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With the end of Moore’s law approaching and Dennard 
scaling ending, the computing community is increas-
ingly looking at new technologies to enable continued 

performance improvements. Neuromorphic computers are one 
such new computing technology. The term neuromorphic was 
coined by Carver Mead in the late 1980s1,2, and at that time pri-
marily referred to mixed analogue–digital implementations of 
brain-inspired computing; however, as the field has continued to 
evolve and with the advent of large-scale funding opportunities 
for brain-inspired computing systems such as the DARPA Synapse 
project and the European Union’s Human Brain Project, the term 
neuromorphic has come to encompass a wider variety of hardware 
implementations.

We define neuromorphic computers as non-von Neumann com-
puters whose structure and function are inspired by brains and that 
are composed of neurons and synapses. Von Neumann computers 
are composed of separate CPUs and memory units, where data and 
instructions are stored in the latter. In a neuromorphic computer, on 
the other hand, both processing and memory are governed by the 
neurons and the synapses. Programs in neuromorphic computers 
are defined by the structure of the neural network and its param-
eters, rather than by explicit instructions as in a von Neumann 
computer. In addition, while von Neumann computers encode 
information as numerical values represented by binary values, neu-
romorphic computers receive spikes as input, where the associated 
time at which they occur, their magnitude and their shape can be 
used to encode numerical information. Binary values can be turned 
into spikes and vice versa, but the precise way to perform this con-
version is still an area of study in neuromorphic computing3.

Given the aforementioned contrasting characteristics between 
the two architectures (Fig. 1), neuromorphic computers present 
some fundamental operational differences:

•	 Highly parallel operation: neuromorphic computers are inher-
ently parallel, where all of the neurons and synapses can poten-
tially be operating simultaneously; however, the computations 
performed by neurons and synapses are relatively simple when 
compared with the parallelized von Neumann systems.

•	 Collocated processing and memory: there is no notion of a sepa-
ration of processing and memory in neuromorphic hardware.  

Although neurons are sometimes thought of as processing units 
and synapses are sometimes thought of as memory, the neu-
rons and synapses both perform processing and store values 
in many implementations. The collocation of processing and 
memory helps mitigate the von Neumann bottleneck regarding 
the processor/memory separation, which causes a slowdown in 
the maximum throughput that can be achieved. In addition, this 
collocation helps avoid data accesses from main memory, as in 
conventional computing systems, which consume a consider-
able amount of energy compared with the compute energy4.

•	 Inherent scalability: neuromorphic computers are meant to be 
inherently scalable as adding additional neuromorphic chips 
entails increasing the number of neurons and synapses that can 
be realized. It is possible to take multiple physical neuromorphic 
chips and treat them as a single large neuromorphic implemen-
tation to run larger and larger networks. This has been success-
fully accomplished across a variety of large-scale neuromorphic 
hardware systems, including SpiNNaker5,6 and Loihi7.

•	 Event-driven computation: neuromorphic computers leverage 
event-driven computation (meaning, computing only when 
data are available) and temporally sparse activity to allow for 
extremely efficient computation8,9. Neurons and synapses only 
perform work when there are spikes to process, and typically, 
spikes are relatively sparse within the operation of the network.

•	 Stochasticity: neuromorphic computers can include a notion of 
randomness, such as in the firing of neurons, to allow for noise.

The features of a neuromorphic computer are well noted in the 
literature and are given as motivators for implementing and using 
them10–14. One of the most attractive features of neuromorphic 
computers for computation is their extremely low power opera-
tion: they can often operate on orders of magnitude less power than 
traditional computing systems. This low-power operation is due to 
their event driven nature and massively parallel nature, where typi-
cally only a small portion of the entire system is active at any given 
time while the rest is idle. Due to the increasing energy cost of com-
puting, as well as the increasing number of applications in which 
there are energy constraints (such as edge computing applications), 
energy efficiency alone is a compelling reason to investigate the 
use of neuromorphic computers. Furthermore, as they inherently  
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implement neural network-style computation, neuromorphic 
computers are a natural platform for many of today’s artificial 
intelligence and machine learning applications. There is also prom-
ise to leverage the inherent computational properties of neuro-
morphic computers to perform a wide variety of different types  
of computation15.

Each of these features of neuromorphic computers are inspired 
by characteristics of the brain and have been prioritized in the 
implementation of neuromorphic computers in recent years; how-
ever, it is not clear whether they are the only aspects of biological 
brains that are important for performing computation. For example, 
although neurons and synapses have been chosen as the primary 
computational units of neuromorphic computers, there are a variety 
of other types of neural components that may be useful for com-
putation, including glial cells16,17. Moreover, neurons and synapses 
have been a convenient level of abstraction for neuromorphic com-
puters, but whether they are the most appropriate level of abstrac-
tion is still an open question18.

