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The trajectory of the field of biomolecular modeling and sim-
ulation is a classic example of success driven by an eclectic 
mixture of ideas, people, technology and serendipity. From 

the early days of simulations and force-field development through 
pioneering applications to structure determination, enzyme 
kinetics and molecular dynamics simulations, the field has gone 
through notable highs and lows1 (Fig. 1). The 1980s were marked 
by advances made possible by supercomputers2,3, and, at the same 
time, by deflated high expectations when it was realized that com-
putations could not easily or quickly supplant Bunsen burners and 
lab experiments1,4. The 1990s saw disappointments when, in addi-
tion to unmet high biomedical expectations1, such as the failure of 
the human genome information to lead quickly to medical solu-
tions5, it was realized that force fields and limited conformational 
sampling could hold us back from successful practical applications. 
Fortunately, this period was followed by many new approaches, 
using both software and hardware, to address these deficiencies. The 
past two decades took us through huge triumphs, as successes in 
key areas were realized. These include protein folding (for example, 
millisecond all-atom simulations of protein folding6), mechanisms 
of large biomolecular networks (for example, virus simulations7) 
and drug applications (for example, search of drugs for coronavi-
rus disease 2019 (COVID-19)8). On the shoulders of the force-field 
pioneers Allinger, Lifson, Scheraga and Kollman, computations in 
biology were celebrated in 2013 with the Nobel Prize in Chemistry 
recognizing the work of Martin Karplus, Michael Levitt and Arieh 
Warshel9. Clearly, experimentation and modeling have become full 
partners in a vibrant and successful field.

Scientists studying chemical and biological systems, from small 
molecules to huge viruses, now routinely combine computer simu-
lations and a variety of experimental information to determine or 
predict structures, energies, kinetics, mechanisms and functions of 
these fascinating and important systems. Pioneers and leaders of 
the field who pushed the envelopes of applications and technologies 
through large simulation programs and state-of-the-art methodolo-
gies have unveiled the molecules of life in action, similar to what 
the light microscopes and X-ray techniques did in the seventeenth 
and nineteenth centuries. Biomolecular modeling and simulation 
applications have allowed us to pose and answer new questions 
and pursue difficult challenges, in both basic and applied research. 

Problems range from unraveling the folding pathways of proteins 
and identification of new therapeutic targets for common human 
diseases to the design of novel materials and pharmaceuticals. With 
the recent emergence of the coronavirus pandemic, all these tools 
are being utilized in numerous community efforts for simulating 
COVID-19 related systems. Similar to the exponential growth so 
familiar to us now in connection with the spread of COVID-19 
infections, exponential progress is only realized when we take stock 
of long timeframes.

A key element in this success is the relentless pursuit and exploi-
tation of the state-of-the-art technology by the biomolecular simula-
tion community. In fact, the excellent utilization of supercomputers 
and technology by modelers led to comparable performance for 
landmark simulations with the world’s fastest computers (Fig. 2). 
The simulation time of biomolecular complexes scales up by about 
three orders of magnitude every decade10, and this progress is faster 
than Moore’s law, which projected a doubling every two years11. 
While some aspects of this doubling have been debated, it has also 
been argued that such doubling of computation/performance has 
held over 100 years in many fields12.

Today, concurrent advances in many technological fields have 
led to exponential growth in allied fields. Take, for example, the 
dramatic drop in the cost of gene sequencing technology, from 
US$2.7 billion for the Human Genome Project to US$1,000 today 
to sequence an individual’s genome13. Not only can this informa-
tion be used for personalized medicine, but we can also sequence 
genomes such as of the severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) in hours and apply such sequence variant 
information to map the disease spread across the world in nearly 
real time14. Fields such as artificial intelligence, nanotechnology, 
energy and robotics are all benefiting from exponential growth 
as well. This in turn means that urgent problems can be solved to 
improve our lives, health and environment, from wind farms to vac-
cines. In particular, biomolecular modeling and simulation is thriv-
ing in this ever-evolving landscape, evidenced by many successes, 
and in experiments driven by modeling15.

A detailed account of this triumphant field trajectory is described 
separately in our recent field perspective1. A review on the suc-
cess of computations in this field was also recently published by  
Dill et al.16. In our field perspective, we covered metrics of the field’s 
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rise in popularity and productivity, examples of success and failure, 
collaborations between experimentalists and modelers, and the 
impact of community initiatives and exercises. Here, we focus on 
two aspects of technology advances that are relevant to numerous 
areas of computational science at large: knowledge-based methods 
versus physics-based methods, and the role of hardware versus soft-
ware in driving the field.

