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Realistic tropical cyclone wind and pressure fields
can be reconstructed from sparse data using deep
learning
Ryan Eusebi 1,2✉, Gabriel A. Vecchi 1, Ching-Yao Lai 1,3 & Mingjing Tong4

Tropical cyclones are responsible for large-scale loss of life and property1–4, motivating

accurate risk assessment and forecasting. These objectives require accurate reconstructions

of storms’ wind and pressure fields which assimilate real-time observations5–9, but current

methods used for these reconstructions remain computationally expensive and limited10.

Here, we show that a physics-informed neural network11,12 can be a promising and compu-

tationally efficient algorithm for tropical cyclone data assimilation. Using synthetic training

data sparsely sampled from hurricanes simulated in a forecast model, a physics-informed

neural network is able to reconstruct full realistic 2- and 3-dimensional wind and pressure

fields which capture key features of the cyclone. We also demonstrate how a set of sparse,

real-time observations, can be used to accurately reconstruct Hurricane Ida. Our results

highlight how recent advances in deep learning can augment data assimilation schemes. The

methods are also general and can be applied to other flow problems.
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Throughout much of the tropics and mid-latitudes, tropical
cyclones (TCs) are the cause of extensive societal and
scientific attention due to the destructive threat to life,

property, and crops they pose1–4. Most of these threats are caused
by the TC’s strong winds, either directly or indirectly through
waves, storm surge, or moisture convergence driving extreme
rain2,13,14. Thus, knowing the current state of the wind field of a
storm and forecasting it well in advance is essential for effective
preparation, evacuation, and mitigation2,9.

Complete reconstructions of hurricanes’ wind fields have
numerous practical applications, including storm surge modeling,
risk assessment for various wind strengths in hurricane-prone
areas, and especially for forecasting the evolution of these wind
fields. TC forecasting is typically performed using dynamical
models2, which directly integrate the physical equations that
govern fluid dynamics. While National Hurricane Center (NHC)
forecasts have generally improved over time9,10, intensity errors
had stagnated for decades9,15,16, with only some progress made in
recent years10. Numerous studies highlight that accurate initial
conditions for dynamical models are essential for accurate
forecasts5–7, especially for obtaining reliable intensity forecasts7–9.
In fact, much recent progress in dynamical forecast models is
attributed to increased observational data and better data
assimilation (DA) schemes for reconstructing the complete
dynamical fields of storms10. Nonetheless, dynamical models still
struggle, especially in forecasting intensity17, and particularly for
storms which undergo rapid intensification (RI)15,18. Given that
the most intense hurricanes (category 4 or greater), which are
responsible for the majority of damage4, all undergo RI at some
point in their lifetime19, predicting these intensity changes is
extremely important. Due to anthropogenic climate change, the
frequency with which TCs undergo RI just prior to landfall is
expected to increase20–22. Thus, improved forecasting and accu-
rate wind field reconstructions is essential as we adapt to our
warming climate.

A major obstacle for reconstructing the flow field of a storm is
that the full wind and thermodynamic fields are never observed at
any given time and exhibit rich variability on a number of scales.
Early schemes were pioneered by the works of Kurihara et al. in
the 1990s5,8,23–25 in their efforts to reconstruct accurate initial
conditions for hurricane forecast models at the Geophysical Fluid
Dynamics Laboratory (GFDL). More recent methodologies have
built on their work—the Hurricane Weather Research and
Forecasting (HWRF) model’s scheme is one example, and it starts
with the previous 6-h forecast’s vortex and performs dynamically
consistent size and intensity corrections to better match current
observations17,26. Modern initialization techniques also assimilate
vast amounts of high-density observations when creating the
initial vortex. Some of these DA techniques include Ensemble
Kalman filters27,28 and most recently 4D Ensemble Variational
(4DEnVar) algorithms29. Generally, these schemes consist of a
Vortex Initialization phase in which a preliminary vortex is cre-
ated or modified from a global model, and an assimilation phase
in which high-density observations are used to push the initial
vortex to a new one which matches the observations better.

These existing methods have allowed for great strides in hur-
ricane forecasting, but they still have limitations. The ensemble
nature of many of these methods is computationally expensive -
they rely on running ensembles of the model in order to generate
the initial conditions (independent of the ensemble used for the
actual forecast after the initial conditions are obtained). Also, only
linear adjustments of the governing equations can be performed
in each iterative step of the variational algorithms, which can
cause problems given the highly non-linear nature of the equa-
tions. Finally, despite their advances, these methods still have
documented errors and biases10, which warrants exploration of

alternative methods. Given the increasing availability of high-
density observational data - e.g., hurricane hunter flights26,30,
dropsondes31, satellites32,33, and radars27,34—we wish to develop
a new framework to accurately and efficiently assimilate obser-
vational data into the vortex reconstruction, which could ulti-
mately either complement or replace existing DA methods.