Unlike some of the future computing technologies, many physi-
cal realizations of neuromorphic hardware are currently under 
development or are even available for use to the research com-
munity. Several large-scale neuromorphic computers have been 
developed with a variety of approaches and goals19. The European 
Union’s Human Brain Project sponsored the development of 
SpiNNaker6 and BrainScaleS20 to enable neuroscience simulations 
at scale. An optimized digital neuromorphic processor called the 
online-learning digital spiking neuromorphic (ODIN) has also 
been proposed21, allowing the use of slightly more complex neuron 
models. One of the neuromorphic platforms targeting more general 
computations for wider classes of applications is the Tianjic chip, a 
platform that supports both neuromorphic spiking neural networks 
and the traditional artificial neural networks for different catego-
ries of problems22. Both industry and academia have taken an inter-
est in neuromorphic systems: in industry, some examples include 
IBM’s TrueNorth23 and Intel’s Loihi7, and there are also a variety 
of academic efforts, including DYNAPs24, Neurogrid25, IFAT13 and 
BrainScales-226. The usefulness of neuromorphic hardware such as 
BrainScales-2 has been demonstrated in carrying out optimizations 
for learning to learn scenarios (meaning, where an optimization 
process is used to define how learning occurs) for spiking neural 
networks, running at a much accelerated timescales compared to 
biological timescales27.

All of the aforementioned large-scale neuromorphic computers 
are silicon-based and implemented using conventional comple-
mentary metal oxide semiconductor technology; however, there is 
a tremendous amount of research in the neuromorphic community 
on developing new types of materials for neuromorphic imple-
mentations, such as phase-change, ferroelectric, non-filamentary, 

topological insulators or channel-doped biomembranes28–30. One 
popular approach in the literature is using memristors as the funda-
mental device to have resistive memory to collocate processing and 
memory31,32, but other types of devices have also been used to imple-
ment neuromorphic computers, including optoelectronic devices10. 
Each device and material used to implement neuromorphic com-
puters has unique operating characteristics, such as how fast they 
operate, their energy consumption and the level of resemblance to 
biology. The diversity of devices and materials used to implement 
neuromorphic hardware today offers the opportunity to customize 
the properties required for a given application.

Most research in the field of neuromorphic computing today 
fall in the realm of the aforementioned hardware systems, devices 
and materials; however, to most effectively use neuromorphic 
computers in the future, exploit all of their unique computational 
characteristics, and help drive their hardware design, they must be 
connected to neuromorphic algorithms and applications. From this 
perspective, we provide an overview of the current state of the art in 
neuromorphic algorithms and applications and provide a forward-
looking view of the opportunities for the future of neuromorphic 
computing in computer science and computational science. It is 
worth noting that the term neuromorphic computing has been 
used for a wide array of different types of technologies. As noted 
previously, the original definition only encompassed mixed ana-
logue-digital implementations. In this work, we consider all types 
of hardware implementations (digital, mixed analogue-digital, 
analogue) as neuromorphic, but we restrict our attention to spik-
ing neuromorphic computers, that is, those that implement spiking  
neural networks.

Neuromorphic algorithms and applications
Programming a neuromorphic computer often entails creating a 
spiking neural network (SNN) that can be deployed to that neu-
romorphic computer (see Box 1). SNNs take an additional level 
of inspiration from biological neural systems in the way that they 
perform computation; in particular, neurons and synapses in SNNs 
include notions of time within most neuromorphic computers. For 
example, spiking neurons might leak charge over time based on a 
particular time constant, and neurons and/or synapses in SNNs 
might have an associated time delay.

Algorithms for neuromorphic implementations often entail how 
to define an SNN for a given application. There are a wide variety of 
algorithmic approaches for neuromorphic computing systems that 
fall into two broad categories: (1) algorithms for training or learning 
an SNN to be deployed to a neuromorphic computer (Fig. 2); and 
(2) non-machine learning algorithms in which SNNs are hand-con-
structed to solve a particular task. It is worth noting that here, train-
ing and learning algorithms refer to the mechanism of optimizing  
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the parameters of an SNN (typically the synaptic weights) for a par-
ticular problem.

Machine learning algorithms. Spike-based quasi-backpropaga-
tion. Backpropagation and stochastic gradient descent have shown 
impressive performance in the field of deep learning; however, these 
approaches do not map directly to SNNs as spiking neurons do not 
have differentiable activation functions (that is, many spiking neu-
rons use a threshold function, which is not directly differentiable). 
Furthermore, the temporal processing component of SNNs can add 
another difficulty in training and learning for these approaches. 
Algorithms that have been successful for deep learning applications 
must be adapted to work with SNNs (Fig. 2a), and these adaptations 
can reduce the accuracy of the SNN compared with a similar artifi-
cial neural network33–36.