Knowledge-based versus physics-based approaches
Physics-type models based on molecular mechanics principles1 
have been successfully applied to molecular systems since the 
1960s, providing insights into structures and mechanisms involved 
in biomolecular rearrangements, flexibility, pathways and func-
tion. In these methods, energy functions that treat molecules as 
physical systems, similar to balls connected by springs, are used to 

express biomolecules in terms of fundamental vibrations, rotations 
and non-bonded interactions. Target data taken from experiments 
on relevant molecular entities are used to parametrize these func-
tions, which are then applied to larger systems composed of the 
same basic chemical subgroups. Thus, experimental data are used 
in constructing these general functions but in a fundamental way, 
such as the nature of C–O bonds or the rotational flexibility around  
alpha carbons.

Knowledge-based methods, in contrast, lack a fundamental 
energy framework. Instead, various structural, energetic or func-
tional data are used to train a computer program into discovering 
these trends in related systems from known chemical and bio-
physical information on specific molecular systems. Thus, such 
approaches use available data to make extrapolative predictions 
regarding related biological and chemical systems.
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Fig. 1 | expectation curve for the field of biomolecular modeling and simulation. The field started with comprehensive molecular mechanics efforts, and it 
took off with the increasing availability of fast workstations and later supercomputers. In the molecular mechanics illustration (top left panel), symbols b, θ 
and τ represent bond, angle and dihedral angle motions, respectively, and non-bonded interactions are also indicated. The torsion potential (E) contains two-
fold (dashed black curve) and three-fold (solid violet curve) terms. Following unrealistically high short-term expectations and disappointments concerning 
the limited medical impact of modeling and genomic research on human disease treatment, better collaborations between theory and experiment has 
ushered the field to its productive stage. Challenges faced in the decade 2000–2010 include force-field imperfections, conformational sampling limitations, 
some pharmacogenomics hurdles and limited medical impact of genomics-based therapeutics for human diseases. Technological innovations that have 
helped drive the field include distributed computations and the advent of the use of GPUs for biomolecular computations. The molecular-dynamics-
specialized supercomputer Anton made it possible in 2009 to reach the millisecond timescale for explicit-solvent all-atom simulations. The 2013 Nobel 
Prize in Chemistry awarded to Levitt, Karplus and Warshel helped validate a field that lagged behind experiment and propel its trajectory. Along the timeline, 
we depict landmark simulations: 25-bp DNA (5 ns and ∼21,000 atoms)144; villin protein (1 μs and 12,000 atoms)145; bc1 membrane complex (1 ns and 
∼91,000 atoms)146; 12-bp DNA (1.2 μs and ∼16,000 atoms)147; Fip35 protein (10 μs and ∼30,000 atoms)148 (image from 149); Fip35 and bovine pancreatic 
trypsin inhibitory (BPTI) proteins (100 μs for Flip35 and 1 ms for BPTI, and ∼13,000 atoms)150; nuclear pore complex (1 μs and 15.5 million atoms)151; influenza 
A virus (1 μs and >1 million atoms)152; N-methyl-D-aspartate (NMDA) receptor in membrane (60 μs and ∼507,000 atoms)153; tubular cyclophilin A/capsid 
protein (CypA/CA) complexes (100 ns and 25.6 million atoms)154; HIV-1 fully solvated empty capsid (1 μs and 64 million atoms)7; GATA4 gene (1 ns and 1B 
atoms)39; and influenza A virus H1N1 (121 ns and ∼160 million atoms)36. Figure adapted with permission from ref. 1, Cambridge Univ. Press (timeline); Angela 
Barragan Diaz, The University of Chicago, NIC Center for Macromolecular Modeling and Bioinformatics (bc1 (in membrane)); ref. 147, American Chemical 
Society (12-bp DNA); ref. 154, under a Creative Commons license CC BY 4.0 (CypA/CA complex); ref. 7, under a Creative Commons license CC BY 4.0  
(HIV-1 capsid); ref. 153, Springer Nature Ltd (NMDA); courtesy of Lorenzo Casalino, UC San Diego (influenza A, top); ref. 144, Elsevier (25-bp DNA); ref. 149, 
Wiley (Fip35); ref. 152, Cell Press (influenza A, bottom); ref. 151, PLOS (Nuclear pore complex); ref. 39, Wiley (GATA4 gene).
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While physics-based models have been in continuous usage, 
knowledge-based methods have gained momentum since the 2000s 
with the increasing amount of both available data and computa-
tional power for handling voluminous data. Although physics-
based approaches remain essential for understanding mechanisms, 
knowledge-based methods are inevitably succeeding in specific 
applications and overtaking many fields of science and engineering. 
As we argue below, both are important to develop, and their combi-
nation can be particularly fruitful.

