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Back-to-back high category atmospheric
river landfalls occur more often on the
west coast of the United States

Check for updates

Yang Zhou 1 , Michael Wehner 2 & William Collins 1,3

The catastrophic December 2022-January 2023 nine atmospheric rivers in California underscore the
urgent need to better understand such high-risk weather extremes. Here we applied a machine
learning clustering tool to understand the activity of atmospheric river clusters. Reanalysis results
show that clusters with high density, that is the time fraction under atmospheric river conditions within
a cluster, exhibit more frequent high-category atmospheric rivers, alongside an increased likelihood
for extreme precipitation and severe land surface responses. The key circulation patterns of
atmospheric river clusters are primarily attributed to subseasonal variability. Furthermore, the
occurrence and density of atmospheric river clusters are modulated by the daily variability of the
geopotential height field. Climate model projections suggest that atmospheric river clusters with
higher density and higher categories will be more frequent as warming level increases. Our findings
emphasize the important role of atmospheric river clusters in the development of climate adaptation
and resilience strategies.

From late December 2022 to mid-January 2023, California experienced a
series of nine atmospheric rivers (ARs)making landfall. This compounding
weather event led to devastating consequences, including severe flooding
and landslides, widespread power outages, and at least 22 fatalities1. An “AR
cluster”, i.e., spatiotemporally compounding ARs, is defined asmultiple AR
landfalls over a region within a short period. Past studies have revealed that
the precondition of the land surface, including antecedent soil moisture and
existing snowpack, can lead to a higher runoff-to-precipitation ratio during
ARs2–5. When an AR cluster occurs, there may not be sufficient time for the
soil moisture and other land properties to recover between events, which
potentially precondition the soil for higher flood risk. However, there have
been only a few studies that focus on understanding the activity and pro-
jection of AR clusters. Fish, Wilson6 defined the term “AR families” for the
length of time in which multiple ARs make landfall and analyzed the
associated semi-stationary synoptic patterns, which are partiallymodulated
by ElNino SouthernOscillation7. A recent study focuses on the subseasonal
clustering of ARs over the western U.S. and demonstrates the regional
difference in cluster counts8. These studies highlight the AR cluster’s con-
tribution to coastal extreme precipitation. Although numerous previous
studies indicate that ARs are projected to be more intense in the warmer
climate9–11, limited research has focused specifically on the future changes of
temporal clustering ARs. It has been shown that the intensity and duration

of consecutive ARs increase with the increasing temperature12. The more
frequent back-to-back ARs result in unprecedented monthly precipitation
total by end century10. Focusing on the 2017 Oroville Dam crisis, a study
shows that the precipitation associated with the two consecutive ARs would
increase by up to 21-59% under the late-21st century scenario13. That being
noted, limitedwork suggests that precipitation fromARs associated with an
extratropical cyclone respond strongly to global warming while those
without an extratropical cyclone do not14.

Motivated by the significant impacts of the 2023 nine-AR series15, our
research aims to advance the current understanding of AR clusters by
evaluating variations in their characteristics, circulation patterns, and
impact levels. We hypothesize that AR clusters have diverse characteristics
and landfall impacts, influenced by variations in landfall duration, spacing
between landfall events, and event intensity. Here, we build on previous
work by incorporating unique analysis techniques such as cluster density
and future projections. In this work, we utilize a data-driven unsupervised
machine learning algorithm to identify landfalling AR clusters over theU.S.
West Coast. We compare AR clusters with different densities of landfall
occurrences and find that AR clusters have substantial impacts when
landfalls are densely distributed. We find that high-category AR events are
moreprone tooccur as back-to-backARs,with an associatedhighflood risk.
We identify the key circulation pattern associated with AR cluster activity.
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Moreover, thedensity ofARclusters is projected to slightly increase in future
climates, along with increasing AR category10. This study underscores the
importance of understanding the characteristics and variability of AR
clusters to enhance the adaptation and preparedness for flood risk and to
restore resilience for both natural and built environments.