Some of the approaches that adapt deep learning-style training 
include using a surrogate gradient and having a smoothed activa-
tion function to compute the error gradients while performing 
weight adjustments in each of the successive layers19,21. There have 

also been a few demonstrations on computing the spike error gra-
dient37–39 that have shown close to state-of-the-art classification 
performance on the Modified National Institute of Standards and 
Technology (MNIST) handwritten digits dataset. To make use of 
the inherent temporal dimension in SNNs, there have been efforts 
attempting to employ rules that have been used to train recurrent 
neural networks, albeit with several approximations. As surveyed 
by Zenke and Neftci40, approaches such as backpropagation through 
time and real-time recurrent learning have been demonstrated 
on neuromorphic datasets, such as the Spiking Heidelberg Digits 
(SHD) and the Spiking Speech Command (SSC) dataset41.

Mapping a pre-trained deep neural network. As deep neural networks 
(DNNs) have an established training mechanism, several efforts to 
deploy a neuromorphic solution for a problem begin by training a 
DNN and then performing a mapping process to convert it to an 
SNN for inference purposes (Fig. 2b). Most of these approaches 
have yielded near state-of-the-art performance with potential  
for substantial energy reduction due to the use of only accumulate 

Box 1 | Spiking neural networks

Spiking neural networks are a particular type of artificial neural 
network in which the function of the neurons and the synapses 
in the network are more inspired by biology than other types of 
artificial neural networks such as multilayer perceptrons. The key 
difference between traditional artificial neural networks and SNNs 
is that SNNs take into account timing in their operation. Neuron 
models implemented in SNNs in the literature range from simple 
integrate and fire models, in which charge is integrated over time 
until a threshold value is reached, to much more complex and bio-
logically plausible models, such as the Hodgkin–Huxley neuron 
model, which approximates the functionality of specific aspects 
of biological neurons such as ion channels10. Both neurons and 
synapses in SNNs can include time components that affect their 
functionality.

Neurons in spiking neural networks accumulate charge over 
time from either the environment (via input information to the 
network) or from internal communications (usually via spikes 
from other neurons in the network). Neurons have an associated 
threshold value, and when the charge value on that neuron reaches 
the threshold value, it fires, sending communications along all 
of its outgoing synapses. Neurons may also include a notion of 
leakage, where the accumulated charge that is not above the 
threshold dissipates as time passes. Furthermore, neurons may 
have an associated axonal delay, in which outgoing information 
from the neuron is delayed before it affects its outgoing synapses. 
Synapses form the connections between neurons, and each 
synapse has a pre-synaptic neuron and a post-synaptic neuron. 
Synapses have an associated weight value, which may be positive 

(excitatory) or negative (inhibitory). Synapses may have an 
associated delay value such that communications from the pre-
synaptic neuron are delayed in reaching the post-synaptic neuron. 
Synapses also commonly include a learning mechanism in which 
the weight value of the synapse changes over time based on 
activity in the network. Neuromorphic computers often realize a 
particular fabric of connectivity, but the synapses may be turned 
on and off to realize a network structure within that connectivity. 
Furthermore, parameters of the neurons and synapses such 
as neuron thresholds, synaptic weights, axonal delays and 
synaptic delays are often programmable within a neuromorphic  
architecture.

Unlike traditional artificial neural networks, in which 
information is received at the input and then synchronously 
passed between layers in the network, in SNNs, even if input 
information is received at the same time and the SNN is organized 
into layers, as the delays on each synapse and neuron may be 
different, information is propagated asynchronously throughout 
the network, arriving at different times; this is beneficial for 
realizing SNNs on neuromorphic hardware, which can be designed 
to operate in an event-driven or asynchronous manner that fits 
well with the temporal dynamics of spiking neurons and synapses. 
An example SNN and how it operates in the temporal domain is 
shown in the figure. In this example, synapses are depicted with 
a time delay. Information is communicated by spikes passed 
throughout the network. In this example, the network’s operation 
at time t (left) and time t + 1 (right) is depicted, to show how the 
network’s state changes with time.
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computations over multiply and accumulate computations in DNNs 
on several commonly employed datasets, such as MNIST, Canadian 
Institute for Advanced Research (CIFAR)-10, and ImageNet42–45. 
Most initial conversion techniques used weight normalization or 
activation normalization, or employed average pooling instead of 
max pooling42,44,46. Other approaches involved training DNNs in a 
constrained manner so that the neuron’s activation function itera-
tively starts resembling that of a spiking neuron43,45. Stockl and col-
leagues have proposed a new mapping strategy where SNNs make 
use of Few Spikes neuron model (FS-neuron), which can repre-
sent complex activation functions temporally with at most two 
spikes47. They have shown close to deep neural network accura-
cies on benchmark image classification datasets with significantly 
fewer time-steps per inference compared with previously demon-
strated conversion strategies. Several applications demonstrated 
on neuromorphic hardware have employed some of the aforemen-
tioned mapping techniques. Tasks such as keyword spotting, medi-
cal image analysis and object detection have been demonstrated 
to run efficiently on existing platforms such as Intel’s Loihi and  
IBM’s TrueNorth48–50.

