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The protein-ligand binding affinity quantifies the binding strength
between a protein andits ligand. Computer modeling and simulations can

be used to estimate the binding affinity or binding free energy using data- or
physics-driven methods or acombination thereof. Here we discuss a purely
physics-based sampling approach based on biased molecular dynamics
simulations. Our proposed method generalizes and simplifies previously
suggested stratification strategies that use umbrellasampling or other
enhanced sampling simulations with additional collective-variable-based
restraints. The approach presented here uses a flexible scheme that can be
easily tailored for any system of interest. We estimate the binding affinity
of human fibroblast growth factor 1to heparin hexasaccharide based on
the available crystal structure of the complex as the initial model and

four different variations of the proposed method to compare against the
experimentally determined binding affinity obtained from isothermal
titration calorimetry experiments.

Accurate quantification of absolute binding affinities remains a prob-
lem of majorimportance in computational biophysics' ™. In principle,
accurate binding-free-energy calculations should be the cornerstone of
any study investigating protein-ligand interactions. However, the high
computational costs that typically accompany such calculations neces-
sitate the improvement of the computational methods traditionally
used to investigate complex biomolecular interactions®. Experimen-
tally determined binding affinities are commonly used as benchmarks
to judge the accuracy of various computational binding affinity esti-
mation methods®. Several experimental techniques can be used to
study protein-ligand binding equilibria®®. For instance, isothermal
titration calorimetry (ITC) can detect the interaction of binding part-
ners based on changes in solution heat capacity and binding partner
concentration®®, Other methods such as fluorescence spectroscopy
rely on changesin fluorescence intensity upon ligand binding®*'°. Sur-
face plasmon resonance can be used to calculate binding affinities
based on changes in refractive index that occur when animmobilized
binding partner interacts with a free binding partner®. Studies have
found that experimental binding affinities can vary depending onthe
experimentalmethod used’. Therefore, athorough understanding of
the experimental conditions used to generate reference data s essential

when comparing computationally determined binding affinities with
experimental values.

Several computational methods at varying levels of rigor and
complexity have been used to determine binding affinities for biomo-
lecular interactions™"' %, Knowledge-based statistical potentials and
force-field scoring potentials are typically used to rank docked protein-
ligand or protein—-protein complexes but can also be used for binding
affinity prediction'”". A major disadvantage of these methods is that
they do not treat the entropic effects rigorously, which effectively
decreases the accuracy of such binding affinity predictions’. Thisis also
the case for methods such as molecular mechanics/Poisson-Boltzmann
surface area (MM-PBSA) and molecular mechanics/generalized Born
surface area (MM-GBSA), which combine sampling of conformations
fromexplicit solvent molecular dynamics (MD) simulations with free-
energy estimation based on implicit continuum solvent models* .
Adequate sampling of protein and ligand conformational dynamics as
wellas ligand roto-translational movements with respect to the protein
is essential for accurately quantifying the entropic reduction arising
from the binding event®* ¢, MM-PBSA and MM-GBSA methods typically
neglect such entropic contributions to the binding free energy or do
nottreat themrigorously**?*. Binding Free-Energy Estimator 2 (BFEE2)
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isastate-of-the-art protein-ligand binding affinity calculation software
that addresses the substantial shift in configurational enthalpy and
entropy that follows ligand-protein binding, whichis hard to represent
inbrute-force simulations'®?. An energy-entropy approach, energy-
entropy multiscale cell correlation, has been introduced to compute
the free energy of binding and has been applied for binding-free-energy
calculations, which take into consideration the entropy of all flexible
degrees of freedomin the systemin a consistent and generic way?.

One of the best-known binding-free-energy estimation methods
is alchemical free-energy perturbation (FEP), where scaling of non-
bonded interactions enables reversal decoupling of the ligand from
its environment in the bound state as well as the unbound state? 2,
Most entropic and enthalpic contributors to changes in binding affin-
ity are typically considered during FEP simulations, thus avoiding the
approximations used by methods such as MM-PBSA and MM-GBSA**.
A disadvantage of FEP is the fact that ligands tend to move away from
the bindingsite during the decoupling process, whichresults in poorly
defined target states of the FEP calculation being used as starting
states for the re-coupling process®*. Using receptor-ligand restraints
to resolve this issue*>** introduces some ambiguity to the way a
standard state is defined, with a level of correlation between the size
of the simulation cell and the standard state®®. This can be corrected
by the use of appropriate geometrical restraints® .,

Unrestrained long-timescale MD simulations should theoreti-
cally allow for the investigation and quantification of protein-ligand
or protein-protein binding events****. While microsecond-level MD
simulations provide a more accurate description of protein confor-
mational dynamics compared with shorter simulations**, efficient
sampling of the conformational landscape remains a major issue and
requires access to timescales beyond the capabilities of current MD
simulations®*¢, Several methods have been developed to tackle the
sampling problem. Markov state models allow the sampling and char-
acterization of native as well as alternative binding states””. Similarly,
weighted ensemble simulations sample the conformational landscape
alongone or morediscretized reaction coordinates based on the assign-
ment of a statistical weight to each simulation***, More traditionally,
umbrella sampling (US) along such reaction coordinates can be used
to guide the binding or unbinding of a ligand, after which algorithms
like the weighted histogram analysis method can be used to calculate
aunidimensional potential of mean force (PMF) that quantifies ligand
binding and unbinding along a reaction coordinate***°. Better conver-
gence of the calculated free-energy profiles can be achieved by the
exchange of conformations between successive US windows as in the
bias-exchange umbrella sampling (BEUS)* . Other methods based
on similar principles include umbrella integration®*, well-tempered
metadynamics®, adaptive biasing force (ABF) simulations® and vari-
ations of these techniques.

Incomplete sampling of important degrees of freedom, such as
orientation of the ligand with respect to the protein, remains a major
disadvantage of unidimensional PMF-based methods**. To resolve
this problem, ref. 3 reported a method wherein explicitly defined
geometrical restraints on the orientation and conformation of the
binding partners are used to reduce the conformational entropy of
the biomolecular system being studied**. This results in improved
convergence of the PMF calculation®*. The introduction of arestrain-
ing potential based on the root-mean-square deviation (RMSD) of the
ligand relative to its average bound conformation reduces the flex-
ibility of the ligand and the number of conformations that need to be
sampled®*. This method avoids the need to decouple the ligand from
its surrounding environment as required by alchemical FEP>*?°732,
Recent studies™’ have described applications and extensions of the
methodology proposed by ref.3.

