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Skillful multiyear to decadal predictions of sea level
in the North Atlantic Ocean and U.S. East Coast
Liping Zhang 1,2✉, Thomas L. Delworth 1, Xiaosong Yang 1 & Fanrong Zeng1

Long-term sea-level rise and multiyear to decadal sea level variations pose substantial risks

for flooding and erosion in coastal communities. Here we use observations and climate model

predictions to show that sea level variations along the U.S. East Coast are skillfully predictable

3 to 10 years in advance. The most predictable component of sea level is a basin scale upward

trend, predictable a decade in advance and primarily a response to increasing greenhouse

gases. Significant additional predictability comes from multidecadal variations of the Atlantic

Meridional Overturning Circulation (AMOC). While perfect model simulations show AMOC-

related sea level predictability of 5-7 years, model biases and initialization uncertainties

reduce the realized predictive skill to 3-5 years, depending on location. Overall, greenhouse

gas warming and predictable AMOC variations lead to multiyear to decadal prediction skill

for sea level along the U.S. East Coast. Such skill could have significant societal benefit for

planning and adaptation.
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Sea level change poses a serious threat to coastal
communities1. The occurrence of high sea levels along the
coast can cause catastrophic coastal flooding and inunda-

tion, threatening lives and infrastructure in the coastal regions2–4.
Thus, sea level changes and associated coastal hazards are one of
the most important societally relevant problems. Sea levels are
impacted by many factors and can vary on broad time scales. On
hourly to daily time scales, water level changes are primarily
associated with the astronomical tide, waves, hurricanes, tropical
cyclones, and extratropical storms5–7. On seasonal to multi-
decadal time scales, sea level changes are usually linked to large
scale ocean dynamics and climate variabilities7–9. In response to
anthropogenic warming, sea levels have a secular rising trend
over most oceans due to thermal expansion and the melting of
land ice7,10.

Over the North Atlantic Ocean, sea levels are substantially
influenced by the wind, Gulf Stream and the Atlantic meridional
overturning circulation (AMOC) on interannual and longer time
scales11–17. The U.S. East Coast is a hot spot for the sea level
change under current and future climates18. The long-term sea
level change there was found to be ~two times faster than the
global averaged rate. Dynamic sea level changes due to a weak-
ening of AMOC are mainly responsible for this non-uniform
change15. Due to geostrophic balance, a weakening of AMOC and
northward Gulf Stream in the upper ocean results in a rising sea
level along the western boundary of the Atlantic. This dynamic
sea level rise (SLR) is then superimposed on the anthropogenic
warming induced global mean SLR, eventually generating a
higher-than-average SLR along the U.S. East Coast15.

Given the high socioeconomic importance of sea level, parti-
cularly over the densely populated U.S. East Coast, there is a
pressing need to forecast sea level on seasonal to decadal time
scales to assist in mitigating impacts. Previous studies explored
the seasonal prediction skill of sea level over global oceans using
initialized climate model predictions19,20. They found a higher
skill along the U.S. West Coast than that along the East Coast due
to a stronger impact of El Niño-Southern Oscillation (ENSO) on
sea level in the former region. However, prediction of sea level
beyond seasonal time scales has received much less attention, yet
such predictions may be beneficial for coastal infrastructure
planning and investment. Many studies have demonstrated
skillful decadal predictions for the AMOC and the North Atlantic
upper ocean heat content that are relevant for sea level21–25.
Thus, it is desirable to investigate the multiyear to decadal pre-
diction of sea level. In this study, we use both diagnostic analysis
and initialized decadal hindcasts to explore the multiyear to
decadal sea level predictability/prediction over the North Atlantic
region and the U.S. East Coast.

Results
North Atlantic Sea level predictability in control simulation.
We first use a diagnostic average predictability time (APT)
method26,27 applied to a preindustrial control simulation of the
Geophysical Fluid Dynamics Laboratory (GFDL) SPEAR_LO
model28 (see Methods) to examine the North Atlantic Sea level
predictability in a perfect model context. The APT is defined as
the integral of predictability over all lead times and a linear
regression model is adopted to estimate APT (see Methods). The
APT analysis is similar to the empirical orthogonal function
(EOF) decomposition, but here we decompose the predictability
instead of variance.