Physics-based methods. Physics-based methods offer us a concep-
tual understanding of biological processes. Indeed, the development 
of improved all-atom force fields for biomolecular simulations17–19 
in both functional form and parameters has been crucial to the 
increasing accuracy of modeling many biological processes of 
large systems. Force fields for proteins, nucleic acids, membranes 
and small organic molecules have been applied to study problems 
such as protein folding, enzymatic mechanisms, ligand binding/
unbinding, membrane insertion mechanisms and many others20,21. 
Current fourth-generation force fields have introduced polariza-
tion effects22–24, important for processes or systems with induced  
electronic polarization, such as intrinsically disordered proteins, 
metal/protein interactions and membrane permeation mecha-
nisms25,26. Despite 50 years of developments, force fields are far from 
perfect27, and further refinement, expansion, standardization and 
validation can be expected in the future28. Transferability to a wide 
range of biomolecular systems and ‘convergence’ among different 
force fields will continue to be issues. In parallel to all-atom force 
fields, numerous coarse-grained potentials have been developed 
for many systems29,30, but these are far less unified compared with  
all-atom force fields. Much development can be expected in the  

near future in this area as the complexity of biomolecular problems 
of interest increases.

In the area of protein structure prediction, for example, the 
physics-based coarse-grained united-residue (UNRES) force field 
developed by the lab of the late Harold Scheraga demonstrated 
exceptional results in predicting the orientations of domains in 
the tenth Critical Assessment of Protein Structure Prediction 
(CASP10)31. Such predictions were free of biases from structural 
databases and relied on energetically favorable residue/residue 
interactions (‘first principles’).

Physics-based methods are essential for studying protein dynam-
ics and folding pathways. For example, UNRES32 and many all-atom 
force fields17–19 have been successful in the study of folding pathways 
of several proteins33,34, including a small protein inside its chapero-
nin35. Besides folding mechanisms, kinetic and thermodynamic 
parameters can be determined33.

Many other areas of applications demonstrate how molecular 
mechanics and dynamics simulations provide insights on structures 
and mechanisms. These include structures of viruses7,36 (including 
SARS-CoV-237), pathways in DNA repair38 or folding of chromatin 
fibers39–41. In drug discovery, molecular docking has shown to be 
successful for high-throughput screening. For instance, restrained-
temperature multiple-copy molecular dynamics (MD) replica-
exchange combined with molecular docking suggested molecules 
that bind to the spike protein of the SARS-CoV-2 virus42.

The most common concerns in such molecular mechanics 
approaches involve insufficient conformational sampling and lim-
ited simulation length compared with biological timeframes. Other 
drawbacks are approximations due to force-field imperfections 
and other model simplifications, absence of adequate statistical 
information and the lack of general applicability to all molecular 
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Fig. 2 | Performance of landmark simulations compared with the world’s fastest supercomputers and moore’s law trend. Plot of the computational 
system ranked first (blue) and the highest ranked academic computer (orange) as reported in Rmax according to the LINPACK benchmark as assembled 
in the Top500 supercomputer lists (www.top500.org). Rmax is the unit used to define computer performance in TFLOPS (trillion floating point operations 
per second). Landmark simulations (green diamonds) are dated assuming calculations were performed about a year before publication, except for 
the publications in 1998, which we assumed were performed in 1996. These include, from 1996 to the present, 25-bp DNA using National Center for 
Supercomputing Applications (NCSA) Silicon Graphics Inc. (SGI) machines144; villin protein145 using the Cray T3E900; bc1 membrane complex146 using the 
Cray T3E900; 12-bp DNA147 using MareNostrum/Barcelona; Fip35 protein148 using NCSA Abe clusters; nuclear core complex151 using Blue Waters; influenza 
A virus152 using the Jade Supercomputer; CypA/CA complex154 using Blue Waters; HIV-1 capsid7 using Titan Cray XK7; GATA4 gene39 using Trinity Phase 
2; and influenza A virus H1N136 using Blue Waters. As Blue Waters has opted out of the Top500, we use estimates of sustained system performance/
sustained petascale performance (SSP/SPP) from 2012 and 2020. For system size and simulation time of each landmark simulation, see Fig. 1.
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systems43. Increases in computer power, advances in enhanced sim-
ulation techniques and fourth-generation force fields with incorpo-
rated polarizabilities22–24 are helping overcome these limitations. For 
example, the Frontera petascale computing system allowed multiple 
microsecond all-atom MD simulations of the SARS-CoV-2 spike 
glycoprotein embedded in the viral membrane44. Enhanced sam-
pling simulations combining parallel tempering with well-tempered 
ensemble metadynamics revealed how phosphorylation of intrinsi-
cally disordered proteins regulates their binding to their interact-
ing partners45. The polarizable force-field AMOEBA has allowed 
the determination of the phosphate binding mode to the phosphate 
binding protein46, which has remained controversial for a long time.