In this Article, we describe a purely physics-based enhanced sam-
pling method based on biased MD simulations, which is similar in prin-
cipletothestratification strategy proposed by refs. *>*. Although we use

the US method as our enhanced sampling technique, the methodology is
generalizableto other techniques aslong as they can be combined with
additional restraints. There are several important differences between
our method and that of refs. >*. Our method includes: (1) providing a
general scheme that can be easily adapted to any number of restraints;
(2) the non-parametric reconstruction of the grid PMF, as defined below;
and (3) the use of the unidimensional orientation angle of the ligand
with respect to the protein as a collective variable for restraining, as
opposed to the use of three Euler angles. We note that the method of
refs.>* caninprinciple be generalized as well; the generalization is not as
straightforwardasitisin our proposed method, particularly inremoving
some of the restraints. In other words, while adding more restraints is
somewhat similar to our approach inthe method of of refs. **, removing
some of the restraint requires less trivial changes to the formalism that
makes it distinct from our method. We have used this methodology to
calculate the binding affinity for the interaction of human fibroblast
growth factor 1 (hFGF1) with heparin hexasaccharide, its glycosamino-
glycan (GAG) binding partner. hFGF1is an important signaling protein
that is implicated in physiological processes such as cell proliferation
and differentiation, neurogenesis, wound healing, tumor growth and
angiogenesis™ >, GAGs are linear anionic polysaccharides that interact
with positively charged regions of FGF binding partnersto regulate their
biological activity®’. The hFGF1-heparin complex is the most well-known
and broadly characterized protein-GAG complex®*°, Heparin binding
isthought tostabilize hFGF1and impart protection against proteolytic
degradation. In this study, we show that the absolute binding affinity
for the hFGF1-heparin interaction calculated using our approachis in
good agreement with binding affinity data from ITC experiments. Four
alternative methods are used for estimating the absolute binding affin-
ity within the formalism presented here to determine the workings of
the methodology and the effect of the application of different (or no)
restraints. We also compare our results with those obtained from FEP
simulations and show that although performing longer FEP simulations
couldimprove the accuracy of binding affinity estimates when compared
withshort FEP simulations, our approachisstillmore accurate than FEP
when similar simulation times are used.

Results

Calculation of binding free energy using four different
strategies

We have calculated the absolute binding free energy for the interac-
tion of hFGF1 with heparin hexasaccharide using four variations of
the stratification scheme described above, based ona combination of
steered MD (SMD) and BEUS simulations. The details of the methodol-
ogy are discussed in Methods. Four different methods are used with
varying effectiveness in estimating the absolute binding free energy.
These methods are: (1) the traditional distance-based BEUS simulations
that donotemploy any additional restraining; (2) distance-based BEUS
simulations employing arestraint on the orientation of the ligand (Q)
defined based on the orientation quaternion formalism; (3) distance-
based BEUS simulations employing a restraint on the RMSD of both
ligand and protein (r, and r); (4) distance-based BEUS simulations
employing a restraint on the RMSD of both ligand and protein as well
astheorientation of theligand (Q, r, and r,). Ineach case, appropriate
correction terms are calculated as discussed in the ‘Theoretical foun-
dation’section and shown in Table 1.

We denote the PMF of the ligand at agiven position x (with respect
tothe center of the heparin binding pocket) as the grid PMF, as the PMF
is estimated at different grid points in this approach (Fig.1). The aver-
age grid PMF profiles along the ligand-protein distance for the four
different methods used here (as shownin Fig. 1) confirm the differential
behavior of these methods (see Supplementary Fig. 1for a schematic
representation of these simulations). Note that since x = 0 is the grid
point associated with the lowest PMF by definition, the average PMF
along |x| hasits global minimum at [x| = 0. The most successful method
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Table 1| Summary of the results of free-energy calculations

Quantity No restraints

Qrestraint

r, and r, restraint O, r, and rp restraint

Grid PMF difference (kcalmol™) AG(xg)=-19.7 £1.1°

AGq(xg)=-13.2+0.3

AG,, ,,(Xg)=-177£1.0 AGgq p r,(Xp)=-17.0£0.5

Orientation correction (kcalmol™) NA AUy(x5)=4.4+0.3 NA AUq  (Xp)=46+0.3
Ligand RMSD correction (kcalmol™) NA N/A AU, (xg)=0.6+ 01 AU, (xg)=0.6 £ 0.1
Protein RMSD correction (kcalmol™) NA NA AU;,E (X)=0.3%01 AU‘;“, (X)=0.3+011
AG, (kcalmol™) 37+0.2 25+0.2 23+02 27402
AG°(kcalmol™) -16.0+1.2 -6.3+05 -145+1.0 -87+07

Ky (uM)° 0(107) 25 0(107) 0.5

Ky range (UM)° 107-10° 11-58 107610 0.2-2.0

We are comparing the AG® of four different restraining methods (see ‘BEUS simulations’ in Methods for details). *All error estimates are based on 1s.d. "Equilibrium dissociation constant (K)
values are determined directly from mean absolute binding-free-energy (AG®) values using relation (2). °K, range is determined from the lower and upper limits of AG® values (meanzs.d.) using
relation (2). The experimentally determined K, and AG® were 1.68+0.03 uM and -7.88+0.0Tkcalmol™, respectively (see Fig. 4). The orientation angle of heparin with respect to the protein (Q),
RMSD of the protein (rp), RMSD of heparin (r,), and the contribution of the difference between the volume of the binding pocket and the bulk to the binding free energy (AG,). AG(xg), AG(xs),
AG, ,, (xg)and AG, ,, ,, (Xg)are the PMF difference between the binding pocket center and the bulk associated with respective restraints. NA means the data are not applicable in the
corresponding section. AUg(xs), AU (Xg), AU, (Xg)and AL/,}& (xg)are correction terms associated with restraints (see ‘Theoretical foundation’ in Methods for details).
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Fig.1| Average grid PMF based on our alternative distance-based BEUS
simulations. Average grid PMFs in terms of [x|, where x is the three-dimensional
position vector of the ligand with respect to the center of the binding pocket. The
xaxis represents x| and the y axis represents AF(|x|), which is an average over all
AF(x) with the same |x|, that is, the ligand distance from the center of the binding
pocket. The error bars represent the standard deviation obtained from all values
of AF(x) at various grid points x with the same |x|. Representative images of
heparin hexasaccharide bound to hFGF1 (|x| =0 A)and unbound (|x| =30 A) are
shown above the grid PMF plot. We used n = 31 MD replicas to generate the data
inall cases.

is expected to be the one employing restraints on Q, r, and r, (Table 1
andFig.1). Thelargest contributor to the free energy is the difference
between the grid PMF associated with the heparin hexasaccharide at
agrid pointat the center of the binding pocket and at any grid pointin
the bulk, whichis -17.0 + 0.5 kcal mol™ (Fig. 2a and Table 1).