Results
Characteristics of AR clusters
One of the challenges in AR cluster analysis is the identification of AR
clusters. Past studies either used a count-based approach to combine indi-
vidual events that occurwithin afixedperiod6,7 or appliedmoving average to
identify successive periods of integrated vapor transport12. However, AR
occurrence within a fixed period may emphasize event occurrence but
overlook the AR landfall duration which is an important factor for soil
precondition. Also, stronger ARs possess higher weights in the moving-
average process. Besides, the aggregation period for AR clusters is regional-
dependent8, which means that the windows for a cluster to happen greater
than random chance varies by location.We applied a data-driven clustering
algorithm called “Mean Shift” to identifyAR clusters that consist of single or
multiple AR landfalls (details in Methods). This algorithm automatically
identifies temporal clusters from the generated time series of AR landfall
flags, which is a great tool to help us investigate AR clusters’ variability and
associated circulation patterns.

WemarkclusterswithonlyoneAR landfall as “solitary clusters”, which
means the spacing between this event and other landfalls is so large that the

algorithm identifies itself as a cluster. The identifiedAR clusters in the 2022-
2023 cool season are shownas an example (Fig. 1a). The 2023nineAR series
is grouped into two clusters with one cluster in late December 2022 con-
taining a Category 5 and a Category 3 AR (AR scaling based on Ralph,
Rutz16), and one cluster covering early January 2023 with seven ARs with
categories fromWeak to Category 3.

The AR clusters contain “AR days”, the days within an AR landfall,
and “non-AR days”, the days between storms.We define the density of an
AR cluster by, for each cluster, the ratio of the number of AR days and the
total number of cluster days. For solitary clusters, the cluster density will
be 1. Excluding solitary clusters, we divide theAR clusters into two groups
based on the 50th percentile of cluster density: dense clusters (≥ 50th

percentile) and sparse clusters (<50th percentile). The dense clusters are
more active from October to January, with the peak occurrence in
November (Supplementary Fig. 1a). Sparse clusters are active throughout
the season with a slight decrease after February. The solitary clusters
mostly appear after January. The temporal distribution of AR activity
agrees with previous findings17. During the boreal cold season, dense
clusters show higher AR frequency (calculated as percent of AR condition
time steps) over theU.S.West Coast compared to sparse clusters, which is
likely due to fewer non-AR time steps included in the dense clusters.
Especially, the AR frequency in dense clusters is 100-150% higher than
that in sparse clusters along the U.S. West Coast between 35° and 50°N.
Also, ARs in dense clusters extend further inland and reach approximately
117°W (Supplementary Fig. 1b, c).

Fig. 1 | Identification of atmospheric river (AR) clusters and AR cluster char-
acteristics based on cluster density. a An example that shows the identification of
AR clusters from October 2022 to February 2023 calculated from ERA5 reanalysis
data. Please note that the focused period in other years is from October to April.
Y-axis denotes the category of the landfalling ARs. The black dots/lines mark both
the time steps and the scaling of ARs making landfall over the U.S. West Coast. The
filled background represents the time periods (with respect to the x-axis) identified
as AR clusters. The filling color represents the density of an AR cluster, i.e., the
percentage of AR conditions within a cluster. The comparisons based on cluster
density are shown as boxplots for (b) cluster counts (unit: number per season) and
(c) averaged AR category within a cluster. The red dashed line denotes the partition

of dense clusters and sparse clusters based on the 50th percentile of cluster density.
For (b), the vertical line denote the 95% confidence interval. For (c), the center line
marks the median value of the distribution. The two box ends represent the first and
third quartiles of data. The whiskers extend from the box to the 5th and 95th
percentile of data. Spatial maps showing the fraction of AR-related extreme pre-
cipitation days to total extreme precipitation days of (d) dense clusters and (e) sparse
clusters. Extreme precipitation is defined as grid-point precipitation exceeding the
98th percentile of the record of 44 cool seasons. We extend the upper boundary to
55°N because part of British Columbia is also influenced byAR clusters over the U.S.
West Coast.
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The statistics ofAR clusters vary by cluster densities. Excluding solitary
events, the most frequent occurrence belongs to clusters with a density
between 0.2 and 0.4. The occurrence frequency gradually decreases as
density increases (Fig. 1b). Similarly, the size of clusters, which is defined as
the time span of a cluster, decreases with density (Supplementary Fig. 2a).
The size of solitary clusters represents the actual landfall duration of single
events. Despite that sparse clusters last significantly longer than dense
clusters, they both on average include 3–4 AR landfalls in a cluster (Sup-
plementary Fig. 2b). The similarity in AR counts suggests that the cluster
density is mainly attributed to the spacing between landfall events.

