulk 
(volume contribution). Figure 3 shows that the binding pocket contri-
bution (ΔGP) (or binding pocket volume (VP)) for the distance-based 
BEUS simulations with no restraint as determined from the 20-lowest 
free-energy grid points is almost equal to that obtained from all visited 
grid points inside or outside the binding pocket. For the distance-based 
BEUS simulations with Ω, rL and rP restraints, this term is estimated to 
be 2.7 ± 0.2 kcal mol−1 (Table 1), which results in an absolute binding 
free energy of −8.7 ± 0.7 kcal mol−1 (Table 1).

On the basis of our error analysis, equilibrium dissociation con-
stant (Kd) values calculated from the absolute binding free energy were 
found to be in the micromolar range with an average value of 0.6 μM 
(using the mean absolute binding free energy (ΔG°) estimate) and 
ranging from 0.2 μM to 2.0 μM (based on the lower and upper bounds 
of free energy estimates) (Table 1). These are in very good agreement 
with the Kd value obtained from ITC experiments. We performed the ITC 
experiments in triplicate resulting in a Kd of 1.68 ± 0.03 μM (as shown in 
Fig. 4), 1.65 ± 0.07 μM and 1.69 ± 0.05 μM in three independent experi-
ments. The binding free energy calculated from the experimental Kd 
(−7.87 kcal mol−1, −7.88 kcal mol−1 or −7.89 kcal mol−1, depending on 
the experiment) is also in good agreement with the computationally 
calculated binding free energy (Fig. 4 and Table 1).

Comparison between computationally and experimentally 
calculated binding free energy of heparin–hFGF1
The quantitative agreement between the computational and experi-
mental binding affinity estimates is a great indicator of the accuracy 
of our absolute binding-free-energy calculation method. However, if 
proper restraining is not used as in the distance-based BEUS simula-
tions with no restraints or only RMSD restraints, the binding affinity 
estimates would be off by several orders of magnitude. The simulations 
that restrain only the orientation of the ligand are interestingly quite 
successful as well, being off by only one order of magnitude in terms 
of binding affinity, which is generally considered a good estimate. This 
provides some evidence that the orientation of the ligand is perhaps the 
degree of freedom with the most substantial contribution to the abso-
lute binding free energy besides the ligand–protein distance. While the 
average grid PMF profiles along the ligand–protein distance (as shown 
in Fig. 1) confirm that the four methods used here produce different 

Table 1 | Summary of the results of free-energy calculations

 Quantity No restraints Ω restraint rL and rP restraint Ω, rL and rP restraint

Grid PMF difference (kcal mol−1) ΔG(xB) = −19.7 ± 1.1a ΔGΩ(xB) = −13.2 ± 0.3 ΔGrL ,rP (xB) = −17.7 ± 1.0 ΔGΩ,rL ,rP (xB) = −17.0 ± 0.5

Orientation correction (kcal mol−1) NA ΔUΩ(xB) = 4.4 ± 0.3 NA ΔUΩ,rL ,rP (xB) = 4.6 ± 0.3

Ligand RMSD correction (kcal mol−1) NA N/A ΔUrL (xB) = 0.6 ± 0.1 ΔUrL (xB) = 0.6 ± 0.1

Protein RMSD correction (kcal mol−1) NA NA ΔUrL
rP (xB) = 0.3 ± 0.1 ΔUrL

rP (xB) = 0.3 ± 0.1

ΔGV (kcal mol−1) 3.7 ± 0.2 2.5 ± 0.2 2.3 ± 0.2 2.7 ± 0.2

ΔG°(kcal mol−1) −16.0 ± 1.2 −6.3 ± 0.5 −14.5 ± 1.0 −8.7 ± 0.7

Kd (μM)b O(10−6) 25 O(10−5) 0.5

Kd range (μM)c 10−7–10−5 11–58 10−6–10−4 0.2−2.0

We are comparing the ΔG° of four different restraining methods (see ‘BEUS simulations’ in Methods for details). aAll error estimates are based on 1 s.d. bEquilibrium dissociation constant (Kd) 
values are determined directly from mean absolute binding-free-energy (ΔG°) values using relation (2). cKd range is determined from the lower and upper limits of ΔG° values (mean ± s.d.) using 
relation (2). The experimentally determined Kd and ΔG° were 1.68 ± 0.03 μM and −7.88 ± 0.01 kcal mol−1, respectively (see Fig. 4). The orientation angle of heparin with respect to the protein (Ω), 
RMSD of the protein (rP), RMSD of heparin (rL), and the contribution of the difference between the volume of the binding pocket and the bulk to the binding free energy (ΔGV). ΔG(xB), ΔGΩ(xB), 
ΔGrL ,rP (xB) and ΔGΩ,rL ,rP (xB) are the PMF difference between the binding pocket center and the bulk associated with respective restraints. NA means the data are not applicable in the 
corresponding section. ΔUΩ(xB), ΔUrL ,rP