It is worth noting that training a conventional DNN and then 
mapping it to neuromorphic hardware, especially emerging 
hardware systems, can result in a reduction in accuracy not only 
because of the change from DNNs to SNNs, but also because of 
the neuromorphic hardware itself. Often, neuromorphic hardware 
systems that are implemented with emerging hardware devices 
such as a memristors will have reduced precision in the synaptic 
weight values they can realize, and they may also have cycle-to-
cycle and device variation. When creating a mapping technique, it 
is important to take into account how these characteristics might 
influence the inference performance of a mapped network. In 
addition, algorithms that use deep learning-style training to train 
SNNs often do not leverage all the inherent computational capa-
bilities of SNNs, and using those approaches limits the capabilities 
of SNNs to what traditional artificial neural networks can already 
achieve. For example, most gradient descent-style rules, includ-
ing mapping approaches, do not focus on the temporal aspect of  
SNN computation.

Reservoir computing. Another common algorithm used in SNNs 
is reservoir computing or liquid state machines (Fig. 2c). In reser-
voir computing, a sparse recurrent SNN is defined to function as 
the liquid or reservoir. This liquid is typically randomly defined, 
but is required to have two properties: input separability, which 
requires that different inputs result in different outputs, and fad-
ing memory, which requires that signals do not continue to propa-
gate infinitely through the reservoir and instead will eventually die 
out. In addition to the liquid itself, which is untrained, a reservoir 
computing approach also includes a readout mechanism, such as a 
linear regression, that is trained to recognize the output of the res-
ervoir. The key advantage of reservoir computing is that it does not 
require any training of the SNN component. Reservoir computing 
in SNNs uses the sparse and recurrent connections with synaptic 
delays in networks of spiking neurons to cast the input to a spatially 
and temporally higher dimensional space51. Several demonstrations 
of spike-based reservoir computing have shown their effectiveness 
at processing temporally varying signals52–54. Variants of this com-
puting framework have ranged from simple reservoir networks for 
bio-signal processing and prosthetic control applications52 to using 
hierarchical layers of liquid state machines—a type of reservoir net-
work—interconnected with layers trained in supervised mode for 
video55 and audio signal processing applications54.

Evolutionary approaches. Evolutionary approaches for training or 
designing SNNs (Fig. 2d) have also been used56–58. In an evolution-
ary algorithm, a random collection of potential solutions is cre-
ated to form an initial population. Each member of the population 
is evaluated and assigned a score, which is then used to perform 
selection (preferentially selecting better performing individuals) 
and reproduction (creating new individuals through recombina-
tion of old individuals and mutations) to produce a new population. 
In the context of SNNs for neuromorphic computing, evolutionary 
approaches can be used to determine parameters of the SNN, such 
as neuron thresholds or synaptic delays, or the structure of the net-
work, such as the number of neurons and how they are connected to 
each other with synapses. These approaches are attractive because 
they do not require differentiability in the activation functions 
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and do not rely on any particular network structure (for instance, 
feed-forward and recurrent). They can also be used to evolve the 
structure of the network and the parameters. However, their flex-
ibility has a cost: evolutionary approaches can be slow to converge 
compared with other training approaches. Evolutionary approaches 
have been most successfully applied to control applications such as 
video games59 and autonomous robot navigation57,60.

Plasticity. Several neurobiological studies have reported the modu-
lation of synaptic strength based on the activity of the connected 
neurons, which has been postulated as a learning mechanism for 
various tasks61. Spike-timing-dependent plasticity (STDP)—which 
operates on the underlying principle of adjusting the weights on 
the basis of relative spike timings from pre- and post-synaptic 
neurons (Fig. 2e)—is the most commonly implemented synaptic 
plasticity mechanism in neuromorphic literature10. Several differ-
ent mathematical formulations of this rule have been demonstrated 
on the MNIST, CIFAR-10 and ImageNet datasets62–67. Shrestha et 
al. presented a hardware-friendly modification of the exponential 
STDP rule, albeit the classification performance on MNIST was 
lower than the best results achieved so far with SNNs62. STDP-style 
rules have also been shown to approximate several machine learn-
ing approaches such as clustering and Bayesian inference68,69. STDP 
as a clustering mechanism has been demonstrated as a spike sorter 
in brain machine interface applications68. Combinations of spiking 
reservoirs and STDP have also been employed in an SNN approach 
called NeuCube70, which has been used to process electroencephalo-
grams and functional magnetic resonance imaging signals in appli-
cations such as sleep state detection and prosthetic controllers70–72.

