
Perspective
https://doi.org/10.1038/s43588-021-00184-y

1Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA. 2Department of Electrical Engineering and Computer
Science, University of Tennessee, Knoxville, TN, USA. 3Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, USA.
✉e-mail: cschuman@utk.edu

With the end of Moore’s law approaching and Dennard
scaling ending, the computing community is increas-
ingly looking at new technologies to enable continued

performance improvements. Neuromorphic computers are one
such new computing technology. The term neuromorphic was
coined by Carver Mead in the late 1980s1,2, and at that time pri-
marily referred to mixed analogue–digital implementations of
brain-inspired computing; however, as the field has continued to
evolve and with the advent of large-scale funding opportunities
for brain-inspired computing systems such as the DARPA Synapse
project and the European Union’s Human Brain Project, the term
neuromorphic has come to encompass a wider variety of hardware
implementations.

We define neuromorphic computers as non-von Neumann com-
puters whose structure and function are inspired by brains and that
are composed of neurons and synapses. Von Neumann computers
are composed of separate CPUs and memory units, where data and
instructions are stored in the latter. In a neuromorphic computer, on
the other hand, both processing and memory are governed by the
neurons and the synapses. Programs in neuromorphic computers
are defined by the structure of the neural network and its param-
eters, rather than by explicit instructions as in a von Neumann
computer. In addition, while von Neumann computers encode
information as numerical values represented by binary values, neu-
romorphic computers receive spikes as input, where the associated
time at which they occur, their magnitude and their shape can be
used to encode numerical information. Binary values can be turned
into spikes and vice versa, but the precise way to perform this con-
version is still an area of study in neuromorphic computing3.

Given the aforementioned contrasting characteristics between
the two architectures (Fig. 1), neuromorphic computers present
some fundamental operational differences:

•	 Highly parallel operation: neuromorphic computers are inher-
ently parallel, where all of the neurons and synapses can poten-
tially be operating simultaneously; however, the computations
performed by neurons and synapses are relatively simple when
compared with the parallelized von Neumann systems.

•	 Collocated processing and memory: there is no notion of a sepa-
ration of processing and memory in neuromorphic hardware.

Although neurons are sometimes thought of as processing units
and synapses are sometimes thought of as memory, the neu-
rons and synapses both perform processing and store values
in many implementations. The collocation of processing and
memory helps mitigate the von Neumann bottleneck regarding
the processor/memory separation, which causes a slowdown in
the maximum throughput that can be achieved. In addition, this
collocation helps avoid data accesses from main memory, as in
conventional computing systems, which consume a consider-
able amount of energy compared with the compute energy4.

•	 Inherent scalability: neuromorphic computers are meant to be
inherently scalable as adding additional neuromorphic chips
entails increasing the number of neurons and synapses that can
be realized. It is possible to take multiple physical neuromorphic
chips and treat them as a single large neuromorphic implemen-
tation to run larger and larger networks. This has been success-
fully accomplished across a variety of large-scale neuromorphic
hardware systems, including SpiNNaker5,6 and Loihi7.

•	 Event-driven computation: neuromorphic computers leverage
event-driven computation (meaning, computing only when
data are available) and temporally sparse activity to allow for
extremely efficient computation8,9. Neurons and synapses only
perform work when there are spikes to process, and typically,
spikes are relatively sparse within the operation of the network.

•	 Stochasticity: neuromorphic computers can include a notion of
randomness, such as in the firing of neurons, to allow for noise.

The features of a neuromorphic computer are well noted in the
literature and are given as motivators for implementing and using
them10–14. One of the most attractive features of neuromorphic
computers for computation is their extremely low power opera-
tion: they can often operate on orders of magnitude less power than
traditional computing systems. This low-power operation is due to
their event driven nature and massively parallel nature, where typi-
cally only a small portion of the entire system is active at any given
time while the rest is idle. Due to the increasing energy cost of com-
puting, as well as the increasing number of applications in which
there are energy constraints (such as edge computing applications),
energy efficiency alone is a compelling reason to investigate the
use of neuromorphic computers. Furthermore, as they inherently

Opportunities for neuromorphic computing
algorithms and applications
Catherine D. Schuman   1,2 ✉, Shruti R. Kulkarni1, Maryam Parsa1,3, J. Parker Mitchell1, Prasanna Date   1
and Bill Kay1

Neuromorphic computing technologies will be important for the future of computing, but much of the work in neuromorphic
computing has focused on hardware development. Here, we review recent results in neuromorphic computing algorithms and
applications. We highlight characteristics of neuromorphic computing technologies that make them attractive for the future of
computing and we discuss opportunities for future development of algorithms and applications on these systems.

Nature Computational Science | VOL 2 | January 2022 | 10–19 | www.nature.com/natcomputsci10

mailto:cschuman@utk.edu
http://orcid.org/0000-0002-4264-8097
http://orcid.org/0000-0002-1664-069X
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-021-00184-y&domain=pdf
http://www.nature.com/natcomputsci

PerspectiveNature Computational Science

implement neural network-style computation, neuromorphic
computers are a natural platform for many of today’s artificial
intelligence and machine learning applications. There is also prom-
ise to leverage the inherent computational properties of neuro-
morphic computers to perform a wide variety of different types
of computation15.

Each of these features of neuromorphic computers are inspired
by characteristics of the brain and have been prioritized in the
implementation of neuromorphic computers in recent years; how-
ever, it is not clear whether they are the only aspects of biological
brains that are important for performing computation. For example,
although neurons and synapses have been chosen as the primary
computational units of neuromorphic computers, there are a variety
of other types of neural components that may be useful for com-
putation, including glial cells16,17. Moreover, neurons and synapses
have been a convenient level of abstraction for neuromorphic com-
puters, but whether they are the most appropriate level of abstrac-
tion is still an open question18.

Unlike some of the future computing technologies, many physi-
cal realizations of neuromorphic hardware are currently under
development or are even available for use to the research com-
munity. Several large-scale neuromorphic computers have been
developed with a variety of approaches and goals19. The European
Union’s Human Brain Project sponsored the development of
SpiNNaker6 and BrainScaleS20 to enable neuroscience simulations
at scale. An optimized digital neuromorphic processor called the
online-learning digital spiking neuromorphic (ODIN) has also
been proposed21, allowing the use of slightly more complex neuron
models. One of the neuromorphic platforms targeting more general
computations for wider classes of applications is the Tianjic chip, a
platform that supports both neuromorphic spiking neural networks
and the traditional artificial neural networks for different catego-
ries of problems22. Both industry and academia have taken an inter-
est in neuromorphic systems: in industry, some examples include
IBM’s TrueNorth23 and Intel’s Loihi7, and there are also a variety
of academic efforts, including DYNAPs24, Neurogrid25, IFAT13 and
BrainScales-226. The usefulness of neuromorphic hardware such as
BrainScales-2 has been demonstrated in carrying out optimizations
for learning to learn scenarios (meaning, where an optimization
process is used to define how learning occurs) for spiking neural
networks, running at a much accelerated timescales compared to
biological timescales27.

All of the aforementioned large-scale neuromorphic computers
are silicon-based and implemented using conventional comple-
mentary metal oxide semiconductor technology; however, there is
a tremendous amount of research in the neuromorphic community
on developing new types of materials for neuromorphic imple-
mentations, such as phase-change, ferroelectric, non-filamentary,

topological insulators or channel-doped biomembranes28–30. One
popular approach in the literature is using memristors as the funda-
mental device to have resistive memory to collocate processing and
memory31,32, but other types of devices have also been used to imple-
ment neuromorphic computers, including optoelectronic devices10.
Each device and material used to implement neuromorphic com-
puters has unique operating characteristics, such as how fast they
operate, their energy consumption and the level of resemblance to
biology. The diversity of devices and materials used to implement
neuromorphic hardware today offers the opportunity to customize
the properties required for a given application.

Most research in the field of neuromorphic computing today
fall in the realm of the aforementioned hardware systems, devices
and materials; however, to most effectively use neuromorphic
computers in the future, exploit all of their unique computational
characteristics, and help drive their hardware design, they must be
connected to neuromorphic algorithms and applications. From this
perspective, we provide an overview of the current state of the art in
neuromorphic algorithms and applications and provide a forward-
looking view of the opportunities for the future of neuromorphic
computing in computer science and computational science. It is
worth noting that the term neuromorphic computing has been
used for a wide array of different types of technologies. As noted
previously, the original definition only encompassed mixed ana-
logue-digital implementations. In this work, we consider all types
of hardware implementations (digital, mixed analogue-digital,
analogue) as neuromorphic, but we restrict our attention to spik-
ing neuromorphic computers, that is, those that implement spiking
neural networks.