Ω
(xB), ΔUrL (xB) and ΔUrL

rP (xB) are correction terms associated with restraints (see ‘Theoretical foundation’ in Methods for details).
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Fig. 1 | Average grid PMF based on our alternative distance-based BEUS 
simulations. Average grid PMFs in terms of |x|, where x is the three-dimensional 
position vector of the ligand with respect to the center of the binding pocket. The 
x axis represents |x| and the y axis represents ΔF(|x|), which is an average over all 
ΔF(x) with the same |x|, that is, the ligand distance from the center of the binding 
pocket. The error bars represent the standard deviation obtained from all values 
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heparin hexasaccharide bound to hFGF1 (|x| = 0 Å) and unbound (|x| = 30 Å) are 
shown above the grid PMF plot. We used n = 31 MD replicas to generate the data 
in all cases.
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results, it is important to note that the correction terms should ideally 
eliminate these differences. This is seen to some extent when comparing 
the two methods involving orientation restraints that happen to esti-
mate binding affinities that are reasonably close (Table 1) to the experi-
mentally determined value. Another source of error in our calculations 

could be in estimating the VP and eventually the contribution of the 
difference between the volume of the binding pocket and the bulk to 
the binding free energy (ΔGV). In doing so, we have made an assump-
tion that the VP can be calculated from relation (31) approximating 
the grid PMF with that obtained from biased simulations. Comparing 
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from distance-based BEUS simulations with Ω, rL and rP restraints. The x axis 
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associated with the ligand orientation angle (Ω) for the bound heparin (that is, 

x ≈ 0, ligand in the binding pocket) and free heparin (that is, x ≈ xB, ligand in the 
bulk). The latter is calculated analytically with the help of relation (21). c,d, PMF in 
terms of internal conformational fluctuations of the protein and ligand. c, PMF 
associated with the internal RMSD of heparin-bound (black line) and apo  
(gray line) hFGF1 (rP). d, PMF associated with the internal RMSD of FGF1-bound 
(black line) and free (gray line) heparin hexasaccharide (rL). The error bars in  
b–d represent the standard deviation determined from the bootstrapping 
algorithm described in Methods. We used n = 31, n = 30 and n = 12 MD replicas  
to generate the data shown in a, b, and c and d, respectively.
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ΔGV values from Table 1 shows that different biases result in different 
approximating values ranging from 2.3 kcal mol−1 to 3.7 kcal mol−1. For 
more information on these results and the convergence of data, see 
Supplementary Table 1 and Figs. 2–5 ref. 27.

Examining how this approach compares with other prevalent 
binding-free-energy calculation methods
Recent computational studies have used the MM-GBSA method to cal-
culate the binding free energy of the hFGF1–heparin interaction, with 
values ranging from −84.2 kcal mol−1 to −106.1 kcal mol−1 (ref. 66). The 
outcomes of the MM-GBSA technique are considerably different from 
those of ours. The MM-PBSA and MM-GBSA, which is not an all-atom 
simulation approach like ours, has drawbacks including the continuum 
solvent approximation. The intrinsic dielectric constant’s appropriate 
setting presents another challenge. It has long been known that the 
selection of the intrinsic dielectric constant has a significant impact 
on the computed electrostatic energy22–24. However, these contribu-
tors to the binding affinity are typically taken into account during FEP 
simulations, thus obviating the need for the approximations used in MM-
PBSA and MM-GBSA5,33. It is widely accepted that binding-free-energy 
estimates from MM-PBSA and MM-GBSA are less accurate than those 
from FEP, which is considered to be the gold standard for the calcula-
tion of absolute binding affinities67. We performed double annihilation 
FEP to calculate the absolute binding free energy of the hFGF1–heparin 
complex. The BFEE2 method was used to estimate binding affinities 
from FEP simulations with the consideration of several restraints to 
improve sampling within the framework of the method of refs. 3,4. The 
FEP simulations here were designed to have an aggregate simulation 
time comparable to that used in our BEUS simulations (~2.3 μs for FEP 
compared with ~1.1 μs for SMD + BEUS). An absolute binding free energy 
of 0.55 ± 30.25 kcal mol−1 was obtained for the FEP (Fig. 5a and Supple-
mentary Table 2). Unlike the absolute binding free energy estimated 
from the BEUS simulations (−8.7 ± 0.7 kcal mol−1) (Table 1), the estimates 
from the FEP simulations are not in a good agreement with the binding 
free energy determined from ITC experiments (−7.88 ± 0.01 kcal mol−1) 
(Fig. 4). More importantly, a large uncertainty is associated with the FEP 
results that is due to the relative large size of the ligand. To show the 
effectiveness of our plan, we also calculated the binding free energies 
of hFGF1 and heparin directly using the method of refs. 3,4 as imple-
mented within the BFEE2 package (the geometrical route). To make a 
fair comparison, we ran 1.6 μs of aggregate simulation using the ABF 
free-energy calculations. Heparin and hFGF1 have a binding free energy 
of −19.04 ± 2.95 kcal mol−1 based on the geometric approach (Fig. 5b and 
Supplementary Table 3). In contrast to our technique, the BFEE2 geomet-
ric route anticipated a value that was twice as high as the experimental 

value of free energy. This comparison shows the effectiveness of our 
method over well-established binding-free-energy calculation methods. 
To firmly establish the efficiency of our strategy, additional research 
with a bigger data sample will be required in the future. In particular, 
it is important to determine what parameters make our method more 
efficient than the BFEE2 geometric protocol. For instance, it could be 
due to use of BEUS simulation scheme or a more fundamental difference 
regarding the use of simpler restraints and analysis schemes.