A much broader class of SNNs for modelling dynamical systems 
are the recurrent networks with delays and synaptic plasticity. One 
such class of networks are the polychronization networks73, which 
have been employed for different spatio-temporal classification 
tasks74. Alemi et al. demonstrated a local learning rule with recurrent 
SNNs with fewer spikes to realize non-linear dynamical systems75. 
Such recurrent SNNs have shown greater classification ability with 
winner-take-all models76–78. To leverage the temporal dimension of 
SNN, some learning algorithms aim to generate single or multiple 
spikes at desired times, which have been applied in classification 
tasks79–83. Most of these algorithms also depend on the spike repre-
sentation used to encode the input signals. There have been several 
approaches to encode signals in terms of spike rates, latency and 
neuron population3,84.

Non-machine learning algorithms. The typical use cases for neu-
romorphic computing have been mainly machine learning-related, 
but neuromorphic computers have also been recently considered for 
non-machine learning algorithms. One common class of algorithms 
that have been mapped onto neuromorphic implementations comes 
from graph theory85–88. The underlying architecture of a neuromor-
phic computer is a directed graph, and thus when there is a graph 
of interest, it can be embedded directly into a neuromorphic archi-
tecture with suitable parameter settings, and the spike raster can 
reveal graph properties. For example, with the correct parameter 
sets, a given node can be spiked, and the time at which other nodes 
spike corresponds exactly with the length of the shortest path from 
the source node89. During the COVID-19 pandemic, neuromorphic 
computing was coupled with graph theory as a tool for analysing the 
spread of disease90.

Random walks have also been implemented within neuromor-
phic computers. In a random walk, a random node is selected as a 
starting point, and an agent moves along an edge departing from 
that node selected at random. The process is repeated for several 
steps and the locations visited by the random agent can reveal 
an important characteristic related to the underlying network. 
Random-walk analyses frequently involve performing many random  

walks and then aggregating the results for analysis. Although tradi-
tional hardware performs the parallel step well, the aggregation and 
analysis step requires high-energy usage for the sequential opera-
tion and does not always benefit from parallel architectures, such as 
GPUs. Severa and colleagues91 showed that in certain settings, ran-
dom walks could be studied in low-energy neuromorphic settings 
and that the analysis can be performed in an inherently parallel 
fashion. Smith and co-workers92 used neuromorphic deployments 
of discrete time Markov chains to approximate solutions for both 
particle transport problems and heat flow on complex geometries 
with energy efficient time scalable approaches. Given that graphs 
are a special class of objects called relational structures, founda-
tional work of Cook93 on relational structures has proven to be 
compatible with neuromorphic hardware, finding application to 
learning in cortical networks94 and unsupervised learning tasks95.

Neuromorphic computing has also been used to find approxi-
mate solutions to NP-complete problems: several studies have 
shown that neuromorphic systems can achieve a similar perfor-
mance in terms of time-to-solution and solution accuracy when 
compared with other conventional approaches, which use CPUs and 
GPUs to approximately solve NP-complete problems. For instance, 
Alom and co-workers used the IBM TrueNorth Neurosynaptic 
system to approximately solve the quadratic unconstrained binary 
optimization (QUBO) problem96. Mniszewski97 converted the 
NP-complete graph partitioning problem to the QUBO problem 
and used the IBM TrueNorth system to solve it approximately: in 
some cases, neuromorphic solutions were more accurate than the 
solutions returned by the D-Wave quantum computer. Yakopcic et 
al. leveraged Intel Loihi to approximately solve the boolean satis-
fiablity (SAT) problem98. Earlier work of Mostafa et al. developed 
neural network techniques for approximately solving many con-
straint SAT problems8,99. Fonseca and Furber100 developed a soft-
ware framework for solving NP-complete constraint SAT problems 
on the SpiNNaker architecture. Pecevski et al.101 used neuromorphic 
hardware to perform inference and sampling on general graphical 
structures, such as Bayes’s nets, which is NP complete for random 
variables with probabilities not bounded away from zero102.

Closing the gap between expectations and reality
Although neuromorphic hardware is available in the research com-
munity and there have been a wide variety of algorithms proposed, 
the applications have been primarily targeted towards benchmark 
datasets and demonstrations. Neuromorphic computers are not 
currently being used in real-world applications, and there are still 
a wide variety of challenges that restrict or inhibit rapid growth in 
algorithmic and application development.