Neuromorphic algorithms and applications
Programming a neuromorphic computer often entails creating a
spiking neural network (SNN) that can be deployed to that neu-
romorphic computer (see Box 1). SNNs take an additional level
of inspiration from biological neural systems in the way that they
perform computation; in particular, neurons and synapses in SNNs
include notions of time within most neuromorphic computers. For
example, spiking neurons might leak charge over time based on a
particular time constant, and neurons and/or synapses in SNNs
might have an associated time delay.

Algorithms for neuromorphic implementations often entail how
to define an SNN for a given application. There are a wide variety of
algorithmic approaches for neuromorphic computing systems that
fall into two broad categories: (1) algorithms for training or learning
an SNN to be deployed to a neuromorphic computer (Fig. 2); and
(2) non-machine learning algorithms in which SNNs are hand-con-
structed to solve a particular task. It is worth noting that here, train-
ing and learning algorithms refer to the mechanism of optimizing

Spike
input

Spike
output(Neurons and

synapses for
both processing

and memory)

Neural network

versus

01001001

Binary
input

01001111

Binary
output

Von Neumann architecture Neuromorphic architecture

Memory

CPU

Operation
Organization
Programming

Communication
Timing

Sequential processing
Separated computation and memory

Code as binary instructions
Binary data

Synchronous (clock-driven)

Massively parallel processing
Collocated processing and memory

Spiking neural network
Spikes

Asynchronous (event-driven)

Fig. 1 | Comparison of the von Neumann architecture with the neuromorphic architecture. These two architectures have some fundamental differences
when it comes to operation, organization, programming, communication, and timing, as depicted here.

Nature Computational Science | VOL 2 | January 2022 | 10–19 | www.nature.com/natcomputsci 11

http://www.nature.com/natcomputsci

Perspective Nature Computational Science

the parameters of an SNN (typically the synaptic weights) for a par-
ticular problem.

Machine learning algorithms. Spike-based quasi-backpropaga-
tion. Backpropagation and stochastic gradient descent have shown
impressive performance in the field of deep learning; however, these
approaches do not map directly to SNNs as spiking neurons do not
have differentiable activation functions (that is, many spiking neu-
rons use a threshold function, which is not directly differentiable).
Furthermore, the temporal processing component of SNNs can add
another difficulty in training and learning for these approaches.
Algorithms that have been successful for deep learning applications
must be adapted to work with SNNs (Fig. 2a), and these adaptations
can reduce the accuracy of the SNN compared with a similar artifi-
cial neural network33–36.

Some of the approaches that adapt deep learning-style training
include using a surrogate gradient and having a smoothed activa-
tion function to compute the error gradients while performing
weight adjustments in each of the successive layers19,21. There have

also been a few demonstrations on computing the spike error gra-
dient37–39 that have shown close to state-of-the-art classification
performance on the Modified National Institute of Standards and
Technology (MNIST) handwritten digits dataset. To make use of
the inherent temporal dimension in SNNs, there have been efforts
attempting to employ rules that have been used to train recurrent
neural networks, albeit with several approximations. As surveyed
by Zenke and Neftci40, approaches such as backpropagation through
time and real-time recurrent learning have been demonstrated
on neuromorphic datasets, such as the Spiking Heidelberg Digits
(SHD) and the Spiking Speech Command (SSC) dataset41.

Mapping a pre-trained deep neural network. As deep neural networks
(DNNs) have an established training mechanism, several efforts to
deploy a neuromorphic solution for a problem begin by training a
DNN and then performing a mapping process to convert it to an
SNN for inference purposes (Fig. 2b). Most of these approaches
have yielded near state-of-the-art performance with potential
for substantial energy reduction due to the use of only accumulate

Box 1 | Spiking neural networks

Spiking neural networks are a particular type of artificial neural
network in which the function of the neurons and the synapses
in the network are more inspired by biology than other types of
artificial neural networks such as multilayer perceptrons. The key
difference between traditional artificial neural networks and SNNs
is that SNNs take into account timing in their operation. Neuron
models implemented in SNNs in the literature range from simple
integrate and fire models, in which charge is integrated over time
until a threshold value is reached, to much more complex and bio-
logically plausible models, such as the Hodgkin–Huxley neuron
model, which approximates the functionality of specific aspects
of biological neurons such as ion channels10. Both neurons and
synapses in SNNs can include time components that affect their
functionality.

Neurons in spiking neural networks accumulate charge over
time from either the environment (via input information to the
network) or from internal communications (usually via spikes
from other neurons in the network). Neurons have an associated
threshold value, and when the charge value on that neuron reaches
the threshold value, it fires, sending communications along all
of its outgoing synapses. Neurons may also include a notion of
leakage, where the accumulated charge that is not above the
threshold dissipates as time passes. Furthermore, neurons may
have an associated axonal delay, in which outgoing information
from the neuron is delayed before it affects its outgoing synapses.
Synapses form the connections between neurons, and each
synapse has a pre-synaptic neuron and a post-synaptic neuron.
Synapses have an associated weight value, which may be positive

(excitatory) or negative (inhibitory). Synapses may have an
associated delay value such that communications from the pre-
synaptic neuron are delayed in reaching the post-synaptic neuron.
Synapses also commonly include a learning mechanism in which
the weight value of the synapse changes over time based on
activity in the network. Neuromorphic computers often realize a
particular fabric of connectivity, but the synapses may be turned
on and off to realize a network structure within that connectivity.
Furthermore, parameters of the neurons and synapses such
as neuron thresholds, synaptic weights, axonal delays and
synaptic delays are often programmable within a neuromorphic
architecture.

Unlike traditional artificial neural networks, in which
information is received at the input and then synchronously
passed between layers in the network, in SNNs, even if input
information is received at the same time and the SNN is organized
into layers, as the delays on each synapse and neuron may be
different, information is propagated asynchronously throughout
the network, arriving at different times; this is beneficial for
realizing SNNs on neuromorphic hardware, which can be designed
to operate in an event-driven or asynchronous manner that fits
well with the temporal dynamics of spiking neurons and synapses.
An example SNN and how it operates in the temporal domain is
shown in the figure. In this example, synapses are depicted with
a time delay. Information is communicated by spikes passed
throughout the network. In this example, the network’s operation
at time t (left) and time t + 1 (right) is depicted, to show how the
network’s state changes with time.

Currently
firing

Synapses with
different delays

Incoming
spikes

Partially
accumulated

charge

t t +1

Spikes
propagating

Charge
increased
from spike

New
spikes

Incoming
spikes

Leaked
charge

Nature Computational Science | VOL 2 | January 2022 | 10–19 | www.nature.com/natcomputsci12

http://www.nature.com/natcomputsci

PerspectiveNature Computational Science

computations over multiply and accumulate computations in DNNs
on several commonly employed datasets, such as MNIST, Canadian
Institute for Advanced Research (CIFAR)-10, and ImageNet42–45.
Most initial conversion techniques used weight normalization or
activation normalization, or employed average pooling instead of
max pooling42,44,46. Other approaches involved training DNNs in a
constrained manner so that the neuron’s activation function itera-
tively starts resembling that of a spiking neuron43,45. Stockl and col-
leagues have proposed a new mapping strategy where SNNs make
use of Few Spikes neuron model (FS-neuron), which can repre-
sent complex activation functions temporally with at most two
spikes47. They have shown close to deep neural network accura-
cies on benchmark image classification datasets with significantly
fewer time-steps per inference compared with previously demon-
strated conversion strategies. Several applications demonstrated
on neuromorphic hardware have employed some of the aforemen-
tioned mapping techniques. Tasks such as keyword spotting, medi-
cal image analysis and object detection have been demonstrated
to run efficiently on existing platforms such as Intel’s Loihi and
IBM’s TrueNorth48–50.

It is worth noting that training a conventional DNN and then
mapping it to neuromorphic hardware, especially emerging
hardware systems, can result in a reduction in accuracy not only
because of the change from DNNs to SNNs, but also because of
the neuromorphic hardware itself. Often, neuromorphic hardware
systems that are implemented with emerging hardware devices
such as a memristors will have reduced precision in the synaptic
weight values they can realize, and they may also have cycle-to-
cycle and device variation. When creating a mapping technique, it
is important to take into account how these characteristics might
influence the inference performance of a mapped network. In
addition, algorithms that use deep learning-style training to train
SNNs often do not leverage all the inherent computational capa-
bilities of SNNs, and using those approaches limits the capabilities
of SNNs to what traditional artificial neural networks can already
achieve. For example, most gradient descent-style rules, includ-
ing mapping approaches, do not focus on the temporal aspect of
SNN computation.