Studies have shown that the binding affinity and free-energy 
results derived from computational methods can be compared with 
experimental binding affinities obtained from ITC experiments7,8. 
However, for a reliable computational free-energy estimate, employ-
ing purely physics-based free-energy calculation methods such as 
those employed here has proven to be difficult. Herein we showed that 
using a careful strategy that considers all relevant free-energy terms 
and ensures the use of powerful enhanced sampling techniques could 
result in good quantitative agreements between the computational and 
experimental binding affinity estimates. Our methodology could serve 
as a robust free-energy calculation method for determining the binding 
affinities of any protein and ligand of interest. However, the accuracy 
of the resulting binding free energies is still limited by the reliability 
of the force field parameters, which is at least equally as important 
as sampling for accurate physics-based binding affinity estimation.

Discussion
The formalism presented in this work has notable similarities to the 
method previously proposed by ref. 3, and later implemented4,57. How-
ever, there are major differences that make the current method more 
practical. The grid PMF and its various estimates provide a simple con-
ceptual framework to understand how restraining can be accounted 
for with appropriate correction terms. The average grid PMF in terms 
of the ligand–protein distance provides an alternative to the PMF in 
terms of d as is often constructed. The non-parametric reweighting 
allows for calculating the grid PMF in terms of the distance from the 
center of the binding pocket, as defined in this work, eliminating the 
need for calculating the PMF in terms of the polar and azimuthal angles 
as in the method of refs. 3,4. Relation (30) is a general scheme that can 
be easily adapted to any number of restraints. For instance, one may 
or may not add the polar and azimuthal angles to the restraints using 
the trivial generalization of relation (30). The orientation angle of 
the ligand with respect to the protein as determined using the orien-
tation quaternion formalism provides a simple way of determining 
the absolute binding free energy with a feasible computational cost. 
Among the four different sets of restraints, the two involving orienta-
tion restraints predict binding free energies similar to that determined 
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Fig. 4 | Experimental heparin–hFGF1 binding-free-energy measurements. 
Isothermogram representing the titration of hFGF1 with heparin 
hexasaccharide. a, The raw data. The horizontal red line represents the zero 

axis in the plot. b, The best fit of the raw data (one set of sites binding model). 
In the specific experiment shown, Kd is 1.68 ± 0.03 μM and the free energy from 
experimental Kd is −7.88 ± 0.01 kcal mol−1. ΔH, heat change.
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experimentally. Again, if restraining the orientation angle does not 
allow for a rapid convergence, one can add more restraints including 
the tilt and/or spin restraints. While the traces of the method of refs. 3,4 
is clear in our derivation of the binding free energy, there are also clear 
differences in the use of the concept of the grid PMF that allows treating 
any restraints within the general formalism expressed in relation (30).  
A more extensive work is needed to determine when restraints in  
addition to those used in this work are necessary.

The outcomes of a simulation are significantly influenced by a 
variety of other factors, including model quality and the precision of 
docking. The efficiency of the method’s findings may also be impacted 
by the degree to which the force field of ligands is accurately modeled. 
The restrictions that are often associated with these kinds of approach 
are connected to sampling, which might vary from project to project; 
for instance, bigger ligands may demand greater sampling than smaller 
ligands do. Also extremely crucial is the beginning structure of the 
bound state; the more precise the bound state, the more accurate the 
binding affinities will be.

Methods
Theoretical foundation
Binding affinity is often quantified using the equilibrium dissociation 
constant (Kd), defined as:

Kd = [P] [L] / [P ∶ L] (1)

where [P], [L] and [P:L] are the concentrations of protein, ligand and the 
protein–ligand complex, respectively. Computationally, the absolute 
binding free energy (ΔG°), which is the standard molar free energy of 
binding, is more convenient to calculate. The dissociation constant 
and the absolute binding free energy are related via

ΔG∘ = RT ln Kd
1M (2)

where R is the gas constant, T is the temperature and 1 M is 1 molar con-
centration. Various strategies have been used to estimate ΔG°, some 
of which were briefly discussed above. The methodology proposed 
here has a notable resemblance to the stratification strategy of refs. 3,4. 
However, the two methods have major differences as will be discussed 
later in this section.

Absolute binding free energy or ΔG° is the free-energy change 
associated with moving the ligand from the bulk to the binding pocket 

(Supplementary Table 1). Within the formalism presented in this 
work, ΔG° is determined from the grid PMF G(x), where x is the posi-
tion of the ligand mass center from the center of the binding pocket 
(Supplementary Table 1), G(x) is the PMF associated with the ligand 
position x. In practice, we need to bin the three-dimensional space 
and define the PMF at every bin or grid point as:

G (x) = −RT lnp (x) (3)

where p(x) is the probability of finding the ligand at bin x.
We define ΔG(x) = G(x) − G(0), where x = 0 (that is, the center of 

the binding pocket) is defined as the grid point associated with the 
lowest grid PMF. One can show:

ΔG∘ = −RT ln
∫pockete

− G(x)
RT dV

∫bulke
− G(x)

RT dV
= −RT ln

∫pockete
− ΔG(x)

RT dV

∫bulke
− ΔG(x)