Widening algorithmic focus. There has yet to come a machine 
learning algorithm/application combination for which neuro-
morphic computing substantially outperforms deep learning 
approaches in terms of accuracy, although there have been compel-
ling demonstrations in which neuromorphic solutions outperform 
other hardware implementations such as neural hardware and edge 
GPUs in terms of energy efficiency48. This has led to the argument 
that neuromorphic computers are primarily interesting because of 
their low power computing abilities; however, we believe that there 
is a tremendous algorithmic opportunity for neuromorphic com-
puters as well.

There has been a focus on backpropagation-based training 
approaches because of their state-of-the-art performance in deep 
learning. By limiting focus to those algorithms, however, we may 
also be limiting ourselves to achieving results that are only compa-
rable with (rather than surpassing) deep learning approaches. We 
believe that there are more opportunities to develop approaches that 
utilize the inherent features of spiking neuromorphic systems, such 
as evolutionary algorithms or neuroscience-inspired approaches. 
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At the same time, although these approaches have also been iter-
ated on for decades, they similarly have not achieved state-of-the-
art results. As these approaches use the native features of SNNs 
and thus require computing SNNs, iterating on and refining these 
algorithms is inherently bound by how efficiently SNNs can be 
computed. Neuromorphic computers have the opportunity to sig-
nificantly speed up SNN evaluation and thus provide the oppor-
tunity to accelerate development of SNN-based algorithms. As 
performant neuromorphic computers have only recently become 
available to the research community, now is the time to investigate 
on-chip learning and training for more efficient computation of 
these types of algorithms.

Widening usability and access to hardware and simulators. One 
key issue that inhibits algorithmic and application development for 
neuromorphic computers is the lack of readily accessible and usable 
software and hardware systems for the entire computational and 
computer science communities. Several different neuromorphic 
implementations are available; however, there are a limited number 
of each of these implementations and they are typically only avail-
able via restricted cloud access to the broader community. Several 
open-source neuromorphic simulators have support for different 
hardware back ends, such as multinode CPUs, GPUs and emerg-
ing neuromorphic hardware (for example, SpiNNaker103). Although 
simulators such as NEST104, Brian105 and Nengo106 are available, they 
are often built for a specific purpose. For example, NEST targets 
primarily computational neuroscience workloads, whereas Nengo 
implements computation as framed by the Neural Engineering 
Framework107. As these software systems are developed for particu-
lar communities and use cases, their broader usability and acces-
sibility are limited outside those communities.

In the future, to enable broader usability, development of neuro-
morphic simulators, hardware and software should take into account 
the more broad applicability of these systems. Many of these simula-
tors also have limited performance when operating at scale108. With 
the current data explosion comes the need to process data quickly 
enough to keep up with data generation speeds, hence emphasiz-
ing the need for highly performant and scalable neuromorphic 
simulators that can effectively leverage current high-performance 
computing systems to develop and evaluate neuromorphic work-
loads. The above-mentioned limitations of simulators and also the 
large training times of current neuromorphic algorithms compared 
with non-spiking approaches have limited the usage of neuromor-
phic solutions to real-world applications, which actively needs to 
be addressed. Furthermore, as the simulators are slow, it is very dif-
ficult to rapidly evaluate new algorithmic approaches, leading to 
slow algorithmic evolution. To enable more rapid advancement, the 
community needs performant hardware simulators that can be used 
when hardware is difficult or impossible to access.

Enabling more diverse computing environments. Many future 
use cases of neuromorphic computers are likely to be included as 
part of a broader heterogeneous computing environment rather 
than be operated in isolation. Due to performance constraints (for 
example, energy usage or processing speed) in existing hardware, 
emergent hardware systems, such as neuromorphic and quantum 
computers, will increasingly be included in the computing land-
scape to accelerate particular types of computation. Integrating 
these diverse systems into a single compute environment and devel-
oping programming models that enable the effective use of diverse 
heterogeneous systems is an ongoing challenge109.

Neuromorphic computers are heavily reliant on conventional 
host machines for defining the software structure that is deployed 
to the neuromorphic computer and often for communication to 
and from the outside world (that is, interfacing with sensors and 
actuators for real-world applications). This reliance can have a  

considerable impact on the performance benefits of using a neuro-
morphic computer, to the point where factoring in communication 
and host machine costs eliminates the benefits of using a neuro-
morphic computer to implement an application110. A key challenge 
moving forward is how to minimize this reliance on traditional 
computers, as well as to optimize communication between them.