The PMF calculations above are based on the BEUS simulations
alongthe protein-ligand distance; however, the orientationand RMSD
of the ligand and the RMSD of the protein are restrained to speed up
convergence. To account for the orientation bias, a correction term
needstobeapplied, whichis calculated from the PMF associated with
the ligand orientation angle at the bulk and binding pocket (Fig. 2b).
The orientation bias is estimated to be 4.4 + 0.3 kcal mol™ (Table 1).

Similarly, acorrectiontermis calculated based onthe PMF of the ligand
RMSD and that of the protein (Fig. 2c). These correction terms are esti-
mated to be 0.7 + 0.1 kcal mol™ and 0.4 + 0.1 kcal mol™ for the ligand
and protein, respectively (Table 1).

Finally, another termis needed to account for the difference inthe
volume accessible to the ligand in the binding pocket and in the bulk
(volume contribution). Figure 3 shows that the binding pocket contri-
bution (AG,) (or binding pocket volume (V})) for the distance-based
BEUS simulations with no restraint as determined from the 20-lowest
free-energy grid pointsis almost equal to that obtained from all visited
grid pointsinside or outside the binding pocket. For the distance-based
BEUS simulations with Q, r, and r, restraints, this termis estimated to
be 2.7 + 0.2 kcal mol™ (Table 1), which results in an absolute binding
free energy of —8.7 + 0.7 kcal mol™ (Table 1).

On the basis of our error analysis, equilibrium dissociation con-
stant (K;) values calculated from the absolute binding free energy were
found to be in the micromolar range with an average value of 0.6 pM
(using the mean absolute binding free energy (AG®) estimate) and
ranging from 0.2 pM to 2.0 uM (based on the lower and upper bounds
of free energy estimates) (Table 1). These are in very good agreement
withthe K value obtained fromITC experiments. We performed the ITC
experimentsintriplicate resultinginak;0f1.68 + 0.03 pM (asshownin
Fig.4),1.65+0.07 pM and 1.69 + 0.05 pMin three independent experi-
ments. The binding free energy calculated from the experimental K|
(-7.87 kcal mol™, -7.88 kcal mol™ or -7.89 kcal mol™, depending on
the experiment) is also in good agreement with the computationally
calculated binding free energy (Fig. 4 and Table 1).

Comparison between computationally and experimentally
calculated binding free energy of heparin-hFGF1

The quantitative agreement between the computational and experi-
mental binding affinity estimates is a great indicator of the accuracy
of our absolute binding-free-energy calculation method. However, if
proper restraining is not used as in the distance-based BEUS simula-
tions with no restraints or only RMSD restraints, the binding affinity
estimates would be off by several orders of magnitude. The simulations
that restrain only the orientation of the ligand are interestingly quite
successful as well, being off by only one order of magnitude in terms
of binding affinity, whichis generally considered a good estimate. This
provides some evidence that the orientation of the ligand is perhaps the
degree of freedom with the most substantial contribution to the abso-
lute binding free energy besides theligand-protein distance. While the
average grid PMF profiles along the ligand-protein distance (as shown
in Fig. 1) confirm that the four methods used here produce different
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Fig.2| Computational heparin-hFGF1binding-free-energy measurements.
a, Average grid PMF in terms of x|, where x is the three-dimensional position
vector of the ligand with respect to the center of the binding pocket determined
from distance-based BEUS simulations with Q, r, and r;, restraints. The x axis
represents [x| and they axis represents AGy, ,, r,, (IX]), whichis anaverage over all
AGg  rp (X)Withthe same [x|, that s, the ligand distance from the center of the
binding pocket. The error bars represents the standard deviation obtained from
allvaluesof AG, , . (X)atvariousgrid points x with the same |x|. The dashed
linerepresents the value associated with AG, ,, , (X at|x|=30 A.b, The PMF
associated with the ligand orientation angle (Q) for the bound heparin (that s,
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x = 0, ligand in the binding pocket) and free heparin (that is, x = xg, ligand in the
bulk). The latter is calculated analytically with the help of relation (21). c,d, PMF in
terms of internal conformational fluctuations of the protein and ligand. ¢, PMF
associated with the internal RMSD of heparin-bound (black line) and apo

(gray line) hFGF1(r;). d, PMF associated with the internal RMSD of FGF1-bound
(blackline) and free (gray line) heparin hexasaccharide (r,). The error bars in
b-drepresent the standard deviation determined from the bootstrapping
algorithm described in Methods. We used n =31, n=30 and n=12 MD replicas

to generate the datashownina, b, and cand d, respectively.
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Fig.3 | Estimating binding pocket volume and its contribution to absolute
binding free energy. a, Grid PMF (AG(x)) associated with grid points with the
20-lowest PMF values (black) along with estimated AG, based on these grid
points (shown in an accumulative manner in magenta). The distance-based BEUS
simulations with no restraints are used for these calculations. The dashed line
shows the estimated AG, based on all visited grid points inside or outside the
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binding pocket. The x axis shows the ranking of these 20 grid points from lowest
PMF onwards. b, Binding pocket volume (V;) calculated from the 20-lowest grid
PMF values (similar to a). The dashed line shows the V; estimated from all visited
grid pointsinside or outside the binding pocket. See ‘Theoretical foundation’in
Methods for more details.

results, itisimportant to note that the correction terms should ideally
eliminate these differences. Thisis seento some extent when comparing
the two methods involving orientation restraints that happen to esti-
mate binding affinities that are reasonably close (Table 1) to the experi-
mentally determined value. Another source of error in our calculations

could be in estimating the V, and eventually the contribution of the
difference between the volume of the binding pocket and the bulk to
the binding free energy (AG,). In doing so, we have made an assump-
tion that the V, can be calculated from relation (31) approximating
the grid PMF with that obtained from biased simulations. Comparing
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Fig. 4| Experimental heparin-hFGF1binding-free-energy measurements.
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In the specific experiment shown, K is 1.68 + 0.03 uM and the free energy from
experimental K, is —7.88 + 0.01 kcal mol ™. AH, heat change.