In light of recent advances in the field of deep learning, here we
develop a physics-informed machine learning (ML) framework
for vortex initialization and DA, with potential application for
forecast model initial conditions, among other uses. The model of
choice is a Physics-Informed Neural Network (PINN)11,12. To
evaluate its efficacy, we use forecast data of Hurricane Ida (2021)
from GFDL’s forecast model T-SHiELD35, in line with other
Observing System Simulation Experiments (OSSE)36. Using
forecast model data affords us a ground truth against which we
can validate our results. Various studies have validated the quality
of T-SHiELD37,38, including a study39 which directly compares it
against the popular Hurricane Analysis and Forecast System
(HAFS) model used by NOAA, so we assume the representation
of storms in T-SHiELD is accurate and realistic. We sample data
from model output to obtain synthetic observations (i.e., training
data), and use those observations to reconstruct the full wind and
pressure fields. First, we use PINNs to model the 2D and 3D wind
and pressure fields of Hurricane Ida as they are represented in the
SHiELD forecast. We also reconstruct the real (not simulated)
Hurricane Ida using observational data collected in real-time by
the hurricane hunter plane and dropsondes to assess the PINN’s
applicability for real-world observations. Throughout, we describe
the methodological details of the PINN that improved model
performance.

The overarching objective of this paper is twofold: first, to
demonstrate the power of PINNs and generally physics-informed
ML to motivate more cross-disciplinary research, and second to
offer an alternative or complement to existing DA schemes for
hurricane flow field reconstruction. Through our experiments
and analysis, we find our model is fast, accurate, and flexible,
highlighting the potential of physics-informed ML paradigms40,41

to recover large-scale geophysical fluid flows.

Physics-informed neural networks. Physics-Informed Neural
Networks (PINNs)11 are a powerful tool which combine the
universal function-approximating power of neural networks42

with physics via encoded partial differential equations (PDEs).
PINNs have been used for a variety of problems, such as
numerically solving PDEs11,43 and equation discovery given
sparse observations44. They are especially useful for inverse
problems, which makes them aptly suited for DA12. PINNs have
been applied to reconstruct wind fields in an idealized setting45 -
Zhang and Zao (2021) reconstruct the 2D45 and 3D46 wind field
in front of a wind turbine. They found very promising results
with root mean square erros (RMSE) that were within 10% of the
wind speeds observed. However, the flow field was idealized in
nature and drawn purely from simulation data. To the best of our
knowledge, no other papers to date have applied PINNs to large-
scale (large enough such that the Coriolis force becomes impor-
tant) wind fields or for the task of TC wind and pressure field
reconstruction using real-world observations.

Figure 1 illustrates the general setup and structure of our PINN
model. As seen in panel d, the input layer consists of the spatial
coordinates—x, y, and p (we use pressure as the vertical
coordinate instead of z) - and the temporal coordinate (t). The
output layer of our PINN consists of the three components of the
wind vector (u, v,w) and the geopotential (Φ). Example target
output fields from SHiELD in the 2D case are shown in panel a.
During training, any PINN requires two types of inputs: data
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points and collocation points (panel c). The data points are
recorded observations of the flow field; collocation points are the
points at which we evaluate our chosen set of PDEs and obtain
equation residuals to measure how closely the PDEs are satisfied.
The PINN is trained using these input points to produce a flow
which both matches the observations and satisfies the provided
equations. We found that the model performs better when fewer
collocation points are used in the inner core of the storm (within
100 km of storm center) compared to outside the inner core. This
is likely because the density of data points is higher near the
center in all our examples so we don’t need to rely on the physics
as much, and the complex dynamics of the eyewall are not fully
captured by our simplified set of equations. This is discussed
more in the 3D Case section.

The loss function the PINN iteratively optimizes, shown in
panel b, is a weighted sum of the mean square errors of the
PINN’s prediction at the data points (data loss LData) and the
PINN’s mean square equation residual error at the collocation
points (equation loss LEquation). In the LData equation, each data
point is weighted by the wind speed magnitude—since the higher
wind speed magnitudes are important but sparse in the flow field,
this weighting greatly improved the model performance and
allowed it to learn the eyewall structure much better. While the
PINN still slightly underestimates the maximum winds, this
approach increased the max winds produced by the PINN by
10–20%—much closer to the true max wind values in the target
storm. The data and equation losses are weighted by γ which
ranges between 0 and 1, with a value closer to 1 prioritizing the
equation loss more47. Our equations are the horizontal
Navier–Stokes equations for inviscid fluids on a rotating planet
and the continuity equation, assuming the hydrostatic approx-
imation and non-divergent flows48. Refer to the methods section
for a full description and brief derivation of the equations. The
equations are non-dimensionalized and all variables are scaled so
they have similar magnitudes49. Specifically, we non-
dimensionalize all the input variables (spatial and time coordi-
nates) and all the dynamical fields by constants that ensure all
values are roughly between 0 and 1. The exact normalization is
arbitrary, but re-scaling to similar magnitudes makes the PINN
training easier, and ensures that the different PDEs and variables
have similar magnitudes in the loss function.