The average AR category of a cluster increases with increasing density
(Fig. 1c). Higher-category ARs are more likely to occur closely packed in
time. Along the U.S. West Coast, about 20-50% of the top 2% precipitation
days happen during a dense cluster, and 10–20% of extreme precipitation
days are in sparse clusters (Fig. 1d, e). Moreover, the mean precipitation
intensity of dense clusters is significantly higher than that of sparse clusters
(Supplementary Fig. 3). It is worth noting thatmore than 60-65% of the AR
precipitationover theU.S.WestCoast is attributed to denseARclusters (not
shown). Specifically, over Oregon and Washington, the AR precipitation
intensity in dense clusters is 120–140% as strong as that for sparse clusters
(Supplementary Fig. 3c). A similar pattern of AR clusters’ contribution to
extreme precipitation is shown with PRISM gridded observation (Supple-
mentary Fig. 4).

The large distinction in AR precipitation by cluster densities results in
variations in the associated landfall impacts (Supplementary Fig. 5). Both
dense and sparse clusters can lead to near saturation of soil moisture in
mountain ranges.Generally, sparse clusters induce a 10–40% increase in soil
moisture saturation degree with a maximum over northern California, and

the dense clusters bring similar changes but in the range of a 20-50%
increase. We show that runoff related to AR clusters contributes about 60%
to total runoff along theU.S. coastal region (Supplementary Fig. 5k, l).While
both cluster types increase runoff over the U.S. West Coast, the increased
runoff by dense clusters is nearly 100% more than that by sparse clusters
over northern California, and 150-300% more over the Cascade Range
(Supplementary Fig. 5h–j).

Interaction between circulation and AR clusters
Previous studies have demonstrated that an intensifiedAleutian Low boosts
more landfallingARs over theU.S.West Coast18–20. Our results indicate that
such a connection varies by cluster density. Based on the composites of the
500 hPa geopotential height anomaly (Z500), there is a clear distinction in
the circulation patterns associatedwith dense and sparse clusters (Fig. 2a-c).
The dense clusters are linked to a Z500 patternwith tri-pole height anomaly
centers over the North Pacific with a northwest-southeast orientation. The
strong negative height anomaly system over the northeastern Pacific incites
cyclonic flow. The southeast branch of the cyclonic flow has strong wind
speed with a poleward direction, which is favorable for bringing moisture
from the subtropics—the strong wind speed and rich moisture result in
higher AR categories and greater landfall impacts. The Z500 pattern asso-
ciated with sparse clusters shows a south-northward dipole pattern
accompanied by a zonally-orientated eastward flow over the subtropical
northeasternPacific,whichdemonstrates spatial similaritywith the6thEOF
pattern shown by Guirguis, Gershunov20. Our Z500 patterns also show
agreement with Fish, Done7 who applied k-means cluster analysis on Z500
associatedwith temporal clusteringARs. The Z500 pattern of dense clusters
shows similarity to their “meridional patterns” which also contain positive

Fig. 2 | Large-scale circulation patterns associated with atmospheric river (AR)
cluster. Composite maps of daily anomalous 500 hPa geopotential height (Z500,
unit: m) and daily anomalous 850 hPa wind (unit: m s−1) during (a) dense clusters,
(b) sparse clusters, (c) the difference between dense and sparse clusters. The mer-
idional mean of Z500 anomalies between 20°N–70°N for (d) dense clusters and (e)
sparse clusters. The Z500 anomalies are decomposed into three temporal