We show in Fig. 1a–d the leading two predictable sea level
components over the North Atlantic region. The most predictable
component (APT1) has loadings of the same sign over the
Labrador Sea and the western subpolar gyre region (Fig. 1a). The

maximum occurs to the east of Newfoundland and extends to the
U.S. East Coast, with substantial positive values north of Cape
Hatteras. We also see sea level anomalies of the opposite sign in
the eastern subpolar gyre, spreading southwestward to the west
Atlantic. To the south, there are weak positive values within the
20o–30oN latitudinal band. This most predictable sea level
component derived from the APT analysis shares many
similarities with the dynamic sea level change in future climate
change projections associated with a weakening AMOC, as well as
in simulations that artificially weaken the AMOC through the
application of anomalous freshwater fluxes to the subpolar gyre of
the North Atlantic15. These results suggest that the predictability
source may be closely linked to the AMOC. The associated APT1
timeseries shows low frequency variability with a period around
25–40 years (Fig. 1c), in agreement with the AMOC peak period
in this SPEAR_LO control simulation28. The squared multiple
correlation coefficient R2 indicates that this APT1 component can
be predicted approximately 7 years in advance (Fig. 1d). To
understand the predictability source, we perform a lagged
regression analysis of AMOC stream function against the APT1
time series (Fig. 1e). At a lag of 0-yr, the APT1 component
corresponds to a weakened state of the AMOC. The lagged
regressions from −16yr to 16 yr exhibit a clear evolution of the
AMOC cycle, which highly resembles the AMOC internal
variability in control simulation (Supplementary Fig. S1). There-
fore, this leading predictable sea level component over the North
Atlantic Ocean is largely associated with the mature phase (the
time when the associated AMOC anomalies have maximum
amplitude with either positive or negative sign) of a mode of
internal variability in the North Atlantic that is associated with
fluctuations of AMOC.

The physical processes are summarized as follows: the mature
negative phase of AMOC is associated with weak deep-water
formation over the Labrador Sea as well as a weak northward Gulf
Stream and North Atlantic current. The entire ocean column in
the western subpolar gyre has negative density anomalies, and
thus has an expanded water column and positive sea level
anomalies15. Changes in the geostrophic streamfunction are
concurrent with steric sea level changes. The high sea level in the
western part of the subpolar gyre further spins down the North
Atlantic subpolar gyre, which inhibits upwelling of subsurface
salty water and generates positive feedback. The Gulf Stream
strength is reflected in the positive east-west sea level gradient
across the U.S. East Coast and the interior Atlantic. Thus, to
maintain the weak Gulf Stream and North Atlantic current, the
sea level along the U.S. East Coast is higher and the sea level on
the eastern side of the Gulf Stream/North Atlantic current is
lower as required by the geostrophic balance11,14–16 (Fig. 1a). The
weak western boundary current is also accompanied with a
weakening and southward shift of the subtropical gyre, which in
turn leads to high sea level within the 20o–30oN latitude band.
The opposite is also true for the mature positive phase of AMOC.
The AMOC long persistence during the mature phase due to deep
ocean memory leads to multiyear predictability of sea level over
the North Atlantic region.

Next, we turn our attention to the second most predictable
component of North Atlantic sea level (APT2, Fig. 1b). The
second component is characterized by a tripole structure, with sea
level anomalies of one sign near the Gulf stream path and sea
level anomalies of the opposite sign to the north and south
(Fig. 1b). The SLR near the Gulf Stream path exerts some impacts
on the coastal region, but its influence is mainly confined south of
Cape Hatteras. In addition, there are some weak SLR over the
eastern subpolar gyre and south of 30oN. This component shares
some similarities with the tripole sea level mode seen in the
satellite altimetry that is characterized by a rapid acceleration of
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SLR over the U.S. Southeast Coast and Gulf Coast after 201029,30.
A further examination reveals that this APT2 component
fluctuates on multidecadal timescales (Fig. 1c), but with decreased
amplitude and higher frequency variabilities compared to APT1
and thus lower predictability. The R2 shows the APT2 has a
significant predictive skill up to 4 years (Fig. 1d). The lag 0-yr
regression analysis reveals that the APT2 is associated with
transitions between phases of the dominant pattern of AMOC
internal variability (90o phase, Fig. 1f). The associated sea level
pattern is largely contributed from the steric sea level component,
particularly the thermosteric component (Supplementary
Fig. S2a–c). When the AMOC transits from a mature negative
phase to a neutral phase, the weak AMOC anomalies propagate
southward with a slow advection speed due to the existence of the
interior pathway of North Atlantic deep water31, which is also
accompanied with a northward shift of Gulf Stream path32

(Fig. 1a). The associated northward heat transport anomalies
lead to a heat divergence (convergence) nearby the subpolar
region (Gulf Stream path) (Supplementary Fig. S2d–f), thus
cooling (warming) and lowing (elevating) sea levels in the
subpolar gyre (nearby the Gulf Stream path and U.S. Southeast
Coast). Similar to the APT1, the long-time scales associated with
the AMOC transition phase provide the source of the predictive
skill of North Atlantic sea level on multiyear time scales. These
analyses suggest that if we could adequately initialize the AMOC
in a numerical forecast model, the future evolution of North
Atlantic Sea level is potentially predictable.