Defining benchmarks and metrics. Another key challenge for 
neuromorphic algorithmic development is the lack of clearly estab-
lished benchmarks, metrics and challenge problems. Without com-
mon benchmarks and metrics, it is extremely difficult to evaluate 
which hardware system is most suitable for a given algorithm or 
application. Moreover, evaluating whether a new algorithm per-
forms well can be extremely difficult without commonly defined 
metrics. Challenge problems, such as the ImageNet task for deep 
learning, drove significant advances in that field111. The field of 
neuromorphic computing does not have a well-defined task or set 
of tasks that the entire community is attempting to solve. Several 
groups have created datasets with event/spike-based representa-
tion and temporal dimension specifically for benchmarking neuro-
morphic training algorithms, such as the neuromorphic MNIST112, 
DVS Gesture9 and the Spiking Heidelberg audio datasets41; how-
ever, these datasets have not yet been broadly adopted by the field 
at large as common benchmarks, limiting their utility at present. 
Datasets such as MNIST, CIFAR-10 and ImageNet dominate the 
benchmarks in neuromorphic, but these datasets do not require 
the native temporal processing capabilities present in neuromor-
phic computers, and as such, do not showcase the full capabilities of  
neuromorphic computers.

Although the field needs benchmarks and challenge problems to 
target, it is also worth noting that creating a single challenge prob-
lem can also be dangerous because it may result in advances that 
target only that application, which can narrow the broader utility of 
the technology (an issue that affects the field of machine learning as 
a whole113). Due to the wide variety of algorithms and applications 
of neuromorphic computers as detailed in the previous sections, we 
propose that, instead of a single benchmark or challenge problem, 
there should be a suite of challenge problems, drawing from both 
machine learning and non-machine learning use cases.

Defining programming abstractions. Finally, an additional chal-
lenge specific to the development of non-machine learning algo-
rithms for neuromorphic deployment is the lack of programming 
abstractions for neuromorphic implementations. These approaches 
currently require that the programmer design the SNN for a partic-
ular task at the neuron and synapse level, defining all parameter val-
ues of those elements and how they are connected. Not only is this 
a fundamentally different way of thinking about how programming 
is performed but it is also very time consuming and error prone. 
It is no coincidence that many of the non-machine learning algo-
rithms for neuromorphic are centred on graph algorithms, as there 
is a very clear approach for mapping a graph into a network (that is, 
nodes to neurons and edges to synapses). There have been attempts 
to describe programming abstractions at a higher level, such as 
the Neural Engineering Framework (NEF)107 and Dynamic Neural 
Fields (DNFs)114. However, these are often restricted to specific use 
cases and algorithms, such as biologically plausible neural models in 
the case of NEFs and modelling-embodied cognition for DNFs. We 
believe both the NEF and DNFs are important abstractions for the 
field, but we also believe that there is still a gap in defining abstrac-
tions for using neuromorphic computers more broadly.

One possible approach is defining subnetworks of spiking neu-
rons and synapses to perform specific tasks that are familiar to pro-
grammers—such as binary operations, conditionals and loops—in 
addition to those defined by NEF and DNF, as well as guidance for 
composing these subnetworks into larger networks capable of more 
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complex tasks. For instance, Plank et al. described subnetworks 
that perform basic tasks such as AND, OR and XOR using different 
spike encoding schemes115, but there is still tremendous opportu-
nity to influence how these subsystems should be defined and com-
posed. It is clear that they can be used for more than just neural 
network computation; however, until clearer program abstractions 
are defined and/or the broader computing community becomes 
more familiar with the computational primitives of neuromorphic 
computing, non-machine learning neuromorphic algorithms will 
be slow to develop.

It is worth noting that although it is possible to implement a vari-
ety of different types of computations on neuromorphic comput-
ers, this does not mean that every problem should be mapped onto 
a neuromorphic computer: not every problem is likely to benefit 
from the computational characteristics of neuromorphic computers 
described in the first section. It is better to think of neuromorphic 
computers as specialized processors than general purpose computer. 
However, we do want to emphasize with this work that the scope of 
specialized processors is not just neuroscience or machine learning 
algorithms, but a wide variety of other types of computation as well.

Outlook
Neuromorphic processors are energy efficient and adept at per-
forming machine learning and some non-machine learning com-
putations. They offer tremendous potential for computing beyond 
Moore’s law. We envision at least three use cases for neuromor-
phic processors. First, due to their low power consumption, neu-
romorphic processors will be indispensable for edge-computing 
applications such as autonomous systems (for example, vehicles 
and drones), robotics, remote sensing, wearable technology and 
the Internet of Things. Second, neuromorphic computers are well 
poised to become the artificial intelligence accelerators and co-
processors in personal computing devices such as smart phones, 
laptops and desktops. Accelerators and specialized architectures 
have already been widely adopted in mobile phones, and the need 