frequencies: synoptic (<20 days), sub-seasonal (20–100 days), and low-frequency
(>100 days) using Lanczos filtering. Results in (a–e) are calculated using ERA5
reanalysis. Model comparison: Taylor diagrams showing the comparison of Z500
anomalous pattern in ERA5 reanalysis against models including CMIP5, CMIP6,
and CESM2-LENS for (f) dense clusters and (g) sparse clusters.
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Z500 anomaly upstream. The Z500 of sparse clusters is closer to their “zonal
patterns” as the negative Z500 anomaly extends zonally7. We validate the
key circulation pattern for dense and sparse clusters withmodel simulations
(Fig. 2f-g). In general, the pattern of sparse clusters has a higher spatial
correlation coefficient than that of dense clusters. One possible explanation
is that the height pattern associated with dense clusters hasmore variability.
Another possibility is that sparse clusters containmore non-AR days which
canpotentially smoothout the circulation signal associatedwithARactivity.

Given thatARshave close connections to climate variability of different
time scales18,21,22, we decompose the Z500 field into three time scales using
Lanczos filtering23: synoptic (<20 days), subseasonal (20–100 days), and
low-frequency (>100 days), to illustrate the dominant temporal frequency
that modulates AR cluster activity. Results show that the subseasonal var-
iation is the major contributor for both dense and sparse clusters, which
explains about 40–50% of the total anomaly (Fig. 2d-e). The 2023 nine AR
series, which are labeled as dense clusters, occurred during a decaying La
Niña season. The Z500 of the 2023 nine AR series displays a La Niña
teleconnection pattern with a weakened Aleutian Low and a strong positive
height anomaly over the North Pacific (Supplementary Fig. 6a). Even
though theLaNiña teleconnectionpattern generally discouragesARactivity
over the U.S.West Coast17, the Z500 pattern during the 2023 nine AR series
shows a statistically significant resemblance to the pattern for dense clusters
when the low-frequency signal is removed (Supplementary Fig. 6b). A
recent study focusedon the 2023nineAR series indicates that an activeMJO
was in phase when the AR cluster occurred15.

We perform the Empirical Orthogonal Function (EOF) analysis on the
daily Z500 field over the North Pacific between 20°N and 80°N to under-
stand how AR clusters interact with circulation variability (Fig. 3a–c). The
first EOF mode (EOF1) is significantly correlated, both temporally and

spatially with the Pacific-North America (PNA) pattern. The second EOF
mode (EOF2) consists of tri-pole pressure centers over the North Pacific
Ocean and North America, which shows a significant temporal correlation
with climate variabilities includingWesternPacificOscillation24 andEastern
Pacific Oscillation25. The EOF2 is similar to the key circulation pattern for
sparse clusters (spatial correlation of 0.74), especially for the negative
pressure center near Alaska. The third EOF mode (EOF3) shows tri-pole
pressure centers over the North Pacific with a southwest-northeast orien-
tation, almost identical to the key Z500 pattern for dense clusters (spatial
correlation coefficient of 0.79). We do not include the fourth mode of EOF
in the discussion because of its relatively lower correlation with AR clusters.

We then examine the connection between Z500 principal components
(PCs) and AR clusters (Fig. 3d-f). Note that solitary clusters are excluded
from the calculation. For PC1, higher cluster density appears for positive
PC1s, meaning that dense AR clusters are more likely to coincide with a
positive PNApattern. This is consistent with previous analysis showing that
increasedAR frequency over thePacificNorthwest during positive PNA26,27.
Meanwhile, higher cluster density corresponds to PC2 values that are
smaller than −1. PC3 has the highest predictive power: cluster density
increases as the PC3 value increases. Consistency is shown in the temporal
correlation between AR cluster indices and PCs (Fig. 3g). The AR cluster
index is a daily series with “0” and “1” flags showing whether a day is within
an AR cluster. The AR cluster indices are generated with total AR cluster,
dense AR cluster only, and sparse AR cluster only. The PC3 shows the
highest temporal correlation with AR cluster indices which is mainly con-
tributed by dense clusters. PC1 shows a positive correlation with AR
clusters, which is also mainly attributed to dense clusters. Besides, the
occurrence of positive PC2 is more coincidental with the occurrence of
sparse clusters.