North Atlantic Sea level prediction skill in initialized decadal
hindcasts. We next explore whether the perfect predictability

described in the previous section can be translated to actual
prediction skill in the SPEAR_LO decadal prediction system.
Retrospective decadal hindcasts/forecasts system21 were con-
ducted with the SPEAR_LO model, with initialization from an
observationally constrained reanalysis (see Methods). Previous
work has demonstrated that the observed low frequency North
Atlantic Oscillation (NAO) variations can drive multidecadal
AMOC variabilities over the North Atlantic Ocean33. In the
reanalysis, the atmosphere and SST were constrained by obser-
vations through strongly restoring to observations and reanalysis
products. In this manner the ocean component of the coupled
SPEAR model experiences a sequence of surface heat and
momentum fluxes that are very close to observations. These
quasi-observation boundary conditions then drive a very rea-
sonable AMOC evolution in the reanalysis, which is highly cor-
related with the reconstructed AMOC fingerprints and the Rapid
array observations21. Our reanalysis therefore provides a very
useful AMOC initial condition for the decadal hindcasts/fore-
casts. We again apply the APT method to the set of retrospective
decadal hindcasts/forecasts (see Methods) but use satellite
observations of sea surface height to do skill verifications. Note
that the sea level climatological variance and variance at different
lead times required by the APT method can be obtained directly
from hindcasts/forecasts and thus we don’t need to adopt the
linear regression model that was used in control simulation.

Figure 2 shows the most predictable components of sea level in
the decadal hindcasts and their corresponding prediction skills.
The prediction skill is estimated by correlating the timeseries of
the components in the hindcasts and observations, where the
observed timeseries were obtained by projecting the satellite
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Fig. 1 North Atlantic sea-level predictability in SPEAR control simulation. a The leading predictable component (APT1) and b the second most
predictable component (APT2) of North Atlantic Sea levels (mm) in SPEAR control simulation derived from the average predictability time (APT) analysis.
The solid black lines in a, b denote the long term mean Gulf Stream path in model. For each latitude, the Gulf Stream path is defined as the longitude where
there is a maximum of the zonal sea surface height gradient. The dash black line in b denotes the composited Gulf Stream path when the APT2 timeseries
show positive values above 1. c Power spectrum of the associated APT1 and APT2 time series. The dash lines denote the 95% confidence level based on
red noise null hypothesis. d Squared multiple correlation coefficients R2. The dashed black line denotes the 95% confidence level estimated by Monte Carlo
experiments. e Lagged regressions (−16 to 16 years) of AMOC stream function against the APT1 timeseries. f Same as e but for the regressions against the
APT2 timeseries. Negative (positive) lags denote the AMOC leads (lags) the APT time series.
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observation onto the spatial pattern of components. The leading
predictable component (APT1) is characterized by a broad SLR
over the North Atlantic basin except near the North Atlantic
current path (Fig. 2a). The associated timeseries in hindcasts,

reanalysis and satellite observation all show an upward trend
(Fig. 2d), indicating the important role of anthropogenic
warming. This component can be predicted up to a decade
ahead (Fig. 2g). To confirm the predictability source of the first
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Fig. 2 The spatial structure, timeseries and prediction skill of the components that maximized the APT of sea level in the SPEAR initialized decadal
hindcasts/forecasts. a The leading predictable component (APT1) of sea level (mm). b The secondary most predictable component (APT2). c The third
predictable component (APT3). The black solid (dash) line in a denotes the Gulf Stream path averaged in the first (last) twenty years in SPEAR reanalysis.
The black line in b and c denotes the long term mean Gulf Stream path in SPEAR reanalysis. For each latitude, the Gulf Stream path is defined as the
longitude where there is a maximum of the zonal sea surface height gradient. The dash black line in c denotes the composited Gulf Stream path when the
APT3 timeseries show positive values above 1.0. d The ensemble mean (black solid line) and spread (two thin black lines) timeseries as a function of lead
times for the decadal hindcasts initialized on 1 January every ten years from 1961 to 2021. The red (blue) line is the timeseries for projecting the
SPEAR_atm_sst_restore reanalysis (satellite sea surface height (SSH)) onto the APT1 component. The yellow line is the first principal component of sea
level from the SPEAR large ensemble simulations using the signal-to-noise maximizing EOF analysis, which reflects the external forced signal. e Same as
d but for the APT2 timeseries. The yellow line denotes the EOF1 timeseries of Atlantic stream function in reanalysis, while the magenta line denotes the
AMOC index in reanalysis that is defined as the maximum stream function within 20o–60oN latitude band and below 500m. f Same as d but for the APT3
timeseries. The yellow line denotes the EOF2 timeseries of Atlantic stream function in reanalysis. g Anomaly correlation between the APT1 timeseries in
hindcasts and projected satellite observation timeseries as a function of lead times (blue solid line). The dash blue line denotes the 90% confidence level
using a Monte Carlo method. h Same as g but for the APT2 timeseries. i Same as g but for the APT3 timeseries.
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component, we derive the externally forced sea level variability
over the North Atlantic region from SPEAR_LO large ensemble
simulations (see Methods) using the signal-to-noise maximizing
EOF analysis34,35. The externally forced sea level timeseries show
an increasing trend and the forced spatial pattern highly
resembles the APT1 component from the initialized SPEAR
hindcast/forecast, with a spatial correlation up to 0.75 (Supple-
mentary Fig. S3). This suggests that the most predictable
component is primarily a response to external radiative forcing.
The anthropogenic warming due to external radiative forcing
warms the ocean, changes the ocean density, and thereby causes
steric SLR15,36. The sea level fall in Fig. 2a is partly associated with
a southward shift of the Gulf Stream path (Fig. 2a), which likely
represents a compounding effect of the changes of AMOC and
the wind driven circulation. In the west corner, some nonlinear
factors such as the changes of Gulf Stream meanders may also
play important roles. These need to be examined more in future
work.