Knowledge-based methods. Knowledge-based methods are less 
conceptually demanding than physics-based models and can in 
principle overcome the approximations of physics-based methods.

In the field of protein folding and structure prediction, knowledge-
based methods, such as homology47, threading48 and minithreading 
modeling49 have shown to be more effective than physics-based 
methods in some cases50. Other successful algorithms use informa-
tion on evolutionary coupled residues, namely, residues involved in 
compensatory mutations51. Such information can be detected from 
multiple sequence alignments and used to predict protein structures 
de novo with high accuracy, as observed in CASP1152.

In particular, the artificial intelligence approach by Google 
AlphaFold, a co-evolution-based method, upstaged the CASP13 
exercise held in 2018, outperforming other methods for protein 
structure prediction53 (Fig. 3a). More recently, analyses of CASP14 
(2020) results with the updated AlphaFold2 revealed unprecedented 
levels of accuracy across all targets54.

The increasing amount of high-resolution structural data for 
protein/ligand binding, as deposited in the Protein Data Bank, has 
accelerated the use of knowledge-based methods in drug discovery, 
a key application of biomolecular modeling. For example, the crystal 
structure of the main protease of the SARS-CoV-2 virus was solved 
unliganded and in complex with a peptide mimetic inhibitor55, pro-
viding the basis for the development of improved inhibitors using 
knowledge-based methods56. Also related to COVID-19, artificial 
intelligence tools have been used to identify potential drugs against 
SARS-CoV-257.

Of course, the accuracy of knowledge-based methods depends 
on the quality and size of the database available, similarity between 
the underlying database and the systems studied, and the analysis 
methods applied. Even in large databases, some systems are under-
represented. These include, for example, RNAs with higher-order 
junctions58, where few experimental data exist, and intrinsically 
disordered proteins, which are difficult to solve by conventional 
X-ray or NMR techniques. Such problems may be alleviated in 
principle as more data become available. Nonetheless, unbal-
anced databases can produce erroneous results. For example, 
models trained with databases of ligand–protein complexes where 
ligands that bind weakly are underrepresented59,60 can overestimate  
binding affinities.

For some applications, such as deriving force fields by machine 
learning protocols, access to a large and diverse high-quality train-
ing dataset obtained by quantum mechanics calculations is essential 
to obtain reliable results for general applications61. However, there 
are no known criteria of sufficiency. How many molecular descrip-
tors are required to satisfactorily explain ligand binding or chemical 
reactivity? How many large non-coding RNAs are diverse enough to 
represent the universe of RNA folds for these systems?

Combined knowledge and physics-based methods. Fortunately, 
combinations of knowledge and physics-based approaches can 
merge the strengths of each technique, integrating specific molec-
ular information with learned patterns. For instance, maximum 

entropy62 and Bayesian63 approaches integrate simulations with 
experimental data. They generate structural ensembles for the sys-
tems using MD or Monte Carlo simulations and incorporate them 
by imposing restraints to reproduce experimental data.

Protein-folding approaches can be improved by the use of hybrid 
energy functions that combine physics-based with knowledge-
based components. For example, physics-based functions can be 
modified with structural restraints from NMR experiments49, tor-
sion angle correction terms for the backbone or side chains of resi-
dues64 or hydrogen-bonding potentials based on high-resolution 
protein crystal structures65.

In protein structure refinement, combinations of physics-based 
and knowledge-based approaches have shown to be particularly 
successful. For example, in the CASP10 exercise, MD simulations 
from the Shaw66 and Zhang67 groups showed that experimental 
constraints were crucial for refining predicted structures. Pure 
physics-based methods were unsuccessful at correcting non-native 
conformations toward native states. Recently, it was reported 
that refinements with MD simulations of models obtained with 
AlphaFold substantially improve the predicted structures68.

In computer-aided drug design, quantitative structure/property 
relationship (QSPR) models combine experimental and quantum 
mechanical descriptors to improve the prediction of Gibbs free 
energies of solvation69. MD simulations combined with machine 
learning algorithms can help create improved quantitative struc-
ture–activity relationship (QSAR) models70.

In the long run, inferring mechanisms is critical for understand-
ing and addressing complex problems in biophysics. Force fields 
will not likely disappear any time soon, despite the growing success 
of knowledge-based methods. As shown in public citizen projects, 
such as Foldit for protein folding71, combinations of both physics-
based and knowledge-based methods will probably work best. 
Importantly, human intuition and insight is needed to fully merge 
both approaches and properly interpret the computational findings.