In all of the following cases, we reconstruct the flow over a 12-h
period (which we define as hours −6 to 6), using SHiELD
data points from hours −3, 0, and 3. Results in figures are from
hour 0. The SHiELD forecast used is a forecast for Hurricane Ida
(2021) initialized at 0z Aug 27, 2021. Note that all SHiELD and
PINN winds are the winds along a constant pressure surface. Loss
curves for the PINN trained in each of the following three
sections are in Supplementary Fig. 1. See Methods for full details
on PINN implementation and training.

Results
2-Dimensional case. Figure 2a shows the PINN reconstruction of
the 850hPa wind field of SHiELD’s 60-h forecast of hurricane Ida
at Aug. 29, 12z, along with the target storm as represented in the
SHiELD forecast (Fig. 2b). Supplementary Fig. 2 shows all PINN
reconstructed fields. The data points used were sampled from the
SHiELD output at hours −3, 0, and 3, and are shown in Fig. 2c
(points were sampled along the lines shown). A cross pattern is
used for the data points at hours −3 and +3 and at hour 0 a plus
pattern is used, with the transects through the center of the storm
mimicking the flight paths used for recon missions. Alternating
between the cross and plus patterns increases the spatial extent of
the data points while still using the same number of data points at
each time point. The PINN performed better with this setup than
if we just used the same pattern at each time point. Two transects
were used because that was the minimum number with which the
PINN could successfully reconstruct the field.

Figure 2e shows the error between the PINN reconstruction
and the SHiELD-modeled wind speeds. Using just two transects
through the center of the storm every 3 h, the PINN is able to
accurately capture the large-scale structure and features of the
storm, including the location of the maximum winds and the
overall radial wind profile (Fig. 2d). However, the PINN does
struggle to capture the strongest winds of the storm, recording a
maximum of 62 ms−1, compared to 69 ms−1 in the target
SHiELD. This primarly occurs since the PINN struggles with
high-gradient regions, especially in the eyewall. Note, however,
these maximum winds only occupy a few gridpoints in the
output. Nonetheless, it still achieves RMSE around 2–5 ms−1 in
the eyewall (Fig. 2d, e). Equation losses are order 10−6 outside the
eyewall and around 10−3 in the eyewall (Fig. 2f, Supplementary
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Fig. 1 Illustration of the general PINN structure and training data. a The target output from SHiELD for the 2D case, showing the u and v components of
the wind field and the geopotential field. b The loss function used to train the PINN, which consists of a data loss component and an equation loss
component. Note that each data point in the data loss equation is weighted by the wind speed of the data point. n is the number of data points we sum over
and m is the number of collocation points we sum over. c The collocation and data points used as inputs. The collocation points are randomly generated
with the density of points in the inner core 5x lower than the density outside. Note these points will also have a time value, and in 3D reconstructions, they
will have random pressure values, too. The data points shown are the example cross and plus patterns used in the 2D Case. d Illustration of the fully
connected deep neural network structure, showing the inputs and outputs.
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Fig. 3), orders of magnitudes smaller than the term magnitudes in
the governing equation, which have magnitudes of 1-10
(Supplementary Figs. 4, 5 for the 3D case), indicating that our
provided governing equations are accurately satisfied and have
very small residuals. Term magnitudes are higher near the center
of the storm, so the higher equation loss there is expected.

20,000 collocation points were used in this case—this high
amount was necessary due to the sparseness of the data points.
Near the center of the storm, the data points are closer together,
so it was found that using a lower density of collocation points
near the center of the storm yielded better results. A γ value of
0.99 was used—the model needed to rely heavily on physics to fill
in the gaps between the sparse transects. A lower γ value would
cause the PINN to overfit the data, while a higher γ value would
cause it to struggle to obtain the full structure and max winds of
the storm (Supplementary Fig. 6). Note that the optimal choice of
γ will depend on how the input features are normalized. Between
the two transects and the boundary points and the three time
points, a total of 4498 data points were used, representing roughly
2.4% of the total points available from the SHiELD field. We use a
network structure with 8 hidden layers, each with a size of 100
nodes for this case.

The key takeaway from these results is that the 2D large-scale
characteristics of the storm can accurately be reconstructed by the
PINN using just 2 transects through the storm center every 3 h.

3-Dimensional case. In this section, we reconstruct the full 3D
flow of the same storm from SHiELD as the previous section. The
data points consist of 0.05% of the gridpoints in the SHiELD
output at each time point, for the time points t=−3, 0, and 3 h.
This amounts to 4158 total data points. The data points are
randomly sampled from SHiELD such that the density of points
in the inner core (inner 100 km) of the storm is 5x higher than

the density of points outside the inner core (shown in Fig. 3b).
10,000 collocation points are used and randomly generated such
that the inner core density is 5x lower than the outer density
(shown in Fig. 3c). The motivation for this setup is that more data
points are needed near the center of the storm to learn the
sharper gradients and most complex dynamics and fewer collo-
cation points was necessary to give the model more freedom to fit
these data points. So, in the inner core, the PINN relies more on
the dense observations, while outside the core, it relies on physics
to fill in the gaps between the sparser observations. Results from
various trained models shown in Supplementary Table 1 show
this effect. While the random sampling and uniformity in the
vertical direction are unrealistic, a higher density of observations
near the center is expected since that region is the focus of most
observing campaigns.