Reservoir computing. Another common algorithm used in SNNs
is reservoir computing or liquid state machines (Fig. 2c). In reser-
voir computing, a sparse recurrent SNN is defined to function as
the liquid or reservoir. This liquid is typically randomly defined,
but is required to have two properties: input separability, which
requires that different inputs result in different outputs, and fad-
ing memory, which requires that signals do not continue to propa-
gate infinitely through the reservoir and instead will eventually die
out. In addition to the liquid itself, which is untrained, a reservoir
computing approach also includes a readout mechanism, such as a
linear regression, that is trained to recognize the output of the res-
ervoir. The key advantage of reservoir computing is that it does not
require any training of the SNN component. Reservoir computing
in SNNs uses the sparse and recurrent connections with synaptic
delays in networks of spiking neurons to cast the input to a spatially
and temporally higher dimensional space51. Several demonstrations
of spike-based reservoir computing have shown their effectiveness
at processing temporally varying signals52–54. Variants of this com-
puting framework have ranged from simple reservoir networks for
bio-signal processing and prosthetic control applications52 to using
hierarchical layers of liquid state machines—a type of reservoir net-
work—interconnected with layers trained in supervised mode for
video55 and audio signal processing applications54.

Evolutionary approaches. Evolutionary approaches for training or
designing SNNs (Fig. 2d) have also been used56–58. In an evolution-
ary algorithm, a random collection of potential solutions is cre-
ated to form an initial population. Each member of the population
is evaluated and assigned a score, which is then used to perform
selection (preferentially selecting better performing individuals)
and reproduction (creating new individuals through recombina-
tion of old individuals and mutations) to produce a new population.
In the context of SNNs for neuromorphic computing, evolutionary
approaches can be used to determine parameters of the SNN, such
as neuron thresholds or synaptic delays, or the structure of the net-
work, such as the number of neurons and how they are connected to
each other with synapses. These approaches are attractive because
they do not require differentiability in the activation functions

Input layer Output layerHidden layers

Input layer Readout layer

Network, structure, weights, delays, thresholds

Parameter optimization

Reservoir

a b c

d

x y

Input Output
ANN (artificial)

for training

Input Output
SNN (spiking)
for inference

Modification of weights
and activations

1 2 3

e

i

j

Δw ∝ f(t(i), t(j))

Fig. 2 | Common training approaches for SNNs. a, The structure of a network for a spike-based quasi-backpropagation is depicted. In this case, the
training approach is performed directly on the SNN. b, The procedure for mapping approaches, where a traditional artificial neural network (ANN) is
trained and then mapped into an SNN. c, The structure of a typical reservoir computing solution, including the input layer, the reservoir and the readout
layer. d, In an evolutionary approach, the structures and parameters of an SNN evolve over time. e, The approach taken in spike-timing-dependent
plasticity, which is a synaptic plasticity mechanism where the weights (Δw) are adjusted with a function f based on relative spike timings (t) from pre- and
post-synaptic neurons (i and j, respectively).

Nature Computational Science | VOL 2 | January 2022 | 10–19 | www.nature.com/natcomputsci 13

http://www.nature.com/natcomputsci

Perspective Nature Computational Science

and do not rely on any particular network structure (for instance,
feed-forward and recurrent). They can also be used to evolve the
structure of the network and the parameters. However, their flex-
ibility has a cost: evolutionary approaches can be slow to converge
compared with other training approaches. Evolutionary approaches
have been most successfully applied to control applications such as
video games59 and autonomous robot navigation57,60.

Plasticity. Several neurobiological studies have reported the modu-
lation of synaptic strength based on the activity of the connected
neurons, which has been postulated as a learning mechanism for
various tasks61. Spike-timing-dependent plasticity (STDP)—which
operates on the underlying principle of adjusting the weights on
the basis of relative spike timings from pre- and post-synaptic
neurons (Fig. 2e)—is the most commonly implemented synaptic
plasticity mechanism in neuromorphic literature10. Several differ-
ent mathematical formulations of this rule have been demonstrated
on the MNIST, CIFAR-10 and ImageNet datasets62–67. Shrestha et
al. presented a hardware-friendly modification of the exponential
STDP rule, albeit the classification performance on MNIST was
lower than the best results achieved so far with SNNs62. STDP-style
rules have also been shown to approximate several machine learn-
ing approaches such as clustering and Bayesian inference68,69. STDP
as a clustering mechanism has been demonstrated as a spike sorter
in brain machine interface applications68. Combinations of spiking
reservoirs and STDP have also been employed in an SNN approach
called NeuCube70, which has been used to process electroencephalo-
grams and functional magnetic resonance imaging signals in appli-
cations such as sleep state detection and prosthetic controllers70–72.

A much broader class of SNNs for modelling dynamical systems
are the recurrent networks with delays and synaptic plasticity. One
such class of networks are the polychronization networks73, which
have been employed for different spatio-temporal classification
tasks74. Alemi et al. demonstrated a local learning rule with recurrent
SNNs with fewer spikes to realize non-linear dynamical systems75.
Such recurrent SNNs have shown greater classification ability with
winner-take-all models76–78. To leverage the temporal dimension of
SNN, some learning algorithms aim to generate single or multiple
spikes at desired times, which have been applied in classification
tasks79–83. Most of these algorithms also depend on the spike repre-
sentation used to encode the input signals. There have been several
approaches to encode signals in terms of spike rates, latency and
neuron population3,84.

Non-machine learning algorithms. The typical use cases for neu-
romorphic computing have been mainly machine learning-related,
but neuromorphic computers have also been recently considered for
non-machine learning algorithms. One common class of algorithms
that have been mapped onto neuromorphic implementations comes
from graph theory85–88. The underlying architecture of a neuromor-
phic computer is a directed graph, and thus when there is a graph
of interest, it can be embedded directly into a neuromorphic archi-
tecture with suitable parameter settings, and the spike raster can
reveal graph properties. For example, with the correct parameter
sets, a given node can be spiked, and the time at which other nodes
spike corresponds exactly with the length of the shortest path from
the source node89. During the COVID-19 pandemic, neuromorphic
computing was coupled with graph theory as a tool for analysing the
spread of disease90.

Random walks have also been implemented within neuromor-
phic computers. In a random walk, a random node is selected as a
starting point, and an agent moves along an edge departing from
that node selected at random. The process is repeated for several
steps and the locations visited by the random agent can reveal
an important characteristic related to the underlying network.
Random-walk analyses frequently involve performing many random

walks and then aggregating the results for analysis. Although tradi-
tional hardware performs the parallel step well, the aggregation and
analysis step requires high-energy usage for the sequential opera-
tion and does not always benefit from parallel architectures, such as
GPUs. Severa and colleagues91 showed that in certain settings, ran-
dom walks could be studied in low-energy neuromorphic settings
and that the analysis can be performed in an inherently parallel
fashion. Smith and co-workers92 used neuromorphic deployments
of discrete time Markov chains to approximate solutions for both
particle transport problems and heat flow on complex geometries
with energy efficient time scalable approaches. Given that graphs
are a special class of objects called relational structures, founda-
tional work of Cook93 on relational structures has proven to be
compatible with neuromorphic hardware, finding application to
learning in cortical networks94 and unsupervised learning tasks95.

Neuromorphic computing has also been used to find approxi-
mate solutions to NP-complete problems: several studies have
shown that neuromorphic systems can achieve a similar perfor-
mance in terms of time-to-solution and solution accuracy when
compared with other conventional approaches, which use CPUs and
GPUs to approximately solve NP-complete problems. For instance,
Alom and co-workers used the IBM TrueNorth Neurosynaptic
system to approximately solve the quadratic unconstrained binary
optimization (QUBO) problem96. Mniszewski97 converted the
NP-complete graph partitioning problem to the QUBO problem
and used the IBM TrueNorth system to solve it approximately: in
some cases, neuromorphic solutions were more accurate than the
solutions returned by the D-Wave quantum computer. Yakopcic et
al. leveraged Intel Loihi to approximately solve the boolean satis-
fiablity (SAT) problem98. Earlier work of Mostafa et al. developed
neural network techniques for approximately solving many con-
straint SAT problems8,99. Fonseca and Furber100 developed a soft-
ware framework for solving NP-complete constraint SAT problems
on the SpiNNaker architecture. Pecevski et al.101 used neuromorphic
hardware to perform inference and sampling on general graphical
structures, such as Bayes’s nets, which is NP complete for random
variables with probabilities not bounded away from zero102.