AG, values from Table 1 shows that different biases result in different
approximating values ranging from 2.3 kcal mol™t0 3.7 kcal mol ™. For
more information on these results and the convergence of data, see
Supplementary Table1and Figs. 2-5ref. 27.

Examining how this approach compares with other prevalent
binding-free-energy calculation methods

Recent computational studies have used the MM-GBSA method to cal-
culate the binding free energy of the hFGF1-heparin interaction, with
values ranging from —84.2 kcal mol™ to -106.1 kcal mol™ (ref. 66). The
outcomes of the MM-GBSA technique are considerably different from
those of ours. The MM-PBSA and MM-GBSA, which is not an all-atom
simulation approachlike ours, has drawbacksincluding the continuum
solventapproximation. Theintrinsic dielectric constant’s appropriate
setting presents another challenge. It has long been known that the
selection of the intrinsic dielectric constant has a significant impact
on the computed electrostatic energy?>*. However, these contribu-
tors to the binding affinity are typically taken into account during FEP
simulations, thus obviating the need for the approximations used in MM-
PBSA and MM-GBSA>*. It is widely accepted that binding-free-energy
estimates from MM-PBSA and MM-GBSA are less accurate than those
from FEP, which is considered to be the gold standard for the calcula-
tion of absolute binding affinities®”. We performed double annihilation
FEP to calculate the absolute binding free energy of the hFGF1-heparin
complex. The BFEE2 method was used to estimate binding affinities
from FEP simulations with the consideration of several restraints to
improve sampling within the framework of the method of refs. >*. The
FEP simulations here were designed to have an aggregate simulation
time comparable to that used in our BEUS simulations (-2.3 ps for FEP
compared with~1.1 ps for SMD + BEUS). An absolute binding free energy
of 0.55 +30.25 kcal mol™ was obtained for the FEP (Fig. 5a and Supple-
mentary Table 2). Unlike the absolute binding free energy estimated
from the BEUS simulations (-8.7 + 0.7 kcal mol ™) (Table 1), the estimates
from the FEP simulations are notin agood agreement with the binding
free energy determined fromITC experiments (-7.88 + 0.01 kcal mol™)
(Fig.4).Moreimportantly, alarge uncertainty is associated with the FEP
results that is due to the relative large size of the ligand. To show the
effectiveness of our plan, we also calculated the binding free energies
of hFGF1and heparin directly using the method of refs. ** as imple-
mented within the BFEE2 package (the geometrical route). To make a
fair comparison, we ran 1.6 ps of aggregate simulation using the ABF
free-energy calculations. Heparinand hFGF1have abinding free energy
0f-19.04 +2.95 kcal molbased on the geometric approach (Fig. 5b and
Supplementary Table 3).In contrast to our technique, the BFEE2 geomet-
ric route anticipated a value that was twice as high as the experimental

value of free energy. This comparison shows the effectiveness of our
method over well-established binding-free-energy calculation methods.
To firmly establish the efficiency of our strategy, additional research
with a bigger data sample will be required in the future. In particular,
itisimportant to determine what parameters make our method more
efficient than the BFEE2 geometric protocol. For instance, it could be
dueto use of BEUS simulation scheme or amore fundamental difference
regarding the use of simpler restraints and analysis schemes.

Studies have shown that the binding affinity and free-energy
results derived from computational methods can be compared with
experimental binding affinities obtained from ITC experiments’®.
However, for areliable computational free-energy estimate, employ-
ing purely physics-based free-energy calculation methods such as
those employed here has proven to be difficult. Herein we showed that
using a careful strategy that considers all relevant free-energy terms
and ensures the use of powerful enhanced sampling techniques could
resultingood quantitative agreements between the computational and
experimental binding affinity estimates. Our methodology could serve
asarobust free-energy calculation method for determining the binding
affinities of any protein and ligand of interest. However, the accuracy
of the resulting binding free energies is still limited by the reliability
of the force field parameters, which is at least equally as important
as sampling for accurate physics-based binding affinity estimation.

Discussion

The formalism presented in this work has notable similarities to the
method previously proposed by ref. 3, and laterimplemented**”. How-
ever, there are major differences that make the current method more
practical. The grid PMF and its various estimates provide a simple con-
ceptual framework to understand how restraining can be accounted
for with appropriate correction terms. The average grid PMF in terms
of the ligand-protein distance provides an alternative to the PMF in
terms of d as is often constructed. The non-parametric reweighting
allows for calculating the grid PMF in terms of the distance from the
center of the binding pocket, as defined in this work, eliminating the
need for calculating the PMF in terms of the polar and azimuthal angles
asin the method of refs. >*. Relation (30) is a general scheme that can
be easily adapted to any number of restraints. For instance, one may
or may not add the polar and azimuthal angles to the restraints using
the trivial generalization of relation (30). The orientation angle of
the ligand with respect to the protein as determined using the orien-
tation quaternion formalism provides a simple way of determining
the absolute binding free energy with a feasible computational cost.
Amongthe four different sets of restraints, the two involving orienta-
tionrestraints predict binding free energies similar to that determined
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Fig. 5| Binding-free-energy measurements using BFEE2 software. a, Free-
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bound state and in water from FEP calculations. A is a coupling parameter that
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afinal, fully decoupled state (1=1). b, PMF obtained during the separation of
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(ref. 27) package to estimate the absolute free energy of binding in silico for an
alchemical or geometrical route with multiple subprocesses and geometric
constraints. The alchemical and geometric methods’ binding-free-energy
estimates were 0.55 + 30.25 kcal mol™ and -19.04 +2.95 kcal mol™, respectively.
See Supplementary Tables 2 and 3 for details of each geometric restriction and
alchemical FEP calculations, respectively.

experimentally. Again, if restraining the orientation angle does not
allow for a rapid convergence, one can add more restraints including
thetiltand/or spinrestraints. While the traces of the method of refs. **
isclearinour derivation of the binding free energy, there are also clear
differencesinthe use of the concept of the grid PMF that allows treating
any restraints within the general formalism expressed in relation (30).
A more extensive work is needed to determine when restraints in
addition to those used in this work are necessary.