Fig. 3 | Connection between atmospheric river (AR) clusters and the daily
variability of large-scale circulation. a–c The first three EOF modes of daily
anomalous 500 hPa geopotential height were retrieved from ERA5 reanalysis. The
percentage of variance explained is included in the subtitles. d–f Boxplots show how
cluster density varies by principal components (PCs). The x-axis represents the
normalized PC values, except for the last tick showing the reference distribution of
AR cluster density. The center line marks the median value of the distribution. The
two box ends represent the first and third quartile of data. The whiskers extend from
the box to the 5th and 95th percentile of data. The distribution that is 90%

significantly different from the reference (p value smaller than 0.1) is marked with
thickened lines. d–f are calculated using ERA5 reanalysis. g Model comparison:
correlation coefficients between the first three PCs and cluster indices of all AR
clusters, dense clusters (50th percentile of total density) only, and sparse clusters
(<50th percentile of total density) only. The AR cluster index is calculated as a binary
time series, where a time step ismarked as 1 if it is in anARcluster, and it ismasked as
0 otherwise. The colored dots mark the value from ERA5. The error bar shows the
ensemble range of CESM2 and the colored stars are the mean of correlation coef-
ficients from CMIP5/6 models.
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Mostmodels showhigh consistencywith ERA5 and capture the first
three modes of variability. Although the agreement decreases for the
second and third modes, the spatial correlations are mostly about 0.8
(Supplementary Fig. 7). In particular, models show higher agreement in
reproducing the connection between EOF3 and AR clusters than the
Z500 composite for dense clusters (Fig. 2f), suggesting that model bias
may hinder the simulation of circulation patterns associated with dense
cluster activity, but the connection between Z500 variability and AR
clusters are well captured. For the temporal correlations between PCs
and AR cluster indices, the models generally perform well. The corre-
lations of ERA5 lie within the ensemble spread of CESM2-LENS. The
multimodel mean from CMIP5 and CMIP6 models demonstrate con-
sensus with reanalysis, especially for PC3.

AR clusters in warming climate
We show how the Z500 variability will change in future climates by pro-
jecting the CESM2-LENS historical EOFs onto its future simulations to
generate pseudo-PCs that describe the occurrence frequency of EOF phases
in the future climate. The historical daily mean is removed in future
simulations before the projection. The pseudo-PCs are normalized using
historical PC values to reflect the changes to historical simulations. We
selected CESM2-LENS because the data is available for all warming levels,
and contains 30 ensemble members for addressing uncertainty. Besides,
CESM2-LENS shows the best skill in reproducing the patterns associated
with cluster density (Fig. 2d–f) and Z500 EOF patterns (Supplementary
Fig. 7). As the warming level increases, the averaged pseudo-PC1

continuously decreases, indicating that the opposite phase of EOF1 will
emerge more often with increasing temperature. On the contrary, the
pseudo-PC2 uniformly increases with increasing warming levels, which
represents more frequent positive phases of the EOF2 in the future. This is
consistent with previous studies that demonstrated a deepening and north-
ward shifting of the Aleutian Low in future climate28,29. As for EOF3, the
most relevant mode for dense AR clusters, no significant trend is displayed.
The relation between PC3 and cluster density is reproduced in historical
simulations and maintained in warming climates (Fig. 4b). However, the
connection between pseudo-PC1/2 and AR clusters weakens as the shifting
phase of the first and second EOF modes in the future climate (Supple-
mentary Figs. 8, 9).