Closing the gap between expectations and reality
Although neuromorphic hardware is available in the research com-
munity and there have been a wide variety of algorithms proposed,
the applications have been primarily targeted towards benchmark
datasets and demonstrations. Neuromorphic computers are not
currently being used in real-world applications, and there are still
a wide variety of challenges that restrict or inhibit rapid growth in
algorithmic and application development.

Widening algorithmic focus. There has yet to come a machine
learning algorithm/application combination for which neuro-
morphic computing substantially outperforms deep learning
approaches in terms of accuracy, although there have been compel-
ling demonstrations in which neuromorphic solutions outperform
other hardware implementations such as neural hardware and edge
GPUs in terms of energy efficiency48. This has led to the argument
that neuromorphic computers are primarily interesting because of
their low power computing abilities; however, we believe that there
is a tremendous algorithmic opportunity for neuromorphic com-
puters as well.

There has been a focus on backpropagation-based training
approaches because of their state-of-the-art performance in deep
learning. By limiting focus to those algorithms, however, we may
also be limiting ourselves to achieving results that are only compa-
rable with (rather than surpassing) deep learning approaches. We
believe that there are more opportunities to develop approaches that
utilize the inherent features of spiking neuromorphic systems, such
as evolutionary algorithms or neuroscience-inspired approaches.

Nature Computational Science | VOL 2 | January 2022 | 10–19 | www.nature.com/natcomputsci14

http://www.nature.com/natcomputsci

PerspectiveNature Computational Science

At the same time, although these approaches have also been iter-
ated on for decades, they similarly have not achieved state-of-the-
art results. As these approaches use the native features of SNNs
and thus require computing SNNs, iterating on and refining these
algorithms is inherently bound by how efficiently SNNs can be
computed. Neuromorphic computers have the opportunity to sig-
nificantly speed up SNN evaluation and thus provide the oppor-
tunity to accelerate development of SNN-based algorithms. As
performant neuromorphic computers have only recently become
available to the research community, now is the time to investigate
on-chip learning and training for more efficient computation of
these types of algorithms.

Widening usability and access to hardware and simulators. One
key issue that inhibits algorithmic and application development for
neuromorphic computers is the lack of readily accessible and usable
software and hardware systems for the entire computational and
computer science communities. Several different neuromorphic
implementations are available; however, there are a limited number
of each of these implementations and they are typically only avail-
able via restricted cloud access to the broader community. Several
open-source neuromorphic simulators have support for different
hardware back ends, such as multinode CPUs, GPUs and emerg-
ing neuromorphic hardware (for example, SpiNNaker103). Although
simulators such as NEST104, Brian105 and Nengo106 are available, they
are often built for a specific purpose. For example, NEST targets
primarily computational neuroscience workloads, whereas Nengo
implements computation as framed by the Neural Engineering
Framework107. As these software systems are developed for particu-
lar communities and use cases, their broader usability and acces-
sibility are limited outside those communities.

In the future, to enable broader usability, development of neuro-
morphic simulators, hardware and software should take into account
the more broad applicability of these systems. Many of these simula-
tors also have limited performance when operating at scale108. With
the current data explosion comes the need to process data quickly
enough to keep up with data generation speeds, hence emphasiz-
ing the need for highly performant and scalable neuromorphic
simulators that can effectively leverage current high-performance
computing systems to develop and evaluate neuromorphic work-
loads. The above-mentioned limitations of simulators and also the
large training times of current neuromorphic algorithms compared
with non-spiking approaches have limited the usage of neuromor-
phic solutions to real-world applications, which actively needs to
be addressed. Furthermore, as the simulators are slow, it is very dif-
ficult to rapidly evaluate new algorithmic approaches, leading to
slow algorithmic evolution. To enable more rapid advancement, the
community needs performant hardware simulators that can be used
when hardware is difficult or impossible to access.

Enabling more diverse computing environments. Many future
use cases of neuromorphic computers are likely to be included as
part of a broader heterogeneous computing environment rather
than be operated in isolation. Due to performance constraints (for
example, energy usage or processing speed) in existing hardware,
emergent hardware systems, such as neuromorphic and quantum
computers, will increasingly be included in the computing land-
scape to accelerate particular types of computation. Integrating
these diverse systems into a single compute environment and devel-
oping programming models that enable the effective use of diverse
heterogeneous systems is an ongoing challenge109.

Neuromorphic computers are heavily reliant on conventional
host machines for defining the software structure that is deployed
to the neuromorphic computer and often for communication to
and from the outside world (that is, interfacing with sensors and
actuators for real-world applications). This reliance can have a

considerable impact on the performance benefits of using a neuro-
morphic computer, to the point where factoring in communication
and host machine costs eliminates the benefits of using a neuro-
morphic computer to implement an application110. A key challenge
moving forward is how to minimize this reliance on traditional
computers, as well as to optimize communication between them.

Defining benchmarks and metrics. Another key challenge for
neuromorphic algorithmic development is the lack of clearly estab-
lished benchmarks, metrics and challenge problems. Without com-
mon benchmarks and metrics, it is extremely difficult to evaluate
which hardware system is most suitable for a given algorithm or
application. Moreover, evaluating whether a new algorithm per-
forms well can be extremely difficult without commonly defined
metrics. Challenge problems, such as the ImageNet task for deep
learning, drove significant advances in that field111. The field of
neuromorphic computing does not have a well-defined task or set
of tasks that the entire community is attempting to solve. Several
groups have created datasets with event/spike-based representa-
tion and temporal dimension specifically for benchmarking neuro-
morphic training algorithms, such as the neuromorphic MNIST112,
DVS Gesture9 and the Spiking Heidelberg audio datasets41; how-
ever, these datasets have not yet been broadly adopted by the field
at large as common benchmarks, limiting their utility at present.
Datasets such as MNIST, CIFAR-10 and ImageNet dominate the
benchmarks in neuromorphic, but these datasets do not require
the native temporal processing capabilities present in neuromor-
phic computers, and as such, do not showcase the full capabilities of
neuromorphic computers.

Although the field needs benchmarks and challenge problems to
target, it is also worth noting that creating a single challenge prob-
lem can also be dangerous because it may result in advances that
target only that application, which can narrow the broader utility of
the technology (an issue that affects the field of machine learning as
a whole113). Due to the wide variety of algorithms and applications
of neuromorphic computers as detailed in the previous sections, we
propose that, instead of a single benchmark or challenge problem,
there should be a suite of challenge problems, drawing from both
machine learning and non-machine learning use cases.

Defining programming abstractions. Finally, an additional chal-
lenge specific to the development of non-machine learning algo-
rithms for neuromorphic deployment is the lack of programming
abstractions for neuromorphic implementations. These approaches
currently require that the programmer design the SNN for a partic-
ular task at the neuron and synapse level, defining all parameter val-
ues of those elements and how they are connected. Not only is this
a fundamentally different way of thinking about how programming
is performed but it is also very time consuming and error prone.
It is no coincidence that many of the non-machine learning algo-
rithms for neuromorphic are centred on graph algorithms, as there
is a very clear approach for mapping a graph into a network (that is,
nodes to neurons and edges to synapses). There have been attempts
to describe programming abstractions at a higher level, such as
the Neural Engineering Framework (NEF)107 and Dynamic Neural
Fields (DNFs)114. However, these are often restricted to specific use
cases and algorithms, such as biologically plausible neural models in
the case of NEFs and modelling-embodied cognition for DNFs. We
believe both the NEF and DNFs are important abstractions for the
field, but we also believe that there is still a gap in defining abstrac-
tions for using neuromorphic computers more broadly.

One possible approach is defining subnetworks of spiking neu-
rons and synapses to perform specific tasks that are familiar to pro-
grammers—such as binary operations, conditionals and loops—in
addition to those defined by NEF and DNF, as well as guidance for
composing these subnetworks into larger networks capable of more

Nature Computational Science | VOL 2 | January 2022 | 10–19 | www.nature.com/natcomputsci 15

http://www.nature.com/natcomputsci

Perspective Nature Computational Science

complex tasks. For instance, Plank et al. described subnetworks
that perform basic tasks such as AND, OR and XOR using different
spike encoding schemes115, but there is still tremendous opportu-
nity to influence how these subsystems should be defined and com-
posed. It is clear that they can be used for more than just neural
network computation; however, until clearer program abstractions
are defined and/or the broader computing community becomes
more familiar with the computational primitives of neuromorphic
computing, non-machine learning neuromorphic algorithms will
be slow to develop.