The outcomes of a simulation are significantly influenced by a
variety of other factors, including model quality and the precision of
docking. The efficiency of the method’s findings may also be impacted
by the degree to which the force field of ligandsis accurately modeled.
Therestrictions that are often associated with these kinds of approach
are connected to sampling, which might vary from project to project;
forinstance, bigger ligands may demand greater sampling than smaller
ligands do. Also extremely crucial is the beginning structure of the
bound state; the more precise the bound state, the more accurate the
binding affinities will be.

Methods

Theoretical foundation

Binding affinity is often quantified using the equilibrium dissociation
constant (K,), defined as:

Kq=[P][L]/[P : L] @

where[P], [L]1and [P:L] are the concentrations of protein, ligand and the
protein-ligand complex, respectively. Computationally, the absolute
binding free energy (AG®), which s the standard molar free energy of
binding, is more convenient to calculate. The dissociation constant
and the absolute binding free energy are related via
K4

AG° = RT1
G nIM

2

where Risthe gas constant, Tis the temperatureand1 Mis 1 molar con-
centration. Various strategies have been used to estimate AG°, some
of which were briefly discussed above. The methodology proposed
here has anotable resemblance to the stratification strategy of refs. >*.
However, the two methods have major differences as will be discussed
later in this section.

Absolute binding free energy or AG° is the free-energy change
associated with moving the ligand from the bulk to the binding pocket

(Supplementary Table 1). Within the formalism presented in this
work, AG°is determined from the grid PMF G(x), where x is the posi-
tion of the ligand mass center from the center of the binding pocket
(Supplementary Table 1), G(x) is the PMF associated with the ligand
position x. In practice, we need to bin the three-dimensional space
and define the PMF at every bin or grid point as:

G(x) =—RTInp(x) 3)

where p(x) is the probability of finding the ligand at bin x.
We define AG(x) = G(x) — G(0), where x = O (that is, the center of
the binding pocket) is defined as the grid point associated with the
lowest grid PMF. One can show:
AG(X)
fpockete_ ardV

AG(X)

Soue # dV

Gx)
S wmdy
AG® = —RTIn 2%~ _ _RTIn

G(x)

Soue * dV

(C)]

in which the binding ‘pocket’ refers to all x € V where the ligand is
considered bound and ‘bulk’ refers to all x € V where the ligand is not
interacting with the protein. V here is a subset of space with a single
protein in standard concentration (that is, 1 M). As AG(X) is the same
everywhere in the bulk, we can simplify relation (4) as follows:

AG° = —RTIn

Y AGxg) -RTIN P ®)
Vg

_ AG(xg)
e r Vp

where V; is the bulk volume per protein associated with the standard
concentration, Xg is any grid point in the bulk and V, is the binding
pocket volume defined as:

_ A6

Vp = f e xr dV
pocket

Defining AG, as the contribution of the difference between the
volume of the binding pocket and the bulk to the binding free energy:

(6)
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Combining equations (5) and (7), we have:
AG® = —AG (xg) + AGy ®)
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We can find the bulk volume (V;) associated with the standard
concentration for a single protein approximately as:

1
Vg = ’V_"mOl =L ~1e614% 9)
TV Ny =7

where N, is Avogadro’s constant and L is the unit of volume (litres).
We can now rewrite AG, as:

AGy = —RTIn ﬁ =—RTIn ﬁ +RTIn ﬁ = AGp — AGg (10)
Vi A3 A3

B

in which AG; is the bulk volume contribution and AG, is the binding
pocket contribution:

AGg = —RTIn Z— ~ —7.42RT
(11)

_ 86w 4y
pockete R A

v,
AGp = —RTIn A_Z =—RTIn S

Determining both AG(x;) and AG, requires finding the grid PMF
AG(x).AG(xp) is the PMF difference between the binding pocket center
andthebulkand AG;alsorequires an estimate for AG(x) within the bind-
ing pocket. We therefore do not need to find AG(x) for all x if we have a
good estimate for AG(x) within the binding pocket andin the bulk. Ide-
ally, AG(x) for these points can be determined by pulling the ligand out
of the binding pocket towards the bulk and using anenhanced sampling
technique suchas US to sample the space of a collective variable such
as d, that is, the distance between the mass centers of the ligand and
protein. AG(x) can be estimated for all sampled grid points x using this
distance-based US simulation. Note that the collective variable used
for biasing would be d, while the collective variable used for the PMF
calculations would be the three-dimensional position vector of the
mass center of ligand with respect to protein’s binding pocket center.
One may estimate the grid PMF from the distance-based US simulations
using anon-parametric reweighting algorithmas discussed in this sec-
tion. AG(x) canalso be used to estimate AG, as defined in relation (11).
Thereis oftenno need to strictly define the binding pocket as only low
AG(x) values have non-negligible contribution to V, and thus evenif we
includeallsampled grid points, only those close to the binding pocket
center have non-negligible contributions.