The role of algorithms versus hardware
Rigorous and efficient algorithms are essential for the success of any 
biomolecular modeling or simulation. New algorithms are required 
to address problems as they emerge, as well as to utilize new tech-
nologies and hardware developments. Classic examples of algo-
rithms that enhanced the reliability and efficiency of biomolecular 
simulations include the particle-mesh Ewald method for treatment 
of electrostatics72 and symplectic and resonance-free methods for 
long-time integration1,73–75 in MD simulations. Hardware advances, 
in addition, are essential for expanding system size and simulation 
timeframes. The continuing increase in computer power, in combi-
nation with parallel computing, has been crucial in the development 
of the field of biomolecular simulations. Both hardware and soft-
ware will be essential to the continued success of the field.

Algorithms and software advances. Outstanding progress has 
been reported in developing software to enhance sampling, reduce 
computational cost and integrate information from machine learn-
ing and artificial intelligence methods to solve biological problems. 
Algorithms that utilize novel hardware such as graphics process-
ing units (GPUs) and coupled processors have also been impactful. 
Enhanced sampling methods and particle-based methods such as 
Ewald summations have revolutionized how molecular simulations 
are performed and how conformational transitions can be captured, 
for example, to connect experimental endpoints76. MD algorithms 
such as multiple timestep approaches, in contrast, have achieved 
far less impact than hardware innovations, due to a relatively small 
net computational gain. However, their framework may be useful in 
combination with other improvements such as enhanced sampling 
algorithms77 or optimized particle-mesh Ewald algorithms78. The 
complexity and size of the biological systems of interest increases 
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every year and thus continued algorithm development is crucial to 
obtain reliable methods that balance accuracy and performance.

Density functional theory (DFT)79,80, used in quantum mechani-
cal (QM) applications since the 1990s, has become one of the most 
popular QM methods to study biomolecules. DFT has a computa-
tional cost similar to semi-empirical methods but higher accuracy. 
New DFT functionals are continuously being developed to improve 
the description of dispersion and for special applications81. The high 
efficiency of DFT implies that larger and more complex systems 
can be studied, expanding the applications and predictive power of 
electronic structure theory, and promoting collaborations between 
modelers and experimentalists82. This high efficiency has also 
been exploited by MD methods; DFT-based MD simulation meth-
ods, such as Car–Parrinello MD83 and ab initio MD84, are widely 

applied to study electronic processes in biological systems, such as  
chemical reactions85.

Because of the computational cost of QM methods and the 
large size of most biological systems, the development of combined 
quantum mechanics/molecular mechanics (QM/MM) methods was 
fundamental to advance electronic structure calculations of biologi-
cal systems86. In particular, computational enzymology has driven 
the development of these methods since the pioneering work of 
Warshel and Levitt on the reaction mechanism of the lysozyme87. 
By partitioning the system into an electronic active region and  
the rest, which is treated at a molecular mechanical level, com-
putational effort is centered in the part of the system where it is  
needed, and the overall cost is substantially reduced. Nowadays, 
several QM/MM methods differing in the scheme used to compute  
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QM/MM energies, the treatment of the boundary region and the 
QM to MM interactions are applied to study many enzymatic mech-
anisms, metal–protein interactions, photochemical processes and 
redox processes, among others86,88,89. Adaptive QM/MM methods 
that reassign the QM and MM regions on the fly have also been 
developed90. These methods are particularly important to study 
ions in solution or in biomolecules, and chemical reactions in  
explicit solvent.

Recent QM/MM methods employ machine learning (ML) 
potentials in place of MM calculations91. Such QM/ML schemes 
can avoid problems associated with force fields as well as bound-
ary issues between the QM and MM regions. Other recent develop-
ments use neural networks coupled with QM/MM algorithms; the 
neural networks are used to predict potential energy surfaces at an 
ab initio/MM level from semi-empirical/MM calculations92.

Many of the biological processes of interest occur on times-
cales that are not easily accessible by conventional MD simula-
tions. Thus, a variety of enhanced sampling algorithms have been 
developed93,94. These methods improve the sampling efficiency by 
reducing energy barriers and allowing the systems to escape local 
minima in the potential energy surface. Speedups compared with 
conventional MD can be around one order of magnitude or more95. 
Methods based on collective variables such as umbrella sampling96, 
metadynamics97 and steered MD98 have advanced the field with 
applications to ligand binding/unbinding, conformational changes 
of proteins and nucleic acids, free energy profiles along enzymatic 
reactions and ligand unbinding, and protein folding. Methods that 
do not require definition of specific collective variables or reaction 
coordinates, such as replica exchange MD99 and accelerated MD100 
have shown to be particularly successful when defining a collective 
variable is difficult, for example, when exploring transition path-
ways and intermediate states. Markov state models (MSMs) can 
help describe pathways between different relevant metastable states 
identified by experiments or MD. For example, when studying the 
folding of a dimeric protein101, an MSM of the metastable states on 
the free-energy surface has identified the states that describe the 
folding process, as well as the specific inter-residue interactions that 
can lead to kinetic traps. Physics-based protein folding has benefited 
from the application of MSMs that combine many short indepen-
dent trajectories102,103. Related thermodynamic integration104 and 
free-energy perturbation105 methods, which calculate free-energy 
differences between initial and final states, have also helped deter-
mine protein/ligand binding constants, membrane/water partition 
coefficients, pKa values and folding free energies106,107 to connect 
simulations to experimental measurements.