It is worth noting that although it is possible to implement a vari-
ety of different types of computations on neuromorphic comput-
ers, this does not mean that every problem should be mapped onto
a neuromorphic computer: not every problem is likely to benefit
from the computational characteristics of neuromorphic computers
described in the first section. It is better to think of neuromorphic
computers as specialized processors than general purpose computer.
However, we do want to emphasize with this work that the scope of
specialized processors is not just neuroscience or machine learning
algorithms, but a wide variety of other types of computation as well.

Outlook
Neuromorphic processors are energy efficient and adept at per-
forming machine learning and some non-machine learning com-
putations. They offer tremendous potential for computing beyond
Moore’s law. We envision at least three use cases for neuromor-
phic processors. First, due to their low power consumption, neu-
romorphic processors will be indispensable for edge-computing
applications such as autonomous systems (for example, vehicles
and drones), robotics, remote sensing, wearable technology and
the Internet of Things. Second, neuromorphic computers are well
poised to become the artificial intelligence accelerators and co-
processors in personal computing devices such as smart phones,
laptops and desktops. Accelerators and specialized architectures
have already been widely adopted in mobile phones, and the need

for extremely energy-efficient operations to improve battery life
in those systems as well as laptops continues to be an important
factor. Neuromorphic computers can help realize those operations
with potentially orders of magnitude less power than today’s accel-
erators. Finally, due to their ability to perform certain non-machine
learning computations, we envision that neuromorphic computers
will be added on as co-processors in next-generation heterogeneous
high-performance computing systems. In this scenario, neuromor-
phic computers would be expected to enable spike-based simula-
tions90, run graph algorithms85,87, solve differential equations116 and
efficiently approximate NP-complete problems97. It is worth not-
ing that the different use cases of neuromorphic computers—from
edge devices to accelerators and co-processors—are likely to look
very different in their implementations. Neuromorphic computers
deployed at the edge may be specialized to operate with one par-
ticular application and have a focus on, for example, extremely low
power inference performance, whereas neuromorphic computers
for broader types of computations in an high-performance com-
puting setting will likely have a focus on enabling reconfigurability
and training acceleration. Although neuromorphic computers are
not currently present in these use cases, we do expect that they will
begin to emerge in these technologies in the future, first probably
in the edge computing space as specialized processors and later in
future heterogeneous computers.

Several large-scale neuromorphic hardware systems are already
available to the research community, and these systems are all being
actively developed. Moreover, there is a wide variety of research
efforts in developing new materials and devices to implement neu-
romorphic hardware. As such, there is an opportunity to engage
in a software–hardware co-design process in the development of
neuromorphic hardware117. Most neuromorphic hardware design
currently begins from the bottom of the compute stack (that is, the
materials and devices) and then goes up to the algorithms and appli-
cations; that is, the hardware substrate is defined first, and the onus
is then on the algorithm and application developers to map them

Applications

Devices

Materials

Circuits

Microarchitecture

System architecture

Algorithms

State of the art:
bottom-up approach

Opportunity:
omnidirectional
approach

Applications

Algorithms

System

architecture

Microarchitecture

Circuits

Devices

Materials

• Control
• Classification
• Security
• Benchmarks

• Digital
• Analogue
• Mixed-signal

• Reservoir computing
• Spike-based backpropagation
• Mapping (conversion-based)
• STDP
• Graph-based
• Evolutionary-based

• Phase-change materials
• Ferroelectric materials
• Non-filamentary RRAM materials
• Topological insulator materials
• Channel-doped biomembrane

• Electrochemical transistors
• Memristors
• Optical devices
• Charge-trapping transistors
• Phase-change memories
• Ferroelectric transistors
• Threshold switching devices

Fig. 3 | Opportunity for full compute stack co-design in neuromorphic computers. The current approach (shown on the left) is a bottom-up approach,
where materials and devices are defined first, and those inform the architectures, algorithms and applications sequentially. The opportunity for a future co-
design approach (shown on the right) is for all aspects of the design stack to influence other components directly; for example, for applications to directly
influence the materials chosen or for the algorithms to directly influence the circuits used. RRAM, resistive random-access memory.

Nature Computational Science | VOL 2 | January 2022 | 10–19 | www.nature.com/natcomputsci16

http://www.nature.com/natcomputsci

PerspectiveNature Computational Science

onto that particular hardware implementation. However, there is
tremendous opportunity to engage in codesign all across the com-
pute stack so that the algorithms and applications can influence the
underlying hardware design (Fig. 3), and to tailor the underlying
hardware implementation to suit a particular application’s needs or
constraints. This opens up new horizons to not only focus on digi-
tal computing, but also to rethink using analogue, approximate and
mixed-signal computing118, as biological neural computation itself
is inherently analogue and stochastic. Among several approaches
proposed in the literature on software–hardware co-design, one
is using Bayesian optimization and Neural Architecture Search
approaches in which several stacks of computing that range from
materials and devices to algorithm and applications are codesigned
to optimize overall system performance119–121. For example, in a
memristive crossbar-based accelerator, an automatic codesign opti-
mization approach has the opportunity to define the number and
sizes of crossbars to optimize the accuracy and energy efficiency
of the design for different applications or datasets. In addition to
the opportunity for whole-stack co-design driven by algorithms
and applications, there is also the opportunity to allow for emerg-
ing materials and devices for neuromorphic computers to inspire
our algorithmic approaches, for example, in the implementation of
plasticity. Today, the process of implementing synaptic plasticity on
devices begins with the inspiration of plasticity in biological brains,
it is then implemented and demonstrated on emerging devices
(top-down co-design), and then finally the specific plasticity algo-
rithm is adapted to match how plasticity functions on that device
(bottom-up co-design). However, plasticity mechanisms in biologi-
cal brain evolved to use biological materials and components. We
believe there may be opportunities to look at the underlying physi-
cal behaviours of other devices and materials to inform new neuro-
morphic algorithms122.

The potential of neuromorphic computers in the future of com-
puter and computational science is only beginning to be under-
stood, and there is tremendous opportunity to leverage the inherent
computational characteristics of these systems for machine learning
and certain non-machine learning computations as well. Using neu-
romorphic computers most effectively will require a paradigm shift
in how researchers think about programming. We believe that there
are opportunities to achieve unprecedented algorithmic perfor-
mance in terms of speed and energy efficiency on many applications
with neuromorphic computers. In particular, in addition to their
clear benefits for neural network-style computation, we believe
that two areas that have the opportunity to see tremendous benefits
from neuromorphic computers are graph algorithms and optimiza-
tion tasks. Both of these types of algorithms and applications have
the opportunity to benefit from the massively parallel, event-driven
and/or stochastic operation of neuromorphic computers. With the
confluence of many different types of algorithms and applications
in neuromorphic, along with the active development of large-scale
neuromorphic hardware and emerging devices and materials, now
is the time for the greater computational science community to
begin considering neuromorphic computers a part of the greater
computing landscape.

Received: 30 April 2021; Accepted: 7 December 2021;
Published online: 31 January 2022

References
	1.	 Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636

(1990).
	2.	 Mead, C. How we created neuromorphic engineering. Nat. Electron. 3,

434–435 (2020).
	3.	 Schuman, C. D., Plank, J. S., Bruer, G. & Anantharaj, J. Non-traditional

input encoding schemes for spiking neuromorphic systems. In 2019
International Joint Conference on Neural Networks (IJCNN) 1–10
(IEEE, 2019).

	4.	 Sze, V., Chen, Y.-H., Emer, J., Suleiman, A. & Zhang, Z. Hardware for
machine learning: challenges and opportunities. In 2017 IEEE Custom
Integrated Circuits Conference (CICC) 1–8 (IEEE, 2017).

	5.	 Mayr, C., Hoeppner, S. & Furber, S. SpiNNaker 2: a 10 million core
processor system for brain simulation and machine learning. Preprint at
https://arxiv.org/abs/1911.02385 (2019).

	6.	 Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. The SpiNNaker project.
Proc. IEEE 102, 652–665 (2014).

	7.	 Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip
learning. IEEE Micro 38, 82–99 (2018).

	8.	 Mostafa, H., Müller, L. K. & Indiveri, G. An event-based architecture for
solving constraint satisfaction problems. Nat. Commun. 6, 1–10 (2015).

	9.	 Amir, A. et al. A low power, fully event-based gesture recognition system.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) 7388–7397 (IEEE, 2017).