Apracticalissue with determining AG(x;) is the convergence. The
key obstacles for the sampling that slow down the convergence are the
orientation of theligand, and the conformational changes of the ligand
and protein. Using an approach similar in spirit to the previously pro-
posed stratification strategy****, we can circumvent extensive sampling
ofthese degrees of freedom. Let us first focus onthe orientation of the
ligand (Q), defined using the orientation quaternion formalism. We
canrestrain Q during the distance-based US simulations using abiasing
potential (1 k22where a kis harmonic force constant) and later correct
the free-energy difference based on the PMF associated with the Q,
which is different in the bulk (F(x;, 2)) and in the binding pocket
(F(0, Q)).More generally, for any grid point x, we may determine AG(x)
based on the PMF associated with the Q at x (F(x, Q)) and 0 (F(0, Q)):

)
_saw  foe” ar df2
RT = —-—

e (12)

_F0,2)

Joe & dQ

Note that F(x, Q) is the PMF associated with x and Q, defined
such that:

TR
G(x)=c—RTIn/ e & df2
0

13)

where cis an arbitrary constant. We therefore have:

F0,2)+ 3 k22 Fx,2)+ S k22
L 2 Lt
/o d2  fpe /o dR
X

F(0,2)

Joe & de2

o _F) o

Jo€ F d2 Jo€
X

F(x,n)+%kr22

Joe o dR

_AGK)
e rr =

F0,2)+ % k2?2
RT dn
a4)

x -
Joe

We now define G,(x) as the grid PMF of the restrained system
(by Q):

L F(x,:))+%k!22
Go(X) = —RTIn / e dn @15)
0

We also define U,(x) as the average biasing potential at grid
pointx:

F(x,())+%l<£)2

_3k? Joe© T @ dR
Uqo (X)=—RTIn(e™ & ) = —RTIn =% —— (16)
So€ w dn
Now we have fromrelations (14), (15) and (16):
AG(X) = AG, (X) — AU, (X) 17)

where, the free energy of grid point x from the center 0 (AG(x)) is cal-
culated based onits equivalent free energy (AG,(x)) in asystem biased
by aharmonicrestraint on Q and a correction term AUq(x). For x = x;:

1,02
_ 7/(.(1
(€ AT Dpulk
12
Ekfl

AUg (Xg) = —RTIn (18)

(e &t >p0cket

To determine the above ensemble averages, we need to determine
the PMF along Q for the bound and unbound ligand and calculate
the ensemble averages analytically using relation (16). AG,(Xg) can
be determined from PMF calculations, where the distance between
the protein and ligand is varied and the orientation of the ligand
is restrained (distance-based BEUS with restrained orientation).
We note that:

_ A6 _ AGp(0-AUg () _AGHr®
Ve = e rxr dV= e RT dVx~ e« dV
pocket pocket pocket

19

where we assume AU, (x) is negligible for x within the binding pocket.

In other words, (e~ T Y R (e :

ko
w )eforxclosetoO.

In brief, if we choose to restrain the orientation, our absolute
binding-free-energy estimate includes the following terms (using
relations (8) and (17)):

AG® = —AG, (xg) + AU, (Xg) + AGy (20)

F(xg, Q) can be calculated numerically from orientation angle
distribution of afreeligand: F(xg, £2) = —RTIn p (£2) where p(Q) is deter-
mined from the distribution of Euler angles (p (¢, 6,¢) = st sin g, where
0<@,p<2mand0<O<m)giventhat:

¢ 0 Y . 0. ¢

COS — = COS =~ COS = COS —~ + SIn — SIn = sin —~
2 2 2

27272 2 @

(e_% youCan thenbe calculated using relation (16) with numer-
ically estimated F(x;, Q) and the k value used in the simulations.
F(xg, 22) = —RTIn p(2)was numerically estimated by discretizing each
of the 3 Euler angles with a bin width of 1° and a total of
360 x 360 x 180 bins to estimate p(Q) from p(¢, 6, ¢). F(0, Q) can be
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determined approximately using orientation-based US simulations
1

of bound ligand. F(0, Q) can then be used to estimate <e—i,%f>pocket
using relation (16).

The above strategy can be extended to other degrees of free-
dom for which unbiased sampling may hinder the convergence.
Most notably, the internal conformational changes of the ligand
and that of the protein may also play a crucial role in slowing down
the convergence. Inthe following, we show how one can restrain not
only the orientation of the ligand but also the RMSD of the ligand
(denoted here by r) in distance-based US simulations (along d) to
speed up convergence. In this case, the grid PMF difference AG(x) is
calculated based on AG,, (x), the grid PMF of a system whose Q and
rareboth restrained:

F(X,$2,r)
& d2dr

FO,

,92,r)
®rdQdr

R

e RrT
- o
Jo Joe

(22)

Using a similar strategy asinrelation (14), we have:

1.2
o an 7F(X.J7J)+7k'r
So Jo& R dodr
T s L s Tt
fo foe RT
F0,2,)+ % K2

dodr [y [oe R dedr
X F(0,52,r)

/:’f;e’ RT

Lo fre i dndr

© ar _F(x,!l.!H%k’rz
Jo Soer T

RT ds2dr
FO,2,0+ 3K 2+ T ka?
- RT

_AGw
e R’ =

do2dr

o 1
Jo Soe

X T

oo x _FO20+ 5K 12

-[0 foe RT

F LersLio?

o pr _FOS20+ 5K 24 Sk

So Soeo R
X e

FO,2:0+ 5 K24 3 k22

f:f:;e RT

(23)

dodr dodr

ddr

ds2dr

whichresultsin:

%k/,z 1402
(e_ RT >o <e RT )6
w2 _%ml
R0k (@R

)
e k1 =

e~BGa, ()
e—$G(0)

(24)

(e

Here we have defined G, (x) as:

«© rr F("yny')+%k’r2+%k92
Go, (%) = —RTIn / f R Lt o o5
0Jo

where k’is the harmonic force constant associated with the rbased on
biasing potential (%k’rz). We also define U,(x) similar to U,(x) inrelation
(15) except for using rinstead of Q. U7, (x)is also defined similar to Uy (x)
except for the additional restraintonr:

Fou .+ 1024 Tra?
(oo} y4 -_— e
f Py f 0€ RT
1
(F(x‘:z,m 3 k’rZ)

RT dodr

ka2

U, (X) = —RTIn(e™ "= ), = —RTIn

dodr
(26)

fo Joe
Finally, we have:

AG(X) = AGg, , (X) — AU, (x) — AU, (X) 27)

In brief, if we choose to restrain both the orientation and RMSD,
our absolute binding-free-energy estimate includes the following
terms:

AG® = —AG g, (Xg) + AU, (Xg) + AU, (Xg) + AGy (28)

Here we are using an approximation similar to thatinrelation (19):

_AGa )
Vo ~ / e« dV (29)
pocket

Using relations (20) and (28), we can generalize the stratifica-
tion strategy to include three restraints on arbitrary collective
variables a, fand y:

AG® = —AG, g, (Xg) + AUy (Xg) + AU}; (Xg) + AU (xg) + AGy  (30)
where:
AGg g, ()
AGy ~ —RTIn / e AV G, G1)
pocket A3