Both the thermodynamical (moisture) and dynamical (wind) effects
are important for AR changes in future climate, to extents that vary sea-
sonally and geographically30–32. While the increasing background moisture
may increase the intensity of AR events via the thermodynamical process,
changes in thedynamical processmay reduce the frequencyofARactivity in
some regions including theU.S.WestCoast33. Previous literature shows that
the precipitation efficiency of ARs may be reduced by the undermining
surface wind due to the weakening of the equator-to-pole temperature
gradient in thewarming climate34,35. It is worth noting that theARdetection
algorithmwe applied here uses a relative threshold to capture the dynamical
structure of ARs, and therefore not sensitive to the changes in the ther-
modynamical field. Although the restrictive AR detection algorithm can
better capture the AR’s connection to the dynamical field, one shortcoming
emerges in the future projection assessment: the changes counts of ARs and

Fig. 4 | Changes of atmospheric river (AR) clusters in the warming climates.
aAveraged pseudo-PCs of CESM2-LENS SSP370 simulations on different warming
levels. We show the first threemodes of pseudo-PCs. The pseudo-PCs are calculated
by projecting the EOFs of 500 hPa geopotential height (Z500) from CESM2-LENS
historical simulation onto the SSP370 Z500 fields. For each warming level, five years
are selected. The pseudo-PCs are first normalized based on historical PCs and then
averaged through the 5 years. b Boxplot that shows how cluster density varies by the
value of PC3 on different warming levels. The x-axis shows the normalized PC3
values except for the last tick which is the reference distribution of total cluster

density. The distribution that, on the same warming level, is 90% significantly dif-
ferent from the reference (p value smaller than 0.1) is marked with thickened lines.
Similar boxplots as (b) but are for (c) cluster number per season and (d) averagedAR
category based on different groups of cluster density. In the boxplots, the center line
marks the median value of the distribution. The two box ends represent the first and
third quartile of data. The whiskers extend from the box to the 5th and 95th per-
centile of data. For each AR density group, the distribution that is 90% significantly
different from the historical distribution (p value smaller than 0.1) is marked with a
thickened line.
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clusters remain small because of the increasing IVT threshold for AR with
increasing warming levels (Supplementary Fig. 10d). The distribution of
AR-related IVT uniformly increases (by 2–7%) with warming levels (Sup-
plementary Fig. 10d), which means that moderate ARs in the current cli-
mate may not be identified as ARs in the future climate. With that, future
ARshave higher ranks in theARcategory due to the increased IVT (Fig. 4d).
There is no consistent change in the spacing and the landfall durations at
warming levels (Supplementary Fig. 10b, c). Future changes in AR cluster
countsdifferbydensity (Fig. 4c).While thenumberof clusterswith adensity
below 0.6 decreases as temperature increases, a significant increase in
clusters with a density over 0.6 is shown at +4 °C level.

Discussion
The recent disastrous nine AR series that hit California illuminates the
urgency to advance the understanding of AR clusters so that prevention
actions can be planned as such events could potentially have higher flood
risks. In the current study, we show that the impacts of AR clusters vary by
cluster density, i.e., the fraction of AR condition in a cluster. We investigate
the connection betweenAR clusters and large-scale circulation patterns and
show that the circulation variability canmodulate the density ofARclusters.
WeanalyzehowARclusters and their connection to circulationswill change
under warming climates. While the linkage of AR clusters to the first two
dominant modes of 500 hPa geopotential height variability weakens with
the warming climate, the third mode, which has the highest connection to
high-density clusters, maintains.

The future changes in the connection between Z500 PCs and AR
clusters reveal that as the warming level increases, the relation between
predictor and predictand in the current climate may change, which may
result in enhanced or diminished predictive power because the variability of
the predictor also changes with warming climates. Therefore, when asses-
sing the prediction of a feature in the future climate, it is also important to
examine the future behavior of its predictors to achieve a comprehensive
analysis of prediction skills.

One source of uncertainty in investigating AR cluster character-
istics is cluster identification. The cluster identification results may
change by a small fraction if a different bandwidth is chosen. For
example, the start and end date of a cluster may change, or one landfall
could be included in another cluster. The main purpose of the current
study is to understand the characteristics of AR clusters and their
interaction with large-scale circulation, instead of developing a techni-
que to accurately lock the start and end day of AR clusters. Besides, we
conducted sensitivity tests on cluster identification with different
bandwidths, we reached consistent results so that the conclusions stand
(not shown). Additionally, we compared the distribution of AR density
between Mean Shift and other methods such as fixed window which
divides the time into equal pieces of period, and moving window mean
(Supplementary Fig. 11). Results suggested Mean Shift outperforms the
other two by showing a higher range of cluster density (i.e., fewer non-
AR days in a cluster), meaning that Mean Shift identifies clusters that
contain the temporally-packed back-to-back ARs.