Enhanced sampling techniques are now being combined with 
machine learning to improve the selection of collective variables108 
and to develop new methods109,110. Clearly, artificial intelligence 
and ML algorithms are changing the way we do molecular model-
ing. Coupled with the growth of data, GPU-accelerated scientific 
computing and physics-based techniques, these algorithms are 
revolutionizing the field. Since the pioneering work of Behler and 
Parrinello on the use of neural networks to represent DFT poten-
tial energy surfaces and thus to describe chemical processes111, ML 
has been applied to design all-atom and coarse-grained force fields, 
analyze MD simulations, develop enhanced sampling techniques 
and construct MSMs, among others112. As discussed above, Google’s 
AlphaFold performance in CASP13 and CASP14 showed how 
impactful these kinds of algorithms can be for predicting protein 
structure53,54. Artificial intelligence platforms for drug discovery have 
also led to clinical trials for COVID-19 treatments in record times57.

Multiscale models. A special case of algorithms that has potential 
to revolutionize the field involves multiscale models. Crucial for 
bridging the gap between experimental and computational time-
frames, such models increase spatial and temporal resolution by use 

of coarse graining, interpolation and other ways to connect all the 
information on different levels.

The 2013 Nobel Prize in Chemistry that recognized Karplus, 
Levitt and Warshel for their work on developing multiscale mod-
els has underscored the importance of these models. In the 1970s, 
bridging molecular mechanics with quantum mechanics defined 
indeed a new way of simulating molecular systems113. The first 
hybrid model of this type by Warshel and Karplus113 was initially 
intended to study chemical properties and reactions of planar 
molecules but was later extended to study enzymatic reactions87. 
Today’s models are numerous and varied. While useful in practice,  
they are generally tailored to specific systems and lack a rigorous 
theoretical framework.

For example, numerous coarse-grained protein models have 
been developed and applied to protein dynamics, folding and flex-
ibility, protein structure prediction, protein interactions and mem-
brane proteins, as recently reviewed114.

Coarse-grained models have also been developed to study 
nucleic acids. Possibly due to small volumes of structural data, high 
charge density and wide structural diversity, they have progressed 
somewhat slower than for proteins, especially in the case of RNA.

DNA coarse-grained models allow us to study, in reasonable 
time, large DNA systems that could not be approached by all-
atom models. The reduction in the degrees of freedom achieved by 
coarse-grained models has allowed the study of thousands of base 
pair systems in scales of microseconds to milliseconds. Crucial 
studies include self-assemblies of large DNA molecules, the denatu-
ralization process, the hybridization process important for many 
biological functions, the topology of DNA mini-circles and the 
sequence-dependence of single-stranded DNA structures29,115,116.

The flexibility of RNAs and the huge spectrum of possible con-
formations make their modeling challenging, and numerous coarse-
grained models that differ in the number of beads per nucleotide 
and interactions included in the model and their treatment have 
been developed117,118. A different coarse-grained approach using 
two-dimensional and three-dimensional graphs to represent RNA 
structure has also proven useful to analyze and design novel RNAs, 
including the SARS-CoV-2 frameshifting element119 (Fig. 3b).

Coarse-grained models have also been applied to biomembranes, 
systems of thousands of lipids that undergo large-scale transitions 
in the microsecond-to-millisecond regime120–122. Membrane protein 
dynamics, virion capsid assembly, lipid recognition by proteins and 
many remodeling processes have been successfully captured in such 
coarse-grained applications121.

Finally, to study DNA complexed with proteins, such as in the 
context of chromatin fibers, multiscale approaches are essential, 
as recently reviewed123,124. These approaches derive the chroma-
tin model from the atomistic DNA, nucleosomes and linker his-
tones. Successful models by the groups of the late Langowski41, 
Wedemann125, Nordenskiöld126, Olson127, Spakowitz128, de Pablo129 
and ours40,123 have been applied to understand the mechanisms 
that regulate chromatin compaction and function. For example, 
our recent three-dimensional folding of the HOXC gene clus-
ter (~55 kbp) at nucleosome resolution by mesoscale modeling130 
revealed how epigenetic factors act together to regulate chromatin 
folding (Fig. 3c). The next challenge for these types of model is to 
merge the kilobase to megabase levels of understanding chromatin 
while retaining a basic dependency on the physical parameters that 
dictate fiber conformations.