RT dV
(4)

in which the binding ‘pocket’ refers to all x ∈ V where the ligand is 
considered bound and ‘bulk’ refers to all x ∈ V where the ligand is not 
interacting with the protein. V here is a subset of space with a single 
protein in standard concentration (that is, 1 M). As ΔG(x) is the same 
everywhere in the bulk, we can simplify relation (4) as follows:

ΔG∘ = −RT ln VP

e−
ΔG(xB )

RT VB

= −ΔG (xB) − RT ln VP
VB

(5)

where VB is the bulk volume per protein associated with the standard 
concentration, xB is any grid point in the bulk and VP is the binding 
pocket volume defined as:

VP = ∫
pocket

e−
ΔG(x)
RT dV (6)

Defining ΔGV as the contribution of the difference between the 
volume of the binding pocket and the bulk to the binding free energy:

ΔGV = −RT ln VP
VB

(7)

Combining equations (5) and (7), we have:

ΔG∘ = −ΔG (xB) + ΔGV (8)
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Fig. 5 | Binding-free-energy measurements using BFEE2 software. a, Free-
energy difference for the double annihilation of heparin hexasaccharide in its 
bound state and in water from FEP calculations. λ is a coupling parameter that 
gradually switches on interactions between a fully coupled state (λ = 0) and 
a final, fully decoupled state (λ = 1). b, PMF obtained during the separation of 
hFGF1 and heparin hexasaccharide using the geometric route. We used the BFEE2 

(ref. 27) package to estimate the absolute free energy of binding in silico for an 
alchemical or geometrical route with multiple subprocesses and geometric 
constraints. The alchemical and geometric methods’ binding-free-energy 
estimates were 0.55 ± 30.25 kcal mol−1 and −19.04 ± 2.95 kcal mol−1, respectively. 
See Supplementary Tables 2 and 3 for details of each geometric restriction and 
alchemical FEP calculations, respectively.
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We can find the bulk volume (VB) associated with the standard 
concentration for a single protein approximately as:

VB =
1
NA

mol

1M = 1
NA

L ≈ 1,661Å3 (9)

where NA is Avogadro’s constant and L is the unit of volume (litres).  
We can now rewrite ΔGV as:

ΔGV = −RT ln VP
VB

= −RT ln VP

Å3
+ RT ln VB

Å3
= ΔGP − ΔGB (10)

in which ΔGB is the bulk volume contribution and ΔGP is the binding 
pocket contribution:

⎧
⎨
⎩

ΔGB = −RT ln VB

Å3
≈ −7.42RT

ΔGP = −RT ln VP

Å3
= −RT ln∫pocket e

− ΔG(x)
RT

dV
Å3

(11)

Determining both ΔG(xB) and ΔGP requires finding the grid PMF 
ΔG(x). ΔG(xB) is the PMF difference between the binding pocket center 
and the bulk and ΔGP also requires an estimate for ΔG(x) within the bind-
ing pocket. We therefore do not need to find ΔG(x) for all x if we have a 
good estimate for ΔG(x) within the binding pocket and in the bulk. Ide-
ally, ΔG(x) for these points can be determined by pulling the ligand out 
of the binding pocket towards the bulk and using an enhanced sampling 
technique such as US to sample the space of a collective variable such 
as d, that is, the distance between the mass centers of the ligand and 
protein. ΔG(x) can be estimated for all sampled grid points x using this 
distance-based US simulation. Note that the collective variable used 
for biasing would be d, while the collective variable used for the PMF 
calculations would be the three-dimensional position vector of the 
mass center of ligand with respect to protein’s binding pocket center. 
One may estimate the grid PMF from the distance-based US simulations 
using a non-parametric reweighting algorithm as discussed in this sec-
tion. ΔG(x) can also be used to estimate ΔGP as defined in relation (11). 
There is often no need to strictly define the binding pocket as only low 
ΔG(x) values have non-negligible contribution to VP and thus even if we 
include all sampled grid points, only those close to the binding pocket 
center have non-negligible contributions.

A practical issue with determining ΔG(xB) is the convergence. The 
key obstacles for the sampling that slow down the convergence are the 
orientation of the ligand, and the conformational changes of the ligand 
and protein. Using an approach similar in spirit to the previously pro-
posed stratification strategy3,4,24, we can circumvent extensive sampling 
of these degrees of freedom. Let us first focus on the orientation of the 
ligand (Ω), defined using the orientation quaternion formalism. We 
can restrain Ω during the distance-based US simulations using a biasing 
potential ( 1

2
kΩ2 where a k is harmonic force constant) and later correct 

the free-energy difference based on the PMF associated with the Ω, 
which is different in the bulk (F(xB, Ω)) and in the binding pocket 
(F(0, Ω)). More generally, for any grid point x, we may determine ΔG(x) 
based on the PMF associated with the Ω at x (F(x, Ω)) and 0 (F(0, Ω)):

e−
ΔG(x)
RT =

∫𝜋𝜋

0e
− F(x,Ω)

RT dΩ

∫𝜋𝜋

0e
− F(0,Ω)

RT dΩ
(12)

Note that F(x, Ω) is the PMF associated with x and Ω, defined  
such that:

G(x) = c − RT ln∫
𝜋𝜋

0
e−

F(x,Ω)
RT dΩ (13)

where c is an arbitrary constant. We therefore have:

e−
ΔG(x)
RT =

∫𝜋𝜋

0e
− F(x,Ω)