The full reconstructed wind field is shown in Fig. 3a, a vertical
cross section in Fig. 3d, and a cross section of the SHiELD target
wind field in Fig. 3e. The full 3D component fields from the PINN
and the target SHiELD output are shown in Supplementary Fig. 7.
Similar to the 2D case, the PINN is able to recover the key large-
scale characteristic of the dynamical fields despite using so few
data points. It is able to capture not just the horizontal patterns,
but the vertical patterns in the wind, too. The PINN reaches a
maximum wind speed of 58 ms−1—this is lower than in the 2D
case since the model is trying to reconstruct flow over a much
larger and more variable domain. The RMSE of the PINN output
compared to SHiELD is shown in Fig. 3f. We see RMSE of 5–7
ms−1 in the eyewall and 1–3 ms−1 everywhere else. Equation
errors (Supplementary Fig. 3) are orders of magnitude lower than
the term magnitudes (Supplementary Figs. 4 and 5), indicating
that the generated field satisfies our physical equations well. We
can also see from the term magnitudes the transition from
cyclostrophic balance (between the pressure and advection terms

Fig. 2 2-dimensional PINN wind speed prediction trained with SHiELD simulation data. a PINN 2-dimensional reconstruction of the SHiELD forecast of
Ida at 850 hPa. b The SHiELD forecast of Ida (ground truth data) which the PINN is trying to reconstruct. c The data points used for PINN training sampled
from the SHiELD forecast fields. At hours −3 and +3, a cross pattern is used and at hour 0 a plus pattern is used. The transects at each time point cross
through the center of the storm, which is moving northwest with time. Along each transect, u, v, and the geopotential are sampled from the SHiELD output
and used as data points for the PINN. d The solid blue line shows the PINN RMSE across the full grid as a function of radius from storm center. The dashed
red (black) lines show the PINN (SHiELD) azimuthally averaged radial wind profile. e PINN wind speed error against SHiELD (simply (a) minus (c)). f Log
PINN equation loss, as defined by the base 10 logarithm of LEquation from Fig. 1b. For reference, the magnitudes of the terms in the PDEs are shown in
Supplementary Figs. 4 and 5.
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in the Navier–Stokes equations) to geostrophic balance (between
the pressure and Coriolis terms) as we move from the storm core
to the perimeter (Supplementary Fig. 8). A γ value of 0.5 was used
in this case - the model was able to rely less on the physics as a
regularizer since the large domain size already provided a
constraint on the PINN output.

The total training time for this model was approximately 50
min. Only O(103) data points were used to train this model, but
the training time scales well through about O(105) data points,
and only increases around O(106) data points, as shown in the
performance table in Supplementary Table 2. This is because the
PINN is trained on a GPU which handles matrix multiplications
very well, but is bottlenecked by memory capacities. We used a
network with 4 hidden layers, each with 100 nodes for this case.

Real case. Finally, we use a combination of data from the SHiELD
12-h forecast output and real observations recorded in Hurricane
Ida (2021) by the Hurricane Hunter plane centered around 12z
August 27, 2021 (Fig. 4d) to reconstruct the wind and pressure
field of Hurricane Ida at this time. Officially, Ida is recorded as
having maximum sustained winds of 28 ms−1 (55 knots), but
some dropsonde observations recorded winds up to 40 ms−1

(possibly with some observation errors). The sparse observational
data (Fig. 4d, from the flight level data and dropsondes dropped
near the core) alone is not enough to accurately reconstruct a
realistic vortex, so we use the 12-h SHiELD forecast at this time to
fill in the gaps, much like current DA schemes used in modern
forecast models17,26. The sparse, but evenly distributed SHiELD
forecast data gives the PINN general information about the shape
and extent of Ida’s winds. Meanwhile, the dense areas of obser-
vations (especially near the storm center) allows the PINN to
adjust the vortex to a physically realizable solution consistent with
real observations. The forecast data also provides information
about the field above flight level. Similar to the 3D case, we
sample 0.5% of the SHiELD output data as training data points

along with the real observations (Fig. 4d). The SHiELD data and
the observations are treated equally as data points in the model,
but the observations are weighted twice as high as the SHiELD
points for a given wind speed magnitude. Between the SHiELD
data and the observations, there are 54,663 total data points. Note
that the SHiELD points and the observations were all sampled in
storm-centered coordinates to avoid any negative impacts of the
storm location in SHiELD not matching its actual observed
location.