Multiscale models are as much art as science, as they require 
subjective decisions on what parts to approximate and what parts 
to resolve. Yet much information guides these models, and impor-
tant biological problems serve as motivators. Overall, innovative 
advances in both algorithms and hardware, especially in multiscale 
modeling, will be pivotal for the progress of the biological sciences 
in the coming years.
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Hardware advances. The computational biology and chemistry 
communities have utilized hardware exceptionally well. This is evi-
dent from the expectation curve in Fig. 1 and from the computer 
technology plot in Fig. 2. We see that hardware innovations have 
propelled the field of biomolecular simulations forward by around 
six orders of magnitude over three decades as reflected by simula-
tion length and size of biomolecular systems.

In the first decade of the twenty-first century, hardware innova-
tions such as the supercomputers Anton and Blue Waters propelled 
the field by expanding the limits of both system size and simulation 
time that is possible. Today, nanosecond simulations of a 160-mil-
lion-atom influenza virus36 or the 1-billion-atom GATA4 gene39 
have become possible.

At the same time, the introduction of GPUs for biomolecular 
simulations by NVIDIA broke new grounds. GPUs are specialized 
electronic circuits designed to rapidly manipulate and alter memory  

to accelerate computations. Such GPUs contain hundreds of arith-
metic units and possess a high degree of parallelism, allowing 
performance levels tens or hundreds of times higher than a single 
central processing unit (CPU) core with tailored software131.

The acceleration of MD simulations by GPU computing and 
supercomputers substantially reduced the gap between experi-
mental and theoretical scales. For example, as mentioned above, 
the world’s second-fastest supercomputer—Summit from the Oak 
Ridge National Laboratory, with more than 27,000 NVIDIA GPUs 
and 9,000 IBM Power9 CPUs—was used to explore SARS-CoV-2 
virus inhibitors among more than 8,000 compounds42. Such simula-
tions were conducted in just a few days, with 77 compound candi-
dates found. GPU-based algorithms for free-energy calculations can 
achieve a speedup of 200 compared with CPU-based methods132. 
QM/MM GPU-based methods have also accelerated calculations 
focused on enzymatic mechanisms. For example, GPU-based DFT 
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Fig. 4 | Key developments in algorithms, software and hardware that advanced the field. 1970s: simulations of <1,000-atom systems and few 
picoseconds in vacuo were possible due to the development of digital computers and algorithms to treat long-range Coulomb interactions. The image 
depicts the structure of the small protein BPTI that was simulated for 8.8 ps without hydrogen atoms and with four water molecules158. 1980s: simulations 
that considered solvent effects became possible, and algorithms such as SHAKE, to constrain covalent bonds involving hydrogen atoms, allowed the  
study of systems with explicit hydrogens. The image depicts the 125 ps simulation of the 12 bp DNA in complex with the lac repressor protein159 in  
aqueous solution using the simple three-point charge water model. 1990s: QM/MM methods can perform geometry optimizations, MD and Monte  
Carlo simulations160. The image depicts the acetyl-CoA enolization mechanism by the citrate synthase enzyme studied with AM1/CHARMM. 2000s: 
GPU-based MD simulations, specialized supercomputers such as Anton, shared resources such as Folding@home, enhanced sampling algorithms and 
Markov state models (MSMs) all contributed to advance protein folding161. The image depicts the long 100 μs simulation of the Fip35 folding conducted in 
Anton (red) compared with the X-ray structure (blue). 2010s: all-atom and coarse-grained MD simulations of viruses performed on supercomputers such 
as Blue Waters became common162. The image depicts the MD simulation of the all-atom HIV capsid using the MDFF method that uses cryo-electron 
microscopy data to guide simulations. 2020s: physical whole-cell models are being developed to fully understand how biomolecules behave inside cells 
and to study interactions between them, for example, within viruses and cells. The image depicts the model of the interaction between the spike protein 
in the SARS-CoV-2 surface and the ACE2 receptor on a human cell surface being developed in the Amaro Lab. From left to right, images adapted with 
permission from: second image, ref. 159, Wiley; third image, ref. 163, Wiley; fourth image, ref. 150, AAAS; fifth image, ref. 164, Springer Nature Ltd; sixth image, 
https://amarolab.ucsd.edu/news.php, Amaro Lab.
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in the framework of hybrid QM/MM calculations such as ONIOM133 
or additive QM/MM134 realize speedup factors of 20 to 30 compared 
with CPU-based calculations. The Folding@home distributed com-
puting project, dedicated to understanding the role of protein fold-
ing in several diseases, is conducting most calculations on GPUs by 
using simulation packages adapted to this architecture135. Recently, 
over a million citizen scientists helped solve COVID-19 challenges; 
they combined ~280,000 GPUs, reaching the exascale and gener-
ating more than 0.1 s of simulation136. These simulations helped 
understand how the SARS-CoV-2 virus spike surface protein 
attaches to the receptors in human cells. MD software adapted to 
GPU-accelerated architectures is also being used to perform enor-
mous cell-scale simulations137, important to mimic realistic cellular 
environments and to study viral and bacterial infections.