RT dΩ

∫𝜋𝜋

0e
−

F(x,Ω)+ 1
2 kΩ2

RT dΩ
×
∫𝜋𝜋

0e
−

F(0,Ω)+ 1
2 kΩ2

RT dΩ

∫𝜋𝜋

0e
− F(0,Ω)

RT dΩ
×
∫𝜋𝜋

0e
−

F(x,Ω)+ 1
2 kΩ2

RT dΩ

∫𝜋𝜋

0e
−

F(0,Ω)+ 1
2 kΩ2

RT dΩ
(14)

We now define GΩ(x) as the grid PMF of the restrained system  
(by Ω):

GΩ(x) = −RT ln∫
𝜋𝜋

0
e−

F(x,Ω)+ 1
2 kΩ2

RT dΩ (15)

We also define UΩ(x) as the average biasing potential at grid  
point x:

UΩ (x) = −RT ln⟨e−
1
2 kΩ2

RT ⟩x = −RT ln
∫𝜋𝜋

0e
−

F(x,Ω)+ 1
2 kΩ2

RT dΩ

∫𝜋𝜋

0e
− F(x,Ω)

RT dΩ
(16)

Now we have from relations (14), (15) and (16):

ΔG (x) = ΔGΩ (x) − ΔUΩ (x) (17)

where, the free energy of grid point x from the center 0 (ΔG(x)) is cal-
culated based on its equivalent free energy (ΔGΩ(x)) in a system biased 
by a harmonic restraint on Ω and a correction term ΔUΩ(x). For x = xB:

ΔUΩ (xB) = −RT ln ⟨e−
1
2 kΩ2

RT ⟩bulk

⟨e−
1
2 kΩ2

RT ⟩pocket
(18)

To determine the above ensemble averages, we need to determine 
the PMF along Ω for the bound and unbound ligand and calculate 
the ensemble averages analytically using relation (16). ΔGΩ(xB) can 
be determined from PMF calculations, where the distance between 
the protein and ligand is varied and the orientation of the ligand 
is restrained (distance-based BEUS with restrained orientation).  
We note that:

VP = ∫
pocket

e−
ΔG(x)
RT dV = ∫

pocket
e−

ΔGΩ (x)−ΔUΩ (x)
RT dV ≈ ∫

pocket
e−

ΔGΩ (x)
RT dV

(19)

where we assume ΔUΩ(x) is negligible for x within the binding pocket. 

In other words, ⟨e−
1
2 kΩ2

RT ⟩x ≈ ⟨e−
1
2 kΩ2

RT ⟩0 for x close to 0.

In brief, if we choose to restrain the orientation, our absolute 
binding-free-energy estimate includes the following terms (using 
relations (8) and (17)):

ΔG∘ = −ΔGΩ (xB) + ΔUΩ (xB) + ΔGV (20)

F(xB, Ω) can be calculated numerically from orientation angle 
distribution of a free ligand: F(xB,Ω) = −RT lnp (Ω) , where p(Ω) is deter-
mined from the distribution of Euler angles (p (ϕ,θ,ψ) = 1

8𝜋𝜋2
sinθ, where 

0 ≤ ϕ, ψ ≤ 2π and 0 ≤ θ ≤ π) given that:

cos Ω

2 = cos ϕ
2 cos θ

2 cos ψ
2 + sin ϕ

2 sin θ
2 sin ψ

2 (21)

⟨e−
1
2 kΩ2

RT ⟩bulk can then be calculated using relation (16) with numer-
ically estimated F(xB, Ω) and the k value used in the simulations. 
F (xB,Ω) = −RT lnp(Ω) was numerically estimated by discretizing each 
of the 3 Euler angles with a bin width of 1° and a total of 
360 × 360 × 180 bins to estimate p(Ω) from p(ϕ, θ, ψ). F(0, Ω) can be 
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determined approximately using orientation-based US simulations 

of bound ligand. F(0, Ω) can then be used to estimate ⟨e−
1
2 kΩ2

RT ⟩pocket 
using relation (16).

The above strategy can be extended to other degrees of free-
dom for which unbiased sampling may hinder the convergence. 
Most notably, the internal conformational changes of the ligand 
and that of the protein may also play a crucial role in slowing down 
the convergence. In the following, we show how one can restrain not 
only the orientation of the ligand but also the RMSD of the ligand 
(denoted here by r) in distance-based US simulations (along d) to 
speed up convergence. In this case, the grid PMF difference ΔG(x) is 
calculated based on ΔGΩ,r(x), the grid PMF of a system whose Ω and 
r are both restrained:

e−
ΔG(x)
RT =

∫∞
0 ∫𝜋𝜋

0e
− F(x,Ω,r)

RT dΩdr

∫∞
0 ∫𝜋𝜋

0e
− F(0,Ω,r)

RT dΩdr
(22)

Using a similar strategy as in relation (14), we have:

e−
ΔG(x)
RT = ∫∞

0 ∫
𝜋𝜋

0 e−
F(x,Ω,r)