The full 3D PINN reconstruction (Fig. 4a) illustrates the
complete and rich 3D structure. The 2D slices at 850 hPa of the
PINN (Fig. 4b) and the SHiELD forecast (Fig. 4c) have very
similar large-scale structures. We can see how the PINN
compromises between the dropsonde observations and the
SHiELD data: in the eastern eyewall, the dropsonde shows strong
winds and SHiELD shows weak winds, so the PINN prioritizes
the dropsonde observations which are weighted higher and
produces a strong block of winds. In the northeast region of the
storm, the dropsonde observations suggest a stronger region of
winds, and SHiELD shows a very large region of strong winds—
the PINN compromises with a broad region of moderately strong
winds. Tail doppler radar50 (TDR) observations (not seen by the
PINN during training) recorded by the hurricane hunter plane
(Fig. 4f) offer a detailed view of what the inner core looks like,
and validates the strong winds east of the eye that the PINN is
able to recognize and develop. For reference, the reconstructed
vortex generated by the HAFS model DA scheme is shown in
Fig. 4e, which incorporates much more data than the PINN,
including TDR and satellite data. Correlations between the TDR
data and the 3 models (the two DA schemes - PINN and HAFS -
and the 12hr forecast from SHiELD) are printed on Fig. 4f using
the Pearson correlation coefficient. Despite the fact that the PINN
isn’t a fully formed DA system yet, it still produces a better
correlation with the ground-truth TDR data than HAFS.
Additionally, the RMSE of the SHiELD, HAFS, and PINN fields

Fig. 3 3-dimensional PINN wind speed prediction trained with SHiELD simulation data. a PINN 3-dimensional reconstruction of the SHiELD forecast of
Ida between 850 and 200 hPa. b The data points used for PINN training, with color indicating the pressure level of the sampled data point (0.05% of the
SHiELD output data with a 5x higher density in the inner 100 km). c Like (b), but collocation points (10,000 points with a 5x lower density in the inner
100 km). d PINN-predicted wind speed along a vertical cross section at y= 0. e SHiELD wind speed along a vertical cross section at y= 0. f PINN RMSE for
wind speed by radius from storm center. The vertical white dashed line indicates the radius of maximum winds.
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against the TDR data are 4.5, 4.1, and 2.2 ms−1, respectively. We
stress this is only one case, but it nonetheless offers a very
encouraging result: the PINN can accurately and efficiently
assimilate observational data to reproduce a realistic TC vortex
using minimal data. It doesn’t record the fine-scale features or the
exact maximum winds, but it produces a qualitatively accurate
vortex based on observations. The training time for this model
was 50 min, compared with the approximate 40 min it took to
generate the HAFS reconstruction. Further modifications can be
made to improve PINN performance, including finding more
effective PINN structures and training on more GPUs. Currently,
the PINN uses a single GPU core, while the HAFS analysis uses
128 CPU cores.

Discussion and summary
This idealized study provides a proof-of-concept that PINNs can
be used to reconstruct TC vortices using sparse observations and
a simplified set of governing equations. This study is also, to our
knowledge, the first to demonstrate that PINNs can be used for
the reconstruction of large-scale wind flows from real-world
observations. We demonstrate that 2D and 3D TC vortices can be
reconstructed using realistic and minimal observations, and we
also show that a combination of artificially sampled model output
combined with real-time observations can be used by a PINN to
reconstruct the full 3D structure of a real TC. We describe
implementation details critical to improved PINN performance,
such as using fewer collocation points and more data points near
the strongest winds, and weighting the data points in the cost
function by their wind speed magnitude. The PINN outputs we
produce lack the fine-scale structure and features of a real TC, but
they recover the key large-scale characteristics of the storm well,
including the radial wind profile and the location of maximum

winds. The PINN does, however, struggle to recover the highest
winds present in the storm. Nonetheless, generally, a more
accurate reconstruction of the large-scale flow of the storm could
improve both forecast model track and intensity errors, and an
important next step is testing the PINN reconstructions as initial
conditions in a forecast model, such as T-SHiELD, and assessing
how it impacts track and intensity forecasts. The PINN can also
be used for storm surge forecasting, risk assessment, or other
applications.

The PINNs in this study use orders of magnitude fewer com-
putational resources (1 GPU core vs. 128 CPU cores) than
established DA methods for forecast models (such as the HAFS
model). This is in part because the PINN does not rely on
ensemble methods to generate the initial conditions. The PINN
training time scales well with the number of observations used
(Supplementary Table 2), and is robust to the locations and
numbers of these data points. Unlike traditional methods, the
PINN does not rely on an initial best-guess vortex from which it
asimilates the observations. While we do make use of an initial
vortex from the T-SHIELD output, with sufficient observations
(such as from TDR or satellite data), no initial vortex would be
necessary. Additionally, the PINN is essentially a continuous and
differentiable function, so the output could be arbitrarily gener-
ated at any points in space or time within the training domain.