	10.	 Schuman, C. D. et al. A survey of neuromorphic computing and neural
networks in hardware. Preprint at https://arxiv.org/abs/1705.06963 (2017).

	11.	 James, C. D. et al. A historical survey of algorithms and hardware
architectures for neural-inspired and neuromorphic computing applications.
Biol. Inspired Cogn. Archit. 19, 49–64 (2017).

	12.	 Strukov, D., Indiveri, G., Grollier, J. & Fusi, S. Building brain-inspired
computing. Nat. Commun. 10, 4838–2019 (2019).

	13.	 Thakur, C. S. et al. Large-scale neuromorphic spiking array processors: a
quest to mimic the brain. Front. Neurosci. 12, 891 (2018).

	14.	 Davies, M. et al. Advancing neuromorphic computing with Loihi: a survey
of results and outlook. Proc. IEEE 109, 911–934 (2021).

	15.	 Aimone, J. B. et al. Non-neural network applications for spiking
neuromorphic hardware. In Proc. 3rd International Workshop on Post
Moores Era Supercomputing 24–26 (PMES, 2018).

	16.	 Polykretis, I., Tang, G. & Michmizos, K. P. An astrocyte-modulated
neuromorphic central pattern generator for hexapod robot locomotion on
intel’s Loihi. In International Conference on Neuromorphic Systems 2020
1–9 (ACM, 2020).

	17.	 Irizarry-Valle, Y. & Parker, A. C. An astrocyte neuromorphic circuit that
influences neuronal phase synchrony. IEEE Trans. Biomed. circuits Syst. 9,
175–187 (2015).

	18.	 Potok, T., Schuman, C., Patton, R. & Li, H. Neuromorphic Computing,
Architectures, Models, and Applications. A Beyond-CMOS Approach to
Future Computing (US Department of Energy, 2016).

	19.	 Yin, S. et al. Algorithm and hardware design of discrete-time spiking neural
networks based on back propagation with binary activations. In 2017 IEEE
Biomedical Circuits and Systems Conference (BioCAS) 1–5 (IEEE, 2017).

	20.	 Schemmel, J. et al. A wafer-scale neuromorphic hardware system for
large-scale neural modeling. In 2010 IEEE International Symposium on
Circuits and Systems (ISCAS) 1947–1950 (IEEE, 2010).

	21.	 Neftci, E. O., Mostafa, H. & Zenke, F. Surrogate gradient learning in spiking
neural networks: bringing the power of gradient-based optimization to
spiking neural networks. IEEE Signal Process. Mag. 36, 51–63 (2019).

	22.	 Pei, J. et al. Towards artificial general intelligence with hybrid Tianjic chip
architecture. Nature 572, 106–111 (2019).

	23.	 Merolla, P. A. et al. A million spiking-neuron integrated circuit
with a scalable communication network and interface. Science 345,
668–673 (2014).

	24.	 Moradi, S., Qiao, N., Stefanini, F. & Indiveri, G. A scalable multicore
architecture with heterogeneous memory structures for dynamic
neuromorphic asynchronous processors (DYNAPs). IEEE Trans. Biomed.
Circuits Syst. 12, 106–122 (2017).

	25.	 Benjamin, B. V. et al. Neurogrid: a mixed-analog-digital multichip system
for large-scale neural simulations. Proc. IEEE 102, 699–716 (2014).

	26.	 Schemmel, J., Billaudelle, S., Dauer, P. & Weis, J. Accelerated analog
neuromorphic computing. Preprint at https://arxiv.org/abs/2003.11996
(2020).

	27.	 Bohnstingl, T., Scherr, F., Pehle, C., Meier, K. & Maass, W. Neuromorphic
hardware learns to learn. Front. Neurosci. 13, 483 (2019).

	28.	 Islam, R. et al. Device and materials requirements for neuromorphic
computing. J. Phys. D 52, 113001 (2019).

	29.	 Nandakumar, S., Kulkarni, S. R., Babu, A. V. & Rajendran, B. Building
brain-inspired computing systems: examining the role of nanoscale devices.
IEEE Nanotechnol. Mag. 12, 19–35 (2018).

	30.	 Najem, J. S. et al. Memristive ion channel-doped biomembranes as synaptic
mimics. ACS Nano 12, 4702–4711 (2018).

	31.	 Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic
systems. Nano Lett. 10, 1297–1301 (2010).

	32.	 Li, Y., Wang, Z., Midya, R., Xia, Q. & Yang, J. J. Review of memristor
devices in neuromorphic computing: materials sciences and device
challenges. J. Phys. D 51, 503002 (2018).

	33.	 Wu, Y., Deng, L., Li, G., Zhu, J. & Shi, L. Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12,
331 (2018).

Nature Computational Science | VOL 2 | January 2022 | 10–19 | www.nature.com/natcomputsci 17

https://arxiv.org/abs/1911.02385
https://arxiv.org/abs/1705.06963
https://arxiv.org/abs/2003.11996
http://www.nature.com/natcomputsci

Perspective Nature Computational Science

	34.	 Kulkarni, S. R. & Rajendran, B. Spiking neural networks for handwritten
digit recognition–supervised learning and network optimization. Neural
Netw. 103, 118–127 (2018).

	35.	 Anwani, N. & Rajendran, B. Training multi-layer spiking neural networks
using normad based spatio-temporal error backpropagation.
Neurocomputing 380, 67–77 (2020).

	36.	 Bagheri, A., Simeone, O. & Rajendran, B. Training probabilistic spiking
neural networks with first-to-spike decoding. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) 2986–2990
(IEEE, 2018).

	37.	 Göltz, J. et al. Fast and deep neuromorphic learning with time-to-first-spike
coding. Preprint at https://arxiv.org/abs/1912.11443 (2019).

	38.	 Lee, J. H., Delbruck, T. & Pfeiffer, M. Training deep spiking neural networks
using backpropagation. Front. Neurosci. 10, 508 (2016).

	39.	 Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G. & Roy, K. Enabling
spike-based backpropagation for training deep neural network architectures.
Front. Neurosci. https://doi.org/10.3389/fnins.2020.00119 (2020).

	40.	 Zenke, F. & Neftci, E. O. Brain-inspired learning on neuromorphic
substrates. Proc. IEEE 109, 935–950 (2021).

	41.	 Cramer, B., Stradmann, Y., Schemmel, J. & Zenke, F. The Heidelberg spiking
data sets for the systematic evaluation of spiking neural networks. IEEE Trans.
Neural Netw. Learn. Syst. https://doi.org/10.1109/TNNLS.2020.3044364 (2020).

	42.	 Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U. & Neftci, E. Conversion
of artificial recurrent neural networks to spiking neural networks for
low-power neuromorphic hardware. In 2016 IEEE International Conference
on Rebooting Computing (ICRC) 1–8 (IEEE, 2016).

	43.	 Hunsberger, E. & Eliasmith, C. Training spiking deep networks for
neuromorphic hardware. Preprint at https://arxiv.org/abs/1611.05141 (2016).

	44.	 Sengupta, A., Ye, Y., Wang, R., Liu, C. & Roy, K. Going deeper in spiking
neural networks: VGG and residual architectures. Front. Neurosci. 13,
95 (2019).

	45.	 Severa, W., Vineyard, C. M., Dellana, R., Verzi, S. J. & Aimone, J. B.
Training deep neural networks for binary communication with the
whetstone method. Nat. Mach. Intell. 1, 86–94 (2019).

	46.	 Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M. & Liu, S.-C. Conversion of
continuous-valued deep networks to efficient event-driven networks for
image classification. Front. Neurosci. 11, 682 (2017).

	47.	 Stöckl, C. & Maass, W. Optimized spiking neurons can classify images with
high accuracy through temporal coding with two spikes. Nat. Mach. Intell.
3, 230–238 (2021).

	48.	 Blouw, P., Choo, X., Hunsberger, E. & Eliasmith, C. Benchmarking keyword
spotting efficiency on neuromorphic hardware. In NICE '19: Proc. 7th
Annual Neuro-inspired Computational Elements Workshop 1–8 (ACM, 2019).

	49.	 Getty, N., Brettin, T., Jin, D., Stevens, R. & Xia, F. Deep medical image
analysis with representation learning and neuromorphic computing.
Interface Focus 11, 20190122 (2021).

	50.	 Shukla, R., Lipasti, M., Van Essen, B., Moody, A. & Maruyama, N.
Remodel: rethinking deep CNN models to detect and count on a
neurosynaptic system. Front. Neurosci. 13, 4 (2019).