RT dΩdr

∫∞
0 ∫

𝜋𝜋

0 e−
F(x,Ω,r)+ 1

2 k′ r2
RT dΩdr

× ∫∞
0 ∫

𝜋𝜋

0 e−
F(x,Ω,r)+ 1

2 k′ r2

RT dΩdr

∫∞
0 ∫

𝜋𝜋

0 e−
F(x,Ω,r)+ 1

2 k′ r2+ 1
2 kΩ2

RT dΩdr

×∫
∞
0 ∫

𝜋𝜋

0 e−
F(0,Ω,r)+ 1

2 k′ r2+ 1
2 kΩ2

RT dΩdr

∫∞
0 ∫

𝜋𝜋

0 e−
F(0,Ω,r)+ 1

2 k′ r2
RT dΩdr

× ∫∞
0 ∫

𝜋𝜋

0 e−
F(0,Ω,r)+ 1

2 k′ r2

RT dΩdr

∫∞
0 ∫

𝜋𝜋

0 e−
F(0,Ω,r)

RT dΩdr

×∫
∞
0 ∫

𝜋𝜋

0 e−
F(x,Ω,r)+ 1

2 k′ r2+ 1
2 kΩ2

RT dΩdr

∫∞
0 ∫

𝜋𝜋

0 e−
F(0,Ω,r)+ 1

2 k′ r2+ 1
2 kΩ2

RT dΩdr

(23)

which results in:

e−
ΔG(x)
RT = ⟨e−

1
2 k′ r2

RT ⟩0

⟨e−
1
2 k′ r2

RT ⟩x
× ⟨e−

1
2 kΩ2

RT ⟩r0

⟨e−
1
2 kΩ2

RT ⟩rx
× e−βGΩ,r(x)

e−βGΩ,r(0)
(24)

Here we have defined GΩ,r(x) as:

GΩ,r (x) = −RT ln∫
∞

0
∫

𝜋𝜋

0
e−

F(x,Ω,r)+ 1
2 k′ r2+ 1

2 kΩ2

RT (25)

where k′ is the harmonic force constant associated with the r based on 
biasing potential ( 1

2
k′r2). We also define Ur(x) similar to UΩ(x) in relation 

(15) except for using r instead of Ω. Ur
Ω
(x) is also defined similar to UΩ(x) 

except for the additional restraint on r:

Ur
Ω
(x) = −RT ln⟨e−

1
2 kΩ2

RT ⟩rx = −RT ln
∫∞
0 ∫𝜋𝜋

0 e
−

F(x,Ω,r)+ 1
2 k′ r2+ 1

2 kΩ2

RT dΩdr

∫∞
0 ∫𝜋𝜋

0 e
−

(F(x,Ω,r)+ 1
2 k′ r2)

RT dΩdr
(26)

Finally, we have:

ΔG (x) = ΔGΩ,r (x) − ΔUr (x) − ΔUr
Ω
(x) (27)

In brief, if we choose to restrain both the orientation and RMSD, 
our absolute binding-free-energy estimate includes the following 
terms:

ΔG∘ = −ΔGΩ,r (xB) + ΔUr (xB) + ΔUr
Ω
(xB) + ΔGV (28)

Here we are using an approximation similar to that in relation (19):

VP ≈ ∫
pocket

e−
ΔGΩ,r (x)

RT dV (29)

Using relations (20) and (28), we can generalize the stratifica-
tion strategy to include three restraints on arbitrary collective 
variables α, β and γ:

ΔG∘ = −ΔGα,β,γ (xB) + ΔUγ (xB) + ΔUγ
β (xB) + ΔUβ,γ

α (xB) + ΔGV (30)

where:

ΔGV ≈ −RT ln∫
pocket

e−
ΔGα,β,γ(x)

RT
dV
Å3

− ΔGB (31)

Isothermal titration calorimetry of hFGF1 with heparin 
hexasaccharide
ITC data were obtained using MicroCal iTC 200 (Malvern) with microcal 
origin software. The change in heat during the biomolecular interaction 
was measured by titrating heparin (loaded in the syringe) into the hFGF1 
solution in the calorimetric cell. Both the protein and the heparin sam-
ples were prepared in the buffer containing 10 mM phosphate buffer 
with 100 mM NaCl at pH 7.2 and were degassed before loading. The 
protein-to-heparin ratio was maintained at 1:10 with the protein con-
centration being 100 μM and the heparin concentration being 1 mM. A 
total of 30 injections were conducted with a constant temperature of 
25 °C and stirring speed of 300 rpm. One set of sites binding model was 
used for the ITC binding curve68. The standard binding free energy ΔG° 
was determined from dissociation constant via relation (2) at T = 25 °C. 
The experiment was repeated three times with the same sample and 
the results obtained were very similar to each other. The mean and 
standard deviation were reported for both Kd and ΔG°.

All-atom MD simulations
For our bound state, we utilized the X-ray crystal structure of the 
dimeric hFGF1 combination with heparin hexasaccharide (PDB 2AXM; 
resolution, 3.0 Å)69, and for our apo state, we used the X-ray crystal 
structure of monomeric hFGF1 (PDB 1RG8; resolution, 1.1 Å)70. The 
NAMD 2.13 (ref. 71) was used to run MD simulations. Using a conjugate 
gradient, we energy-minimized the system for 10,000 steps. We next 
relaxed the systems using stepwise restrained MD simulations (for 
1 ns) using CHARMM-GUI72. All production runs were done in an NPT 
(constant N, number of atoms; P, pressure; T, temperature) ensemble 
after the first NVT (constant N, number of atoms; V, volume; T, tem-
perature) relaxation. Simulations were done at 300 K with a 2 fs time 
step and a 0.5 ps−1 damping coefficient using a Langevin integrator. 
Nosé–Hoover–Langevin pistons were used to maintain 1 atm pressure72. 
Long-range electrostatic interactions were estimated using the particle 
mesh Ewald approach. The initial runs were done for 15 ns, followed by 
the production run on the Anton 2 supercomputer (Pittsburgh Super-
computing Center) for 4.8 μs with a 2.5 fs time step.