for extremely energy-efficient operations to improve battery life 
in those systems as well as laptops continues to be an important 
factor. Neuromorphic computers can help realize those operations 
with potentially orders of magnitude less power than today’s accel-
erators. Finally, due to their ability to perform certain non-machine 
learning computations, we envision that neuromorphic computers 
will be added on as co-processors in next-generation heterogeneous 
high-performance computing systems. In this scenario, neuromor-
phic computers would be expected to enable spike-based simula-
tions90, run graph algorithms85,87, solve differential equations116 and 
efficiently approximate NP-complete problems97. It is worth not-
ing that the different use cases of neuromorphic computers—from 
edge devices to accelerators and co-processors—are likely to look 
very different in their implementations. Neuromorphic computers 
deployed at the edge may be specialized to operate with one par-
ticular application and have a focus on, for example, extremely low 
power inference performance, whereas neuromorphic computers 
for broader types of computations in an high-performance com-
puting setting will likely have a focus on enabling reconfigurability 
and training acceleration. Although neuromorphic computers are 
not currently present in these use cases, we do expect that they will 
begin to emerge in these technologies in the future, first probably 
in the edge computing space as specialized processors and later in 
future heterogeneous computers.

Several large-scale neuromorphic hardware systems are already 
available to the research community, and these systems are all being 
actively developed. Moreover, there is a wide variety of research 
efforts in developing new materials and devices to implement neu-
romorphic hardware. As such, there is an opportunity to engage 
in a software–hardware co-design process in the development of 
neuromorphic hardware117. Most neuromorphic hardware design 
currently begins from the bottom of the compute stack (that is, the 
materials and devices) and then goes up to the algorithms and appli-
cations; that is, the hardware substrate is defined first, and the onus 
is then on the algorithm and application developers to map them 
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Fig. 3 | Opportunity for full compute stack co-design in neuromorphic computers. The current approach (shown on the left) is a bottom-up approach, 
where materials and devices are defined first, and those inform the architectures, algorithms and applications sequentially. The opportunity for a future co-
design approach (shown on the right) is for all aspects of the design stack to influence other components directly; for example, for applications to directly 
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onto that particular hardware implementation. However, there is 
tremendous opportunity to engage in codesign all across the com-
pute stack so that the algorithms and applications can influence the 
underlying hardware design (Fig. 3), and to tailor the underlying 
hardware implementation to suit a particular application’s needs or 
constraints. This opens up new horizons to not only focus on digi-
tal computing, but also to rethink using analogue, approximate and 
mixed-signal computing118, as biological neural computation itself 
is inherently analogue and stochastic. Among several approaches 
proposed in the literature on software–hardware co-design, one 
is using Bayesian optimization and Neural Architecture Search 
approaches in which several stacks of computing that range from 
materials and devices to algorithm and applications are codesigned 
to optimize overall system performance119–121. For example, in a 
memristive crossbar-based accelerator, an automatic codesign opti-
mization approach has the opportunity to define the number and 
sizes of crossbars to optimize the accuracy and energy efficiency 
of the design for different applications or datasets. In addition to 
the opportunity for whole-stack co-design driven by algorithms 
and applications, there is also the opportunity to allow for emerg-
ing materials and devices for neuromorphic computers to inspire 
our algorithmic approaches, for example, in the implementation of 
plasticity. Today, the process of implementing synaptic plasticity on 
devices begins with the inspiration of plasticity in biological brains, 
it is then implemented and demonstrated on emerging devices 
(top-down co-design), and then finally the specific plasticity algo-
rithm is adapted to match how plasticity functions on that device 
(bottom-up co-design). However, plasticity mechanisms in biologi-
cal brain evolved to use biological materials and components. We 
believe there may be opportunities to look at the underlying physi-
cal behaviours of other devices and materials to inform new neuro-
morphic algorithms122.

The potential of neuromorphic computers in the future of com-
puter and computational science is only beginning to be under-
stood, and there is tremendous opportunity to leverage the inherent 
computational characteristics of these systems for machine learning 
and certain non-machine learning computations as well. Using neu-
romorphic computers most effectively will require a paradigm shift 
in how researchers think about programming. We believe that there 
are opportunities to achieve unprecedented algorithmic perfor-
mance in terms of speed and energy efficiency on many applications 
with neuromorphic computers. In particular, in addition to their 
clear benefits for neural network-style computation, we believe 
that two areas that have the opportunity to see tremendous benefits 
from neuromorphic computers are graph algorithms and optimiza-
tion tasks. Both of these types of algorithms and applications have 
the opportunity to benefit from the massively parallel, event-driven 
and/or stochastic operation of neuromorphic computers. With the 
confluence of many different types of algorithms and applications 
in neuromorphic, along with the active development of large-scale 
neuromorphic hardware and emerging devices and materials, now 
is the time for the greater computational science community to 
begin considering neuromorphic computers a part of the greater 
computing landscape.
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