We emphasize that as a DA system, the PINN presented here
needs more work to become a functional system in a forecast
model. First, other field variables such as moisture and tem-
perature need to be incorporated into the PINN output. This will
also require updating/modifying the system of physical equations
used by the model during training. It’s worth noting that the
PINN equations can and should be tailored specifically to the
forecast model it is being paired with, so the physics of the PINN
reconstruction matches the physics of the forecast model. More

Fig. 4 PINN output trained with a combination of real hurricane hunter observations and SHiELD forecast data. a PINN 3D reconstruction of Hurricane
Ida on August 27th, 12z. b PINN reconstruction at 850 hPa. Stars indicate locations of dropsonde observations, with the color indicating the wind speed
measurement. c Same as (b), but for SHiELD reconstruction. d The locations and magnitudes of Ida flight level and dropsonde wind speed observations
recorded roughly between 10z and 12z, Aug. 27. e Same as (b) but for HAFS reconstruction. f Observations from the Tail Doppler Radar (not used in PINN
training) of the hurricane hunter plane around 12z Aug 27 at 1.5 km (roughly the altitude of the 850 hPa pressure level). Note this grid only extends out
150 km from the storm center. The correlations of the SHiELD, PINN, and HAFS fields in panels (b), (c), and (e) with these TDR observations are also
printed on this panel.
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work also needs to be done to better understand optimal network
structures and numbers of data and collocation points for
reconstructing the full 3D fields.

PINNs are an exciting branch of physics-informed ML that
have been demonstrated in numerous studies as powerful tools
for reconstructing fluid flows. This paper contributes to the
growing list of their potential applications, and provides a pro-
mising alternative or complement to existing DA methods which
could improve forecasting and other applications for decades
to come.

Methods
SHiELD data. For the 2D and 3D cases, we use the GFDL
forecast model SHiELD (System for High-resolution prediction
on Earth-to-Local Domains, an overview of which can be found
in ref. 35) for our TCs. SHiELD runs using the GFDL Finite-
Volume Cube-Sphere (FV3) Dynamical Core51 and uses similar
physical parameterizations as those used in the NCEP GFS
model. We specifically use data from the T-SHiELD nest, which is
an approximately 3.2 km resolution nest placed over the tropical
North Atlantic which is coupled with the 13 km resolution
SHiELD model to produce high-resolution forecasts and model-
ing of TCs and tropical convection in this basin (hereafter, we will
refer to SHiELD and T-SHiELD collectively as SHiELD). It has
been found to make accurate forecasts and capture many of the
fine structural details found in hurricanes37,38.

In this paper, we focus on forecasts made by SHiELD for
Hurricane Ida (2021), a storm which rapidly intensified from a
category 1 hurricane to category 4 (with sustained winds of 150
mph) over one day while in the Gulf of Mexico, prior to making
landfall in Louisiana. The forecast run we use is initialized at 00z
August 27th, and runs for 72 h beyond that initialization (taking it
through landfall on August 29th). Two-dimensional data is available
at a temporal resolution of 1 h and a spatial resolution of 3.2 km,
while 3-dimensional data is available at a resolution of 3 h and a
vertical resolution of about 15 hPa (44 pressure levels between 150
and 900 hPa). We use the horizontal components of the wind field
vector (u for the zonal component and v for the meridional
component) and the geopotential (Φ). Vertical wind velocities are
available, but we leave them out in this study as it is very difficult to
get accurate vertical wind measurements in practice. We choose to
focus on the 850 hPA level for the 2D case because this level is high
enough from the ground that we can largely ignore the effects of
friction, and it is a height around which hurricane hunters might fly
through the TC eye. We focus on this storm at various points along
the forecast and use our PINN to reconstruct the flow fields of Ida at
these different forecast points. We created PINN reconstructions at
forecast hours 11, 24, 36, 48, and 60, but in this work we focus on
hour 60 (the strongest point) and hour 11 (a time at which we have
plentiful observational data, about three days out from landfall
before it underwent RI). Between hours 24 and 60, the storm
undergoes RI and strengthens from a category 1 to a category
4 storm with maximum winds of 62.1ms−1 (139 mph).

Real Ida observations. Processed real-time flight level and
dropsonde observations are available through the NOAA website
at https://www.aoml.noaa.gov/2021-hurricane-field-program-
data/. We make use of just the Dropsonde and Flight Level
Data from 20210827I1 Ida mission, when a hurricane hunter
plane flew four transects through the eye of a developing Ida in a
6-h span around 12z Aug 27th with numerous dropsondes in the
inner core. This data is very dense (collected every second), so 20
(3) second averages were taken for the flight level (dropsonde)
data, resulting in horizontal (vertical) resolutions of 3 km (1 hPa)
for the flight level (dropsonde) data.

For the Tail Doppler Radar data50, we use the Level 3 data
available again through the NOAA AOML website from the link
https://www.aoml.noaa.gov/ftp/pub/hrd/data/radar/level3/. We
use the merged swaths dataset.

Physical equations to constrain PINN. Fluid flow must satisfy a
governing set of physical equations—two important equations are
the conservation of momentum and mass equations. The general
conservation of momentum equations, known as the
Navier–Stokes equations48, in a rotating reference frame are
shown in equation (1). Bold terms indicate vectors, and v ¼
ux̂ þ vŷ þ wẑ indicates the velocity vector, p is the pressure field,
ρ is the density field, τ is the deviatoric stress tensor of order 2,
and Ω is the rotation vector for the earth, which can be repre-
sented by the vector Ω ¼ f =2ẑ. The Coriolis parameter f has value
f ¼ 2Ω sin ϕ where Ω= 7.2921e− 5 s−1 is the rotation rate of
Earth and ϕ is the latitude. The conservation of mass equation is
expressed in Equation (2).