Another source of uncertainty is the detection uncertainty36, which
is addressed by including two other detection algorithms that are either
permissive27 or using an absolute threshold37. We find higher agreement
among algorithms for higher-density clusters (Supplementary Figs. 12,
13). In particular, the Z500 patterns for dense clusters are similar among
detection algorithms. We speculate that the selected sample size differs
significantly among detection algorithms. The fraction of time stepswith
ARs detected by permissive algorithms is 2–3.5 times as much as a
restrictive algorithm (more in Methods). The fraction continues to
increase with warming levels as more time steps are identified when an
absolute threshold is applied. A high fraction of time steps within AR
clusters can potentially be problematic because the cluster character-
istics and the associated key patterns will reflect the total mean, and the
difference between dense and sparse clusters will converge to the var-
iation of the mean.

Methods
Reanalysis and model simulations
The data used in this study is retrieved from the fifth generation of the
EuropeanCentre forMedium-RangeWeather Forecasts InterimReanalysis
(ERA5)38. The original temporal and spatial resolution is hourly in 0.25°
latitude by 0.25° longitude grids. We conducted AR detection on 6-h
averaged IVT data. The 500 hPa geopotential height and 850 hPa mer-
idional and zonal winds are used to understand the circulation pattern
associated with AR clusters. The focused period is October to April, from
1979-2023. The season for 2022-2023 only includes October 2022 to Feb-
ruary 2023 because that is the available data at the time of the investigation.

To estimate the impact over land for landfalling ARs, we retrieved
precipitation data from the Climate Prediction Center (CPC) Global Uni-
fied Gauge-Based Analysis of Daily Precipitation39 data. The CPC pre-
cipitation data is with a spatial resolution of 0.5° latitude and 0.5° longitude
global grids. We also used the National Centers for Environmental Pre-
diction (NCEP) North American Regional Reanalysis (NARR) data to
examine the changes in soil moisture saturation and runoff due to AR
clusters. To address the uncertainty due to observational records40, we
analyze the Parameter-elevation Relationships on Independent Slopes
Model (PRISM)41 precipitation observations.

To validate the robustness of AR cluster characteristics and associated
circulation pattern, we examine ARs in the two sets of model simulations.
The first set is the Tier 2 output of the Atmospheric River TrackingMethod
Intercomparison Project (ARTMIP), which includes AR detection results
frommultipleARdetection algorithmsonCoupledModel Intercomparison
Project (CMIP)Phases 542 and 643multi-model ensembles.Weutilizemodel
output from the historical simulations from 1970-2000 in both CMIP5 and
CMIP6. In this study, we included the AR detection in nine CMIP5/6
outputs from the TECA detection algorithm.

The second set of model simulations is the National Center for
AtmosphericResearch(NCAR)CommunityEarth SystemModelVersion2
Large Ensemble Project (CESM2-LENS)44. In this study, we select 30
CESM2 ensembles in both historical and future simulations. The selected
period in 1960-2000 in historical simulations. The future simulation is run
under the global warming scenario of SSP370 with time spanning 2015-
2100.We selected years in future simulation based on global warming levels
for 1850–1900 climate: 2015–2019 (+1 °C), 2020–2024 (+1.5 °C),
2040–2044 (+2 °C), 2065–2069 (+3 °C), and 2085–2089 (+4 °C).

AR detection
Weapplied the Toolkit for ExtremeClimateAnalysis BayesianARDetector
(TECA-BARD)45 to detect binary masks of ARs from the IVT field. The
TECA-BARD includes a set of “plausible” AR detectors sampled by a
Bayesian framework, which can produce AR masks similar to manually
identified ARs by experts. The output from AR detection is binary masks
showing the spatial boundary of AR events. Detection uncertainty is one of
themajor sources of uncertainty inARmeasures46–49.WhileTECA-BARDis
one of the restrictive algorithms, we also included two algorithms that are
permissive.One is developed byGuan andWaliser27 (GW15),whichapplies
a set of criteria including a relative threshold of 85% of the IVT climatology
and other thresholds on geometric shape and transport direction. The other
one is developed by Rutz, Steenburgh37 (RSR14) which uses an absolute
threshold (250 kgm−1 s−1) on the IVT field.