	51.	 Tanaka, G. et al. Recent advances in physical reservoir computing: a review.
Neural Netw. 115, 100–123 (2019).

	52.	 Kudithipudi, D., Saleh, Q., Merkel, C., Thesing, J. & Wysocki, B. Design and
analysis of a neuromemristive reservoir computing architecture for
biosignal processing. Front. Neurosci. 9, 502 (2016).

	53.	 Du, C. et al. Reservoir computing using dynamic memristors for temporal
information processing. Nat. Commun. 8, 1–10 (2017).

	54.	 Wijesinghe, P., Srinivasan, G., Panda, P. & Roy, K. Analysis of liquid
ensembles for enhancing the performance and accuracy of liquid state
machines. Front. Neurosci. 13, 504 (2019).

	55.	 Soures, N. & Kudithipudi, D. Deep liquid state machines with neural
plasticity for video activity recognition. Front. Neurosci. 13, 686 (2019).

	56.	 Schuman, C. D., Mitchell, J. P., Patton, R. M., Potok, T. E. & Plank, J. S.
Evolutionary optimization for neuromorphic systems. In Proc. Neuro-
inspired Computational Elements Workshop 1–9 (ACM, 2020).

	57.	 Schaffer, J. D. Evolving spiking neural networks for robot sensory-motor
decision tasks of varying difficulty. In Proc. Neuro-inspired Computational
Elements Workshop 1–7 (ACM, 2020).

	58.	 Schliebs, S. & Kasabov, N. Evolving spiking neural network–a survey. Evol.
Syst. 4, 87–98 (2013).

	59.	 Plank, J. S. et al. The TENNLab suite of LIDAR-based control applications
for recurrent, spiking, neuromorphic systems. In 44th Annual GOMACTech
Conference (GOMAC Tech, 2019); http://neuromorphic.eecs.utk.edu/raw/
files/publications/2019-Plank-Gomac.pdf

	60.	 Mitchell, J. P. et al. Neon: neuromorphic control for autonomous robotic
navigation. In 2017 IEEE International Symposium on Robotics and
Intelligent Sensors (IRIS) 136–142 (IEEE, 2017).

	61.	 Bi, G.-q & Poo, M.-m Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic
cell type. J. Neurosci. 18, 10464–10472 (1998).

	62.	 Shrestha, A., Ahmed, K., Wang, Y. & Qiu, Q. Stable spike-timing dependent
plasticity rule for multilayer unsupervised and supervised learning. In 2017
International Joint Conference on Neural Networks (IJCNN) 1999–2006
(IEEE, 2017).

	63.	 Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A. &
Ganjtabesh, M. First-spike-based visual categorization using reward-
modulated stdp. IEEE Trans. Neural Netw. Learn. Syst. 29,
6178–6190 (2018).

	64.	 Lee, C., Panda, P., Srinivasan, G. & Roy, K. Training deep spiking
convolutional neural networks with stdp-based unsupervised pre-training
followed by supervised fine-tuning. Front. Neurosci. 12, 435 (2018).

	65.	 Kaiser, J., Mostafa, H. & Neftci, E. Synaptic plasticity dynamics for deep
continuous local learning (decolle). Front. Neurosci. 14, 424 (2020).

	66.	 Bellec, G. et al. A solution to the learning dilemma for recurrent networks
of spiking neurons. Nat. Commun. 11, 1–15 (2020).

	67.	 Martin, E. et al. EqSpike: spike-driven equilibrium propagation for
neuromorphic implementations. iScience 24, 102222 (2021).

	68.	 Mukhopadhyay, A. K., Sharma, A., Chakrabarti, I., Basu, A. & Sharad, M.
Power-efficient spike sorting scheme using analog spiking neural network
classifier. ACM J. Emerg. Technol. Comput. Syst. 17, 1–29 (2021).

	69.	 Nessler, B., Pfeiffer, M., Buesing, L. & Maass, W. Bayesian computation
emerges in generic cortical microcircuits through spike-timing-dependent
plasticity. PLoS Comput. Biol. 9, e1003037 (2013).

	70.	 Kasabov, N. K. NeuCube: a spiking neural network architecture for
mapping, learning and understanding of spatio-temporal brain data.
Neural Netw. 52, 62–76 (2014).

	71.	 Budhraja, S. et al. Sleep stage classification using neucube on spinnaker: a
preliminary study. In 2020 International Joint Conference on Neural
Networks (IJCNN) 1–8 (IEEE, 2020).

	72.	 Kumarasinghe, K., Owen, M., Taylor, D., Kasabov, N. & Kit, C.
FaNeuRobot: a framework for robot and prosthetics control using the
neucube spiking neural network architecture and finite automata theory. In
2018 IEEE International Conference on Robotics and Automation (ICRA)
4465–4472 (IEEE, 2018).

	73.	 Izhikevich, E. M. Polychronization: computation with spikes. Neural
Comput. 18, 245–282 (2006).

	74.	 Wang, F., Severa, W. M. & Rothganger, F. Acquisition and representation of
spatio-temporal signals in polychronizing spiking neural networks. In Proc.
7th Annual Neuro-inspired Computational Elements Workshop 1–5
(ACM, 2019).

	75.	 Alemi, A., Machens, C., Deneve, S. & Slotine, J.-J. Learning nonlinear
dynamics in efficient, balanced spiking networks using local plasticity rules.
In Proc. AAAI Conference on Artificial Intelligence Vol. 32 (AAAI, 2018).

	76.	 Maass, W. On the computational power of winner-take-all. Neural Comput.
12, 2519–2535 (2000).

	77.	 Oster, M., Douglas, R. & Liu, S.-C. Computation with spikes in a
winner-take-all network. Neural Comput. 21, 2437–2465 (2009).

	78.	 Kappel, D., Nessler, B. & Maass, W. STDP installs in winner-take-all circuits
an online approximation to hidden Markov model learning. PLoS Comput.
Biol. 10, e1003511 (2014).

	79.	 Gütig, R. & Sompolinsky, H. The tempotron: a neuron that learns spike
timing–based decisions. Nat. Neurosci. 9, 420–428 (2006).

	80.	 Bohte, S. M., Kok, J. N. & La Poutre, H. Error-backpropagation in
temporally encoded networks of spiking neurons. Neurocomputing 48,
17–37 (2002).

	81.	 Wang, Q., Rothkopf, C. A. & Triesch, J. A model of human motor sequence
learning explains facilitation and interference effects based on spike-timing
dependent plasticity. PLoS Comput. Biol. 13, e1005632 (2017).

	82.	 Li, S. & Yu, Q. New efficient multi-spike learning for fast processing and
robust learning. In Proc. AAAI Conference on Artificial Intelligence Vol. 34,
4650–4657 (AAAI, 2020).

	83.	 Zenke, F. & Ganguli, S. Superspike: supervised learning in multilayer
spiking neural networks. Neural Comput. 30, 1514–1541 (2018).

	84.	 Petro, B., Kasabov, N. & Kiss, R. M. Selection and optimization of temporal
spike encoding methods for spiking neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 31, 358–370 (2019).

	85.	 Hamilton, K. E., Mintz, T. M. & Schuman, C. D. Spike-based primitives for
graph algorithms. Preprint at https://arxiv.org/abs/1903.10574 (2019).

	86.	 Corder, K., Monaco, J. V. & Vindiola, M. M. Solving vertex cover via ising
model on a neuromorphic processor. In 2018 IEEE International Symposium
on Circuits and Systems (ISCAS) 1–5 (IEEE, 2018).

	87.	 Kay, B., Date, P. & Schuman, C. Neuromorphic graph algorithms: extracting
longest shortest paths and minimum spanning trees. In Proc. Neuro-Inspired
Computational Elements Workshop 1–6 (ACM, 2020).

	88.	 Ali, A. & Kwisthout, J. A spiking neural algorithm for the network flow
problem. Preprint at https://arxiv.org/abs/1911.13097 (2019).

	89.	 Aimone, J. B. et al. Provable neuromorphic advantages for computing
shortest paths. In Proc. 32nd ACM Symposium on Parallelism in Algorithms
and Architectures 497–499 (ACM, 2020).

Nature Computational Science | VOL 2 | January 2022 | 10–19 | www.nature.com/natcomputsci18

https://arxiv.org/abs/1912.11443
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.1109/TNNLS.2020.3044364
https://arxiv.org/abs/1611.05141
http://neuromorphic.eecs.utk.edu/raw/files/publications/2019-Plank-Gomac.pdf
http://neuromorphic.eecs.utk.edu/raw/files/publications/2019-Plank-Gomac.pdf
https://arxiv.org/abs/1903.10574
https://arxiv.org/abs/1911.13097
http://www.nature.com/natcomputsci

PerspectiveNature Computational Science

	90.	 Hamilton, K., Date, P., Kay, B. & Schuman D, C. Modeling epidemic spread
with spike-based models. In International Conference on Neuromorphic
Systems 2020 1–5 (ACM, 2020).