MD simulations of free heparin hexasaccharide
Heparin hexasaccharide69 was simulated in a rectangular water box 
without the protein. The system was set up as described previously in 
the ‘All-atom MD simulations’ section. The final conformation after 
relaxation was then used as the starting conformation for 10 produc-
tion runs for 40 ns each. The total simulation time was around 400 ns.

SMD simulations
The final conformations of the hFGF1–heparin73, apo hFGF1 (ref. 73) 
and free heparin hexasaccharide equilibrium simulations were used 
to generate starting conformations for the non-equilibrium pulling 
simulations. Four collective variables74 were used for the SMD simula-
tions75: (1) distance between the heavy-atom center of mass of heparin 
and that of the protein (d); (2) the orientation angle of heparin with 
respect to the protein (Ω) defined using the orientation quanternion 
formalism; (3) RMSD of the protein (rP); (4) RMSD of heparin (rL).  
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Six independent sets of simulations were performed. The distance-
based SMD simulation was run for 9.5 ns, while the orientation-based 
SMD simulation was run for 8 ns. The distance-based SMD simulation 
was used to pull the heparin away from the protein by approximately 
30 Å (10 Å → 40 Å) with a force constant of 100 kcal (mol Å2)−1. The 
orientation angle was also restrained in this simulation with a force 
constant of 0.5 kcal (mol degree2)−1 to stay close to its initial orienta-
tion in the bound state. The orientation-based SMD simulation was 
used to rotate the bound heparin locally with respect to the protein 
(0° → 73°) with a force constant of 100 kcal (mol degree2)−1. Four RMSD-
based SMD simulations were run for 10 ns each using a force constant 
of 50 kcal (mol Å2)−1: (1) to change the RMSD of the bound protein 
(0.5 Å→2 Å) (the RMSD of heparin was restrained in this simulation 
with a force constant of 1 kcal (mol Å2)−1); (2) to change the RMSD of 
the bound heparin (1.5 Å → 4 Å); (3) to change the RMSD of the unbound 
protein (0.8 Å → 3.2 Å); (4) to change the RMSD of the free heparin 
(1.5 Å → 5.5 Å).

BEUS simulations
BEUS53,76,77, which is a variation of the US simulation method, was per-
formed to estimate grid PMF (Supplementary Fig. 1). Four independent 
sets of distance (d)-based BEUS simulations were performed, with no 
restraints, restraint on orientation angle of heparin with respect to the 
protein (Ω), restraint on RMSD of the ligand (rL) and RMSD of the protein 
(rP), and restraints on Ω, rL and rP. Two sets of BEUS simulations were also 
performed using the Ω collective variable, one with and one without a 
restraint on rL and rP. In addition, two sets of BEUS simulations were per-
formed using the rP collective variable (bound protein with restraint on 
rL; unbound protein) and two sets were performed using the rL collective 
variable (bound ligand; free ligand). Selected SMD conformations were 
assigned to individual BEUS windows with equal spacing in each one of 
these BEUS simulations. The distance-based BEUS simulations ran for 
10 ns with 31 replicas/windows and the orientation-based simulations 
ran for 10 ns with 30 replicas/windows. The RMSD-based BEUS simula-
tions ran for 10 ns with 12 replicas/windows. The force constant used for 
ligand–protein distance (d) in distance-based BEUS was 2 kcal (mol Å2)−1 
while the orientation was restrained as in SMD simulations using a 
force constant of 0.5 kcal (mol degree2)−1. For orientation-based BEUS 
simulations, the force constant for the ligand orientation angle (as in 
SMD simulations) was set to 0.5 kcal (mol degree2)−1. The force constant 
used for rL and rP in all cases was 1 kcal (mol Å2)−1. See Supplementary 
Fig. 1 for a schematic representation of these simulations.

Free-energy calculations using non-parametric reweighting
Once the BEUS simulations described above were converged, a non-
parametric reweighting method76,78, which is somewhat similar to 
the multi-state Bennett acceptance ratio method79, was used to con-
struct the PMF. In this method76, each sampled configuration will be 
assigned a weight, which can be used to construct the PMF in terms 
of a desired collective variable. Suppose that a system is biased (for 
instance, within a BEUS scheme) using N different biasing potentials 
Ui(r), where i = 1, …, N, and r represents all atomic coordinates. Typi-
cally, Ui(r) is a harmonic potential defined in terms of a collective vari-
able with varying centers for different i. Assuming an equal number of 
sampled configurations from each of the N generated trajectories, we 
can combine them in a single set of samples {rk} (irrespective of which 
bias was used to generate each sample rk) and determine the weight 
of each sample (wk) as:

wk = c/∑
i
e−

(Ui (rk )−Fi )
RT (32)

where, c is the normalization constant such that ∑k wk = 1 and both {wk} 
and perturbed free energies {Fi} are determined iteratively using the 
above equation and the following:

e−βFi = ∑
k
wke

− Ui (rk )
RT (33)