The fraction of time steps containing landfalling ARs varies by algo-
rithms: 16.1% for TECA-BARD, 35.3% for GW15, and 56.6% for RSR14,
which suggests that the spacing between AR landfalls is much smaller in
RSR14 compared to TECA-BARD. As a result, the fraction of selected time
steps for AR clusters is 41.0% for TECA-BARD, 72.3% for GW15, and
85.2% for RSR14. When absolute threshold (RSR14) is applied to AR
clusters at different warming levels, the number of landfall AR counts
decreases because more time steps are identified as ARs so that multiple
landfalls may merge into one event (Supplementary Fig. 14a). This is
reflected by the continuous decrease in the spacing between AR landfalls
(Supplementary Fig. 14b). While the number of clusters with a density
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below 0.8 decreases, the number of highly dense clusters (density over 0.8)
increases by 300% at +4 °C level (Supplementary Fig. 15a). However, for
RSR14, the time steps within AR landfall and AR cluster are 64.5% and
89.1% at +4 °C level.

AR cluster identification—Mean Shift
Mean Shift is a general nonparametric technique to delineate arbitrarily
shaped clusters, which is a fully data-driven unsupervisedmachine learning
technique that has no physical process-based constraints. The Mean Shift
algorithm aims to converge data points to the local maxima by iteratively
performing the shift operation based on kernel density estimation50,51. The
Mean Shift algorithm is implemented in the Python sklearn.clustermodule.
We used theMean Shift Pythonmodule to conduct clustering of landfalling
ARs over theU.S.West Coast. First, we calculated a 6-h time series of binary
landfall flags with 0 s for no AR activity and 1 s for AR conditions over the
U.S. West Coast. The determination of landfall is based on whether the
instantaneousARbinarymasks overlapwith the landmask of theU.S.West
Coast. During this step, the landfall activity of ARs and the landfall duration
are all captured in the binary landfall flag. Next, we generate an index series
that contains the time location index of 1 s in the binary landfall flags. The
index series was the input data for Mean Shift. With the given bandwidth,
the algorithm will automatically identify clusters of AR landfall days. The
bandwidth is determined using the sklearn.cluster.estimate_bandwidth
function which returns the estimated bandwidth to use with themean-shift
algorithm. For ERA5 reanalysis, the bandwidth is 8 days. For CMIP5,
CMIP6, and CESM2-LENS, the bandwidths vary from 7 days to 9 days.We
understand that the starting and ending time steps may shift for some
clusters when different bandwidths are applied. However, results are not
sensitive to small variations of bandwidths (not shown).

EOF analysis
The EOF analysis is a statistical technique used to analyze the dominant
patterns of variability in a dataset. We conducted the EOF analysis on the
500 hPa geopotential height anomaly field. Latitude weighting was per-
formedon the grid points before the EOF calculation. First, we construct the
spatial covariance matrix of the field and perform an eigenvalue decom-
position to obtain the eigenvalues and eigenvectors. The eigenvalues
represent the amount of variance explained by each EOF mode, which are
the principal components, while the eigenvectors represent the spatial
patterns, which are the EOF modes.

Data availability
The ERA5 data can be downloaded at: https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-pressure-levels. Both CPC precipitation
and NARR are provided by the NOAAPSL, Boulder, Colorado, USA, from
their website at https://psl.noaa.gov. The PRISM Climate Data can be
downloaded from https://prism.oregonstate.edu/. The ARTMIP Tier 2
dataset can be retrieved from https://www.earthsystemgrid.org/dataset/
ucar.cgd.artmip.html. The CESM2-LENS can be retrieved from https://
www.earthsystemgrid.org/dataset/ucar.cgd.cesm2le.output.html. Processed
data including the AR landfall flags and large-scale fields are archived in
https://zenodo.org/records/10892381.
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