	91.	 Severa, W., Lehoucq, R., Parekh, O. & Aimone, J. B. Spiking neural
algorithms for Markov process random walk. In 2018 International Joint
Conference on Neural Networks (IJCNN) 1–8 (IEEE, 2018).

	92.	 Smith, J. D. et al. Neuromorphic scaling advantages for energy-efficient
random walk computations. Preprint at https://arxiv.org/abs/2107.13057
(2021).

	93.	 Cook, M. Networks of Relations (California Institute of Technology, 2005).
	94.	 Diehl, P. U. & Cook, M. Learning and inferring relations in cortical

networks. Preprint at https://arxiv.org/abs/1608.08267 (2016).
	95.	 Diehl, P. U. & Cook, M. Unsupervised learning of digit recognition using

spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015).
	96.	 Alom, M. Z., Van Essen, B., Moody, A. T., Widemann, D. P. & Taha, T. M.

Quadratic unconstrained binary optimization (QUBO) on neuromorphic
computing system. In 2017 International Joint Conference on Neural
Networks (IJCNN) 3922–3929 (IEEE, 2017).

	97.	 Mniszewski, S. M. Graph partitioning as quadratic unconstrained binary
optimization (QUBO) on spiking neuromorphic hardware. In Proc.
International Conference on Neuromorphic Systems 1–5 (ACM, 2019).

	98.	 Yakopcic, C., Rahman, N., Atahary, T., Taha, T. M. & Douglass, S. Solving
constraint satisfaction problems using the Loihi spiking neuromorphic
processor. In 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE) 1079–1084 (IEEE, 2020).

	99.	 Mostafa, H., Müller, L. K. & Indiveri, G. Rhythmic inhibition allows neural
networks to search for maximally consistent states. Neural Comput. 27,
2510–2547 (2015).

	100.	 Fonseca Guerra, G. A. & Furber, S. B. Using stochastic spiking neural
networks on SpiNNaker to solve constraint satisfaction problems. Front.
Neurosci. 11, 714 (2017).

	101.	 Pecevski, D., Buesing, L. & Maass, W. Probabilistic inference in general
graphical models through sampling in stochastic networks of spiking
neurons. PLoS Comput. Biol. 7, e1002294 (2011).

	102.	 Dagum, P. & Luby, M. An optimal approximation algorithm for Bayesian
inference. Artif. Intell. 93, 1–27 (1997).

	103.	 Knight, J. C. & Nowotny, T. GPUs outperform current HPC and
neuromorphic solutions in terms of speed and energy when simulating a
highly-connected cortical model. Front. Neurosci. 12, 941 (2018).

	104.	 Gewaltig, M.-O. & Diesmann, M. NEST (Neural Simulation Tool).
Scholarpedia 2, 1430 (2007).

	105.	 Goodman, D. F. & Brette, R. Brian: a simulator for spiking neural networks
in python. Front. Neuroinform. 2, 5 (2008).

	106.	 Bekolay, T. et al. Nengo: a python tool for building large-scale functional
brain models. Front. Neuroinform. 7, 48 (2014).

	107.	 Stewart, T. C. A Technical Overview of the Neural Engineering Framework
(University of Waterloo, 2012).

	108.	 Kulkarni, S. R., Parsa, M., Mitchell, J. P. & Schuman, C. D. Benchmarking
the performance of neuromorphic and spiking neural network simulators.
Neurocomputing 447, 145–160 (2021).

	109.	 Vetter, J. S. et al. Extreme Heterogeneity 2018-Productive Computational
Science in the Era of Extreme Heterogeneity: Report for DOE ASCR
Workshop on Extreme Heterogeneity Technical Report (US Department of
Energy, 2018).

	110.	 Diamond, A., Nowotny, T. & Schmuker, M. Comparing neuromorphic
solutions in action: implementing a bio-inspired solution to a benchmark
classification task on three parallel-computing platforms. Front. Neurosci. 9,
491 (2016).

	111.	 Mishkin, D., Sergievskiy, N. & Matas, J. Systematic evaluation of
convolution neural network advances on the imagenet. Computer Vis. Image
Underst. 161, 11–19 (2017).

	112.	 Orchard, G., Jayawant, A., Cohen, G. K. & Thakor, N. Converting static
image datasets to spiking neuromorphic datasets using Saccades. Front.
Neurosci. 9, 437 (2015).

	113.	 Tuggener, L., Schmidhuber, J. & Stadelmann, T. Is it enough to optimize
CNN architectures on ImageNet? Preprint at https://arxiv.org/
abs/2103.09108 (2021).

	114.	 Sandamirskaya, Y. Dynamic neural fields as a step toward cognitive
neuromorphic architectures. Front. Neurosci. 7, 276 (2014).

	115.	 Plank, J. S., Zheng, C., Schumann, C. D. & Dean, C. Spiking neuromorphic
networks for binary tasks. In International Conference on Neuromorphic
Computing Systems (ICONS) 1–8 (ACM, 2021).

	116.	 Smith, J. D. et al. Solving a steady-state PDE using spiking networks and
neuromorphic hardware. In International Conference on Neuromorphic
Systems 2020 1–8 (ACM, 2020).

	117.	 Aimone, J. B. A roadmap for reaching the potential of brain-derived
computing. Adv. Intell. Syst. 3, 2000191 (2021).

	118.	 Douglas, R., Mahowald, M. & Mead, C. Neuromorphic analogue VLSI.
Annu. Rev. Neurosci. 18, 255–281 (1995).

	119.	 Parsa, M. et al. Bayesian multi-objective hyperparameter optimization for
accurate, fast, and efficient neural network accelerator design. Front.
Neurosci. 14, 667 (2020).

	120.	 Parsa, M., Ankit, A., Ziabari, A. & Roy, K. PABO: pseudo agent-based
multi-objective bayesian hyperparameter optimization for efficient neural
accelerator design. In 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD) 1–8 (IEEE, 2019).

	121.	 Parsa, M. et al. Bayesian-based hyperparameter optimization for spiking
neuromorphic systems. In 2019 IEEE International Conference on Big Data
(Big Data) 4472–4478 (IEEE, 2019).

	122.	 Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 5,
73 (2011).

Acknowledgements
This material is based on work supported by the US Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, R. Pino, program manager,
under contract number DE-AC05-00OR22725. We would like to thank N. Armistead for
his aid in creating the graphics for this manuscript.

Author contributions
C.D.S. lead the preparation, writing and editing of this manuscript. S.R.K., M.P. and
J.P.M. contributed to the neuromorphic hardware description. C.D.S., S.R.K. and M.P.
contributed to the machine learning algorithms section and S.R.K., P.D. and B.K.
contributed to the non-machine learning section. All authors contributed to the sections
on closing the gap between expectations and reality and outlook.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence should be addressed to Catherine D. Schuman.

Peer review information Nature Computational Science thanks James Aimone, Giacomo
Indiveri and Thomas Nowotny for their contribution to the peer review of this work.
Handling editor: Fernando Chirigati, in collaboration with the Nature Computational
Science team.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© Springer Nature America, Inc. 2022, corrected publication 2022

Nature Computational Science | VOL 2 | January 2022 | 10–19 | www.nature.com/natcomputsci 19

https://arxiv.org/abs/2107.13057
https://arxiv.org/abs/1608.08267
https://arxiv.org/abs/2103.09108
https://arxiv.org/abs/2103.09108
http://www.nature.com/reprints
http://www.nature.com/natcomputsci

	Opportunities for neuromorphic computing algorithms and applications

	Neuromorphic algorithms and applications

	Spiking neural networks

	Machine learning algorithms.
	Spike-based quasi-backpropagation
	Mapping a pre-trained deep neural network
	Reservoir computing
	Evolutionary approaches
	Plasticity

	Non-machine learning algorithms.

	Closing the gap between expectations and reality

	Widening algorithmic focus.
	Widening usability and access to hardware and simulators.
	Enabling more diverse computing environments.
	Defining benchmarks and metrics.
	Defining programming abstractions.

	Outlook

	Acknowledgements

	Fig. 1 Comparison of the von Neumann architecture with the neuromorphic architecture.
	Fig. 2 Common training approaches for SNNs.
	Fig. 3 Opportunity for full compute stack co-design in neuromorphic computers.