Isothermal titration calorimetry of hFGF1 with heparin
hexasaccharide

ITC datawere obtained using MicroCaliTC 200 (Malvern) with microcal
originsoftware. The changeinheat during the biomolecularinteraction
was measured by titrating heparin (loaded inthe syringe) into the hFGF1
solutioninthe calorimetric cell. Both the proteinand the heparin sam-
ples were prepared in the buffer containing 10 mM phosphate buffer
with 100 mM NaCl at pH 7.2 and were degassed before loading. The
protein-to-heparin ratio was maintained at 1:10 with the protein con-
centration being100 pM and the heparin concentrationbeingl mM. A
total of 30 injections were conducted with a constant temperature of
25°Candstirring speed of 300 rpm. One set of sites binding model was
used for the ITC binding curve®®. The standard binding free energy AG°
was determined fromdissociation constant viarelation (2) at T=25 °C.
The experiment was repeated three times with the same sample and
the results obtained were very similar to each other. The mean and
standard deviation were reported for both K;and AG®.

All-atom MD simulations

For our bound state, we utilized the X-ray crystal structure of the
dimeric hFGF1combination with heparin hexasaccharide (PDB 2AXM;
resolution, 3.0 A)*®’, and for our apo state, we used the X-ray crystal
structure of monomeric hFGF1 (PDB 1RGS; resolution, 1.1 A)°. The
NAMD 2.13 (ref. 71) was used to run MD simulations. Using a conjugate
gradient, we energy-minimized the system for 10,000 steps. We next
relaxed the systems using stepwise restrained MD simulations (for
1ns) using CHARMM-GUI"% All production runs were done in an NPT
(constant N, number of atoms; P, pressure; T, temperature) ensemble
after the first NVT (constant N, number of atoms; V, volume; T, tem-
perature) relaxation. Simulations were done at 300 K with a 2 fs time
step and a 0.5 ps™ damping coefficient using a Langevin integrator.
Nosé-Hoover-Langevin pistons were used to maintain1atm pressure’.,
Long-range electrostaticinteractions were estimated using the particle
mesh Ewald approach. The initial runs were done for 15 ns, followed by
the productionrunonthe Anton 2 supercomputer (Pittsburgh Super-
computing Center) for 4.8 pswith a2.5 fs time step.

MD simulations of free heparin hexasaccharide

Heparin hexasaccharide® was simulated in a rectangular water box
without the protein. The system was set up as described previously in
the ‘All-atom MD simulations’ section. The final conformation after
relaxation was then used as the starting conformation for 10 produc-
tionruns for 40 ns each. The total simulation time was around 400 ns.

SMD simulations

The final conformations of the hFGF1-heparin’, apo hFGF1 (ref. 73)
and free heparin hexasaccharide equilibrium simulations were used
to generate starting conformations for the non-equilibrium pulling
simulations. Four collective variables™ were used for the SMD simula-
tions”: (1) distance between the heavy-atom center of mass of heparin
and that of the protein (d); (2) the orientation angle of heparin with
respect to the protein () defined using the orientation quanternion
formalism; (3) RMSD of the protein (r;); (4) RMSD of heparin (r).
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Six independent sets of simulations were performed. The distance-
based SMD simulation was run for 9.5 ns, while the orientation-based
SMD simulation was run for 8 ns. The distance-based SMD simulation
was used to pull the heparin away from the protein by approximately
30 A (10 A > 40 A) with a force constant of 100 kcal (mol A2)™. The
orientation angle was also restrained in this simulation with a force
constant of 0.5 kcal (mol degree?) ™ to stay close to its initial orienta-
tion in the bound state. The orientation-based SMD simulation was
used to rotate the bound heparin locally with respect to the protein
(0° > 73°) withaforce constant of 100 kcal (mol degree?)™. Four RMSD-
based SMD simulations were run for 10 ns each using a force constant
of 50 kcal (mol A%)™: (1) to change the RMSD of the bound protein
(0.5 A>2 A) (the RMSD of heparin was restrained in this simulation
with a force constant of 1kcal (mol A%™); (2) to change the RMSD of
thebound heparin (1.5 A > 4 A); (3) to change the RMSD of the unbound
protein (0.8 A > 3.2 A); (4) to change the RMSD of the free heparin
(L5A~>55A).

BEUS simulations

BEUS***”, which is a variation of the US simulation method, was per-
formed to estimate grid PMF (Supplementary Fig.1). Fourindependent
sets of distance (d)-based BEUS simulations were performed, with no
restraints, restraint on orientation angle of heparin withrespectto the
protein (Q), restraint on RMSD of the ligand (r,) and RMSD of the protein
(rp), and restraintson Q,r, and r,. Two sets of BEUS simulations were also
performed using the Q collective variable, one with and one without a
restraintonr, and r,. Inaddition, two sets of BEUS simulations were per-
formed using the ry collective variable (bound protein with restraint on
r; unbound protein) and two sets were performed using ther, collective
variable (boundligand; free ligand). Selected SMD conformations were
assigned to individual BEUS windows with equal spacing in each one of
these BEUS simulations. The distance-based BEUS simulations ran for
10 nswith31replicas/windows and the orientation-based simulations
ranfor10 nswith 30 replicas/windows. The RMSD-based BEUS simula-
tions ranfor 10 ns with12 replicas/windows. The force constant used for
ligand-protein distance (d) in distance-based BEUS was 2 kcal (mol A%)™
while the orientation was restrained as in SMD simulations using a
force constant of 0.5 kcal (mol degree?)™. For orientation-based BEUS
simulations, the force constant for the ligand orientation angle (as in
SMD simulations) was set to 0.5 kcal (mol degree?)™. The force constant
used for r, and r, in all cases was 1 kcal (mol A%)™.. See Supplementary
Fig.1for aschematic representation of these simulations.