Converged wk values can be used to construct any ensemble aver-
ages including any PMF (for example, G(ζ) PMF of the atomic system 
in the collective variable space(ζ))) in terms of not only the collective 
variable used for biasing but also any other collective variables that 
are sufficiently sampled. One may use a weighted histogram method 
to construct the PMF as follows:

G (𝜁𝜁i) = −RT ln∑
k
wkδ (𝜁𝜁 (rk) − 𝜁𝜁i) , (34)

δ (𝜁𝜁 (rk) − 𝜁𝜁i) = {
1, |𝜁𝜁 (rk) − 𝜁𝜁i| < ||𝜁𝜁 (rk) − 𝜁𝜁j|| for j ≠ i.

0, otherwise
(35)

To estimate the uncertainty of any of PMF calculations described 
above, one may use bootstrapping. Here, we have used a block Bayes-
ian bootstrapping technique77, where 100 alternative datasets are 
resampled from the existing dataset and the same non-parametric 
reweighting algorithm and the same PMF calculation is repeated for 
each set to generate 100 alternative PMFs. The standard deviation 
of the PMF at any point along the reaction coordinate provides an 
estimate for the error.

Alchemical FEP simulations
We used the BFEE2 (ref. 27) package to estimate the absolute free energy 
of binding in silico for an alchemical or geometrical route with multiple 
subprocesses and geometric constraints. Alchemical FEP simulations 
were performed to calculate the absolute binding free energy for the 
interaction of hFGF1 with heparin hexasaccharide. We used a double 
annihilation protocol80, wherein the heparin hexasaccharide is anni-
hilated in both the free and bound states. The final conformations of 
the hFGF1–heparin complex73 and free heparin hexasaccharide equi-
librium simulations (discussed previously in the ‘All-atom MD simula-
tions’ section) were used to generate starting conformations for the 
bound hFGF1–heparin and free heparin FEP simulations respectively. 
For the alchemical route, four separate simulations are performed: 
(1) coupling the restraints of seven collective variables in the bound 
state; (2) decoupling the ligand alchemically in the bound state; (3) 
coupling the ligand alchemically in the unbound state; (4) decoupling 
the conformational restraints in the unbound state. The FEP simula-
tions 1 and 3 were performed bidirectionally using 200 λ-windows 
(λ is the coupling parameter associated with the FEP that could vary 
between 0 and 1). Each λ-window included a 0.5 ns of equilibration and 
5.0 ns of averaging for both the unbound and bound states, for a total 
of 2.3 μs (Supplementary Table 3). The decoupling FEP simulations 2 
and 4 were also performed bidirectionally, each one for 51 ns. All FEP 
simulations were performed using the NAMD 2.13 (ref. 71) simulation 
package with the CHARMM36m all-atom additive force field, using 
the protocol discussed previously for the equilibrium simulations. We 
used the state-of-the-art BFEE2 (ref. 27) method to make input files and 
analyze the FEP simulations.

Binding-free-energy calculations using geometrical route
The extended ABF technique with an umbrella integration estimator 
was used to calculate the free-energy change along the coarse variables 
required to characterize reversible heparin–hFGF1 binding3,24,27. We 
used the software BFEE2 (ref. 27) to generate the input files for these 
simulations. In the geometrical route, these collective variables are 
often subjected to restrictions, and the amount of reversible work 
required to impose each constraint is determined by a sequence of 
very accurate PMF simulations. The collective variables used here are 
the RMSDs of the two proteins’ backbone distances from the reference, 
native conformation, the three Euler angles (Θ, Φ and Ψ) that describe 
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their relative orientation and the polar (θ) and azimuth angles (φ) that 
describe their relative position27,81. The geometrical path consists of a 
sequence of separate PMF computations performed sequentially with 
the gradual inclusion of restrictions (RMSD, Θ, Φ, Ψ, θ and φ), as shown 
in Supplementary Table 2. Each geometric collective variable (RMSD, 
Θ, Φ, Ψ, θ, φ and r = (1/β) ln(S*I*C°); β = (𝑘BT)−1, with kB the Boltzmann 
constant and T the temperature; C° denotes the standard concentration 
of 1 M. I*, which stands for the separation term, and S*, which stands for 
the surface term, indicate the percentage of a sphere with radius r*,  
centered at the binding site of the reference protein, that is, accessible 
to its partner) simulation was run with 10 replicas per restriction, and 
each replica simulation included 20 ns (RMSD, Θ, Φ, Ψ, θ and φ) of 
simulation time (r collective variables simulations were run for 40 ns 
for each replica), for a total of 1.6 μs. The BFEE2 (ref. 27) Gui was used 
to analyze the final ABF simulation data.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Datasets related to this article are deposited to the Zenodo repository82. 
Source data for Figs. 1–5 is available with this paper. Protein Data Bank 
(https://www.rcsb.org/) was used to collect the crystal structures2AXM 
ref. 69 and 1RG8 ref. 70.

Code availability
All scripts as well as the full source code for non-parametric reweighting 
can be obtained from Zenodo82.
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