∂v
∂t

þ v � ∇v þ 2Ω ´ v ¼ � 1
ρ
∇pþ ∇ � τ ð1Þ

∂ρ

∂t
þ v � ∇ρ ¼ 0 ð2Þ

We make some assumptions and simplifications to these
equations because simpler equations are easier for the PINN to
manage and are more computationally efficient. We also
transform the equations to our specific domain and set of
coordinates. First, we ignore the friction term in our equations
and assume its magnitude is small, which is especially true at high
altitudes away from land and the boundary layer. We also rewrite
our equations using pressure as the vertical coordinate instead of
z, so that our expression for vertical velocity becomes ω= dp/dt
instead of w= dz/dt. Finally, we use the hydrostatic approxima-
tion (shown in Equation (6))—the hydrostatic approximation
doesn’t exactly apply for a TC where in some regions of the storm
there are strong vertical motions, but the approximation is close
and greatly simplifies our task. Finally, we only use the horizontal
NS equations since the hydrostatic assumption provides enough
information to get good results.

These modifications and approximations yield the horizontal
NS equations using pressure as the vertical coordinate, with each
horizontal component shown separately in equations (3) and (4),
and the continuity equation for incompressible flow shown in
equation (5). Now, the pressure term is written in terms of the
geopotential, Φ= gz. The hydrostatic approximation and pres-
sure coordinates cause density to drop out of our equations,
which means there is one fewer field variable we need to predict
and include in our equations. We also use the beta-plane
approximation for the Coriolis term (the last term on the left
hand side of equations (3) and (4)) where fo is the Coriolis
parameter at the latitude of the storm center at time t= 0 and β is
the constant β= ∂f/∂y.

∂u
∂t

þ u
∂u
∂x

þ v
∂u
∂y

þ ω
∂u
∂p

� ðf o þ βyÞv ¼ � ∂Φ

∂x
ð3Þ

∂v
∂t

þ u
∂v
∂x

þ v
∂v
∂y

þ ω
∂v
∂p

þ ðf o þ βyÞu ¼ � ∂Φ

∂y
ð4Þ

∂u
∂x

þ ∂v
∂y

þ ∂ω

∂p
¼ 0 ð5Þ

∂p
∂z

¼ �ρg ð6Þ
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We use these same equations for the 2D and 3D cases—these
equations provide three-dimensional information through the
hydrostatic approximation. In the 2D case where we don’t have
3D data for training, the PINN essentially learns what vertical
fields make sense and are compatible with the inputs it receives
during training.

Data points for training. The data points are “observed” values
measured in the flow domain. There are infinite possible flow
fields that satisfy the NS and continuity equations alone, and the
data points help constrain the PINN to find the solution which
best matches the flow field of interest. For the 2D and 3D case we
sample sparse points from the model output. There are 4 main
data patterns (DP) which we evaluate for the 2D case—we call
these 4 patterns All, Star, Cross, and Switch (the Switch DP
consists of Cross and Plus DPs alternating at each time step of
data observations). The ALL data pattern consists of all the data
in the 800 × 800 km grid around the storm center. The cross DP
consists of two diagonal transects through the storm’s eye from
the corners of the 800 × 800 km storm-centered grid. The Plus DP
is similar to the Cross DP, but with vertical and horiztonal
transects through the eye instead of diagonal transects. And
finally, the Star DP which consists of 4 transects through the eye
(the Cross and Plus DPs combined). For the Star, Cross, and Plus
DPs, we also include the boundary points, which in practice
should be easy to approximate since they have low magnitudes
and are influenced more by the large-scale environmental
dynamics. The Switch DP allows us to see if gaining more spatial
information about the storms (even if at different time steps)
while using the same amount of information (two transects)
improves the performance. These DPs can be thought of as
synthetic flight patterns, simulating data that might be collected
by the hurricane hunter plane flying transects through the center
of storms.

In the 3D case, we sample points randomly from the SHiELD
output. The sampling we do ensures the density of points in the
inner 100 km of the storm is 5 times higher than the density of
points outside the inner 100 km. This is intended to mimic how
observing campaigns emphasize getting high density inner core
observations. Figure 3b shows the horizontal distribution of these
points. The pressure levels of these data points are chosen
uniformly at random. We use 0.05% of the possible SHiELD
points in the 3D case, which amounts to 4158 points. In the Real
Case, we use 0.5% of the possible SHiELD points.

Data from the SHiELD model output has a 1 h resolution. We
provide data points to the PINN at 3-h intervals, mimicking the
typical time intervals between flight missions and NHC advisories
(every 3–6 h). For example, if we are modeling the PINN in the
interval t= [− 6, 6] (where the units are hours), we would
provide data points using the prescribed DP at times
t= {− 3, 0, 3}. For the Switch DP in the 2D case, this would
consist of the Cross DP at t= {− 3, 3} and the Plus DP at t= 0.