The second most predictable component in the initialized
decadal hindcasts (APT2) highly resembles the APT1 component
in control simulation (Figs. 2b and 1a). The projected APT2
timeseries in reanalysis show clear multidecadal variability, which
is negatively correlated with the AMOC index as well as the EOF1
time series of Atlantic stream function in reanalysis (Fig. 2e), with
correlation coefficients of -0.85 and -0.83, respectively. The EOF1
spatial pattern of Atlantic stream function in reanalysis
corresponds to a mature positive phase of AMOC (Supplemen-
tary Fig. S4a, c). All these features indicate that the predictability
source of this second predictable component is closely linked to
the mature state of AMOC. Based on verification against the
satellite projected time series, we find this component is
predictable up to ~5 years in advance (Fig. 2h). The skill is a
little bit lower than the perfect model skill seen in the control run
presumably due to model biases and initialization uncertainties
(Fig. 1d versus Fig. 2h). The third predictable component in
decadal hindcasts (APT3) is characterized by a tripole pattern
(Fig. 2c), which is very similar to the second most predictable
component in control simulation (Figs. 2c and 1b). This
component can be predicted ~3 years in advance (Fig. 2i). A
close examination reveals that this component is highly correlated
with the EOF2 time series of stream function in reanalysis that
corresponds to a AMOC transition from one phase to an opposite
phase (Fig. 2f and Supplementary Fig. S4b, d). Overall, the second
and third predictive components in retrospective decadal
hindcasts/forecasts are consistent with those from the control
simulation. This further verifies that the AMOC can act as a
predictability source to provide multiyear prediction skill for the
long-time sea level change over the North Atlantic Ocean.

Multiyear to decadal predictions of sea level along the U.S.
East Coast. As revealed by Fig. 2a–c, both the external radiative
forcing and AMOC multidecadal variability exert great influence
on sea level predictions along the U.S. East Coast. The radiative
forcing provides a decadal predictability source for the long-term
SLR over the whole U.S. East Coast, with increased impacts from
south to north. The AMOC mature state contributes more to the
coastal sea level predictability north of Cape Hatteras, while the
AMOC transition state contributes more to sea level predictability
south of Cape Hatteras. In the next section we focus on the U.S.
East Coast and use the coastal tide gauge (TG) observations to
verify our initialized decadal hindcasts (Fig. 3a).

To focus on low frequency sea level variabilities, we select TG
stations over the U.S. East Coast where the data length is at least
50 years. The annual mean sea level timeseries displays an
upward trend at all TG stations, largely due to the external

radiative forcing (Supplementary Fig. S5). After the linear trend is
removed, the sea levels show substantial interannual fluctuations
that are superimposed on multidecadal variability (Supplemen-
tary Fig. S5). On interannual timescales, the sea level variabilities
have many similarities and are highly correlated north or south of
Cape Hatteras (Supplementary Fig. S5)37–39. On multidecadal
timescales, the sea level variabilities at the northeast TG stations
(from the Halifax to Montauk stations) strongly covary with the
projected APT2 time series in reanalysis (Supplementary Fig. S5),
although the co-variability tends to attenuate from north to south.
They are also negatively correlated with the AMOC index in the
reanalysis, suggesting that the multidecadal sea level variations at
these stations are very likely driven by the AMOC. At the New
York and Atlantic city stations, the sea level timeseries become
noisier and show much weaker variabilities on multidecadal
timescales. For stations south of Cape Hatteras, the