Free-energy calculations using non-parametric reweighting
Once the BEUS simulations described above were converged, a non-
parametric reweighting method’”®’®, which is somewhat similar to
the multi-state Bennett acceptance ratio method”®, was used to con-
struct the PMF. In this method’, each sampled configuration will be
assigned a weight, which can be used to construct the PMF in terms
of a desired collective variable. Suppose that a system is biased (for
instance, within a BEUS scheme) using N different biasing potentials
U(r),wherei=1,...,N, and r represents all atomic coordinates. Typi-
cally, U(r) isaharmonic potential defined in terms of a collective vari-
able with varying centers for different i. Assuming an equal number of
sampled configurations from each of the Ngenerated trajectories, we
cancombinetheminasingle set of samples {r,} (irrespective of which
bias was used to generate each sample r,) and determine the weight
of each sample (w,) as:

Yilr)=Fi)

(
we=c/y.e (32)
7

where, cis the normalization constant such that 3, w, = 1andboth {w,}
and perturbed free energies {F;} are determined iteratively using the
above equation and the following:

_ Uilrg)
eBFi = Z wye ’r
k

(33)

Converged w, values can be used to construct any ensemble aver-
ages including any PMF (for example, G({) PMF of the atomic system
in the collective variable space(Q))) in terms of not only the collective
variable used for biasing but also any other collective variables that
are sufficiently sampled. One may use a weighted histogram method
to construct the PMF as follows:

G = —RTanwkﬁ(C(l’k) OE (34)
X
1, ¥i)— G — &l forj i.
6(C(rk)—é,-)={ £ — &l < |¢(re) — gl forj #i 35)
0, otherwise

To estimate the uncertainty of any of PMF calculations described
above, one may use bootstrapping. Here, we have used a block Bayes-
ian bootstrapping technique’, where 100 alternative datasets are
resampled from the existing dataset and the same non-parametric
reweighting algorithm and the same PMF calculation is repeated for
each set to generate 100 alternative PMFs. The standard deviation
of the PMF at any point along the reaction coordinate provides an
estimate for the error.

Alchemical FEP simulations

Weused the BFEE2 (ref. 27) package to estimate the absolute free energy
ofbindinginsilico for analchemical or geometrical route with multiple
subprocesses and geometric constraints. Alchemical FEP simulations
were performed to calculate the absolute binding free energy for the
interaction of hFGF1 with heparin hexasaccharide. We used a double
annihilation protocol®®, wherein the heparin hexasaccharide is anni-
hilated in both the free and bound states. The final conformations of
the hFGF1-heparin complex” and free heparin hexasaccharide equi-
librium simulations (discussed previously in the ‘All-atom MD simula-
tions’ section) were used to generate starting conformations for the
bound hFGF1-heparin and free heparin FEP simulations respectively.
For the alchemical route, four separate simulations are performed:
(1) coupling the restraints of seven collective variables in the bound
state; (2) decoupling the ligand alchemically in the bound state; (3)
couplingtheligand alchemically in the unbound state; (4) decoupling
the conformational restraints in the unbound state. The FEP simula-
tions 1and 3 were performed bidirectionally using 200 A-windows
(Ais the coupling parameter associated with the FEP that could vary
between 0 and1). EachA-windowincluded a 0.5 ns of equilibration and
5.0 ns of averaging for both the unbound and bound states, for a total
of 2.3 pus (Supplementary Table 3). The decoupling FEP simulations 2
and 4 were also performed bidirectionally, each one for 51 ns. All FEP
simulations were performed using the NAMD 2.13 (ref. 71) simulation
package with the CHARMM36m all-atom additive force field, using
the protocol discussed previously for the equilibrium simulations. We
used the state-of-the-art BFEE2 (ref. 27) method to make input files and
analyze the FEP simulations.

Binding-free-energy calculations using geometrical route

The extended ABF technique with an umbrella integration estimator
was used to calculate the free-energy change along the coarse variables
required to characterize reversible heparin-hFGF1 binding>***. We
used the software BFEE2 (ref. 27) to generate the input files for these
simulations. In the geometrical route, these collective variables are
often subjected to restrictions, and the amount of reversible work
required to impose each constraint is determined by a sequence of
very accurate PMF simulations. The collective variables used here are
the RMSDs of the two proteins’ backbone distances fromthe reference,
native conformation, the three Euler angles (0, ® and ¥) that describe
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their relative orientation and the polar (6) and azimuth angles (¢) that
describe their relative position”®'. The geometrical path consists of a
sequence of separate PMF computations performed sequentially with
the gradualinclusion of restrictions (RMSD, O, @, ¥,0and ¢), as shown
inSupplementary Table 2. Each geometric collective variable (RMSD,
0,®,W,0,pandr=(1/B) In(S*1*C°); B= (ks T)™", with k; the Boltzmann
constantand Tthe temperature; C° denotes the standard concentration
of 1 M. /¥, which stands for the separation term, and $*, which stands for
the surface term, indicate the percentage of a sphere with radius r*,
centered at the binding site of the reference protein, thatis, accessible
toits partner) simulation was run with 10 replicas per restriction, and
each replica simulation included 20 ns (RMSD, O, @, ¥, 6 and @) of
simulation time (r collective variables simulations were run for 40 ns
for eachreplica), for atotal of 1.6 ps. The BFEE2 (ref. 27) Gui was used
to analyze the final ABF simulation data.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability
Datasets related to thisarticle are deposited to the Zenodo repository®.
Source datafor Figs.1-5is available with this paper. Protein Data Bank
(https://www.rcsb.org/) was used to collect the crystal structures2AXM
ref. 69 and IRG8 ref. 70.

Code availability
Allscriptsaswell asthe full source code for non-parametric reweighting
can be obtained from Zenodo®.
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raw experimental data is Figure 4. There is no restriction on data availability from the ITC experiment.

>
QO
—
C
=
(D
=
D
wn
(D
Q
=
@)
>
=
(D
©O
]
=
>
(e}
%)
c
3
QO
=
<

0202 fudy




Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size ITC experiments were performed in triplicate under the same experimental conditions with the same sample. The variance in the ITC data,
obtained under the same experimental conditions, is negligible. The triplicate simulations simply show that the measured binding affinities are
highly reproducible under the same experimental conditions and estimated uncertainties are negligible. Therefore, the ITC experiments,
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algorithm, the number of replicas are chosen based on the complexity of the problem to reach convergence, which is shown in supplementary
figures 2-5.

Data exclusions  No datapoint in the ITC results were ommited. All datapoints in the isothermogram were used in analysis.
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reproducible both qualitatively and quantitatively. ITC experiments were independently performed in triplicates and all the replications were
successful.
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