Collocation points for training. The collocation points are
randomly sampled, with the density of points in the 100km inner
core 5 times lower than the density of points outside 100km from
the storm center. This configuration allows the PINN to prioritize
fitting the high-density observations near the center of the storm
over our PDEs, whose assumptions might break down in the
complex dynamical environment of the eyewall. Outside the
center where our data points are sparser, the high density of
collocation points allows the PINN to prioritize fitting the large-
scale environmental field. For the 3D and Real Cases, the collo-
cation points are assigned uniformly at random a pressure value
between 150 and 900 hPa. For all cases, the time of each

collocation point is uniformly at random chosen from the time
domain we’re interested in.

PINN structure. A general overview of the PINN structure can be
seen in Fig. 1. It is structurally identical to a normal fully con-
nected neural network—the only difference is the implementation
of the loss function, described in the next section. The 4 inputs
include the 3 spatial coordinates (x, y, and p) and the time
coordinate (t). The outputs are the 3 components of the wind
vector (u, v, and ω) and the geopotential height (Φ). The PINN
then has a series of hidden layers of certain sizes. Each successive
layer represents an affine transformation from one layer to the
next, and each transformation matrix is comprised entirely of
learnable parameters. Each layer beyond the input layer also has a
bias vector of the same size as the layer. We experimented with
numerous structures in the different sections. In the 2D case, the
model has 8 hidden layers of size 100. In the 3D case the model
has 4 hidden layers of size 100. In the real case the model has 4
hidden layers of size 50. For the 4 hidden layers of size 100
model, the biases combined with the matrices used to map each
layer to the next result in a total of 31,204 learnable parameters
for the entire PINN. We use a hyperbolic tangent activation
function after each hidden layer.

PINN loss function. For model training, there will be two
components to our loss function: the data loss (LData) on the
data points and the equation loss (LEquation) on the collocation

points. In the following equations, items with the subscript “true”
indicates the synthetic or real observation, and items with no
subscript indicate outputs from the PINN. The data loss is
defined in equation (7). This component of the loss is simply the
MSE of the PINN output at the data points compared to the
“true" values. Note that each point’s contribution to the loss is
weighted by the magnitude wind speed of the observation at that
point. This is done to force the model to prioritize getting the
high wind speed points accurately since they are harder to predict
there are fewer of these points than the lower wind speed points.
Since we don’t have measurements at the collocation points, their
contribution to the loss function, shown in equation (8), consists
of the sum of the MSE of the equation residuals. Note that in the
code, the equations are non-dimensionalized such that each
variable roughly ranges between −1 and 1—this removes effects
from different units and allows each equation to be weighted
similarly in the loss function. It also allows for the data and
equation losses to be weighted more equally since all terms of all
the equations will be roughly on the same scale.

LData ¼ 1
n
∑

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2true þ v2true

q

ðu� utrueÞ2
�

þðv � vtrueÞ2 þ ðΦ�ΦtrueÞ2
�

ð7Þ

LEquation ¼ 1
m
∑

∂u
∂t

þ u
∂u
∂x

þ v
∂u
∂y

þ ω
∂u
∂p

� ðf o þ βyÞv þ ∂Φ

∂x

� �2
"

þ ∂v
∂t

þ u
∂v
∂x

þ v
∂v
∂y

þ ω
∂v
∂p

þ ðf o þ βyÞuþ ∂Φ

∂y

� �2

þ ∂u
∂x

þ ∂v
∂y

þ ∂ω

∂p

� �2
#

ð8Þ
Recall that since a PINN is a differentiable function, the partial

derivatives in equation (8) can readily be calculated from the
outputs. The total loss function is defined in equation (9) where γ
is a hyperparameter which controls how the equation loss is
weighted relative to the data loss. Higher (lower) γ values indicate
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the PINN will prioritize the equation loss more (less). Generally,
the sparser your data points are, the higher γ value you will need
to allow the model to use physics to fill in the gaps.

L ¼ ð1� γÞLData þ γLEquation ð9Þ

PINN training. The PINNs are built in Python52 and trained using
TensorFlow53 2.0 using code adapted from Raissi et al.11 which was
written in TensorFlow 1.0. The models are trained using a single
NVIDIA A100 GPU. Following Markidis54 our PINNs are first
trained by the Adam optimizer55 for 20,000 iterations, followed by
the L-BFGS optimizer56 for 180,000 iterations, for a total of 200,000
iterations. 10,000 collocations points were used for the 2D case and
20,000 for the 3D and Real cases. There is randomness in the PINN’s
prediction, and occasionally the model solution would fail or blow up
in certain regions. Consequently, we would train an ensemble of five
models and choose the one whose results were the best, although they
were all normally similar.

Data availability
Hurricane Hunter flight level and dropsonde data are available from https://www.aoml.
noaa.gov/2021-hurricane-field-program-data/. The tail Doppler radar data is available
from https://www.aoml.noaa.gov/ftp/pub/hrd/data/radar/level3/. SHiELD forecast data
from GFDL is not publicly available.

Code availability
Our PINN code for hurricane reconstruction is available on GitHub at https://github.
com/ryaneusebi/PINN-TC.
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