Cloud-based computing is surging as a viable alternative to 
supercomputers, providing researchers with remote high-perfor-
mance computing platforms for large-scale simulations, analysis 
and visualization. Acquisition and maintenance of such hardware is 
not affordable for individual research groups, but feasible for insti-
tutions and companies. For example, Google’s Exacycle has been 
used to conduct millisecond simulations of the G-protein-coupled 
receptor β2AR that revealed its activation pathway, important for 
the design of drugs to treat heart diseases138. Recently, in an unprece-
dented study, the Google Cloud Platform and Google Cloud Storage 
were combined to screen around 1 billion compounds against 15 
SARS-CoV-2 proteins and 2 human proteins involved in the infec-
tion139 (Fig. 3d). A high-performance version of the popular visu-
alization program VMD has been implemented on the Amazon 
cloud140, as well as the MD toolkit QwikMD141 and the molecular 
dynamics flexible fitting (MDFF) method for structure refinement 
from cryo-electron microscopy densities142. These efforts allow sci-
entists worldwide to access powerful computational equipment and 
software packages in a cost-effective way.

Overall, tailored computers for molecular simulations, such as 
Anton, can accelerate the calculation of computationally expensive 
interactions with specialized software143, while general-purpose 
supercomputers or cloud computing that parallelize MD calcula-
tions across multiple processors with thousands of GPUs or CPUs 
can accelerate performance (for example, trillions of calculations 
per second) for large systems36,39.

Although hardware advances have overwhelmed software 
advances, both are clearly needed for optimal performance. 
Hardware bottlenecks will inevitably emerge as computer storage 
limits are reached. Yet, whether or not Moore’s law will continue to 
be realized11, software advances will always be important. Certainly, 
engineers and mathematicians will not be out of jobs.

Figure 4 summarizes key software, hardware and algorithm 
developments that helped breakthrough studies.

Conclusions and outlook
Technology has driven many advances that affect our everyday life, 
from cellphones and personal medical devices, to solar energy and 
coping in times of physical isolation during the current COVID-
19 pandemic. Biomolecular modelers have consistently leveraged 
technology to solve important practical problems efficiently and 
will undoubtedly continue to do so. Machine learning and other 
data science approaches are now offering new tools for discovery 
in numerous fields. These tools for predicting structures, dynamics 
and functions of biomolecules can be combined with physics-based 
approaches not only to find solutions but also to understand asso-
ciated mechanisms. Algorithms such as MSMs, neural networks, 
multiscale modeling, enhanced conformational sampling and com-
parative modeling can be leveraged as never before, especially in 
combination with these data-science approaches.

We expect that force-field based methods will remain essential 
for the understanding of mechanisms of biomolecular systems, 

but knowledge-based methods will certainly gain momentum. 
Although the recent breathtaking results from AlphaFold254 might 
tempt us to believe that the physics-based era is over, the range of 
complex problems beyond protein folding is unlikely to be easily 
solved by knowledge-based methods alone. Novel computing plat-
forms will also play an important role in the future of biomolecu-
lar simulations. As quantum computing, neuromorphic computing 
and other architectures enter the arena, we can be sure that they 
will be exploited avidly by the biomolecular community. Despite the 
extraordinary technical impact of computers on our field and the 
incredible potential of artificial intelligence techniques to address 
many scientific problems, human intuition and intelligence will 
continue to be instrumental for developing ideas and pursuing new 
research avenues. After all, such human talent is responsible for 
artificial intelligence design and implementation in the first place 
and will probably continue to do so.

Finally, gone are the days when modelers worked in isolation. 
Whether on Zoom or sharing a bench, teams of multidisciplinary 
scientists (and likely automated machines too in the future) are 
collaborating to address essential problems of life, from energy to 
vaccines. Despite some bumps, exponential growth appears a real-
ity in the near future, and the field of biomolecular modeling and 
simulation will undoubtedly continue to incorporate, innovate and 
digitize the inner workings of biological systems to solve the secrets 
of life and to develop solutions for treating human disease, improv-
ing global health and enhancing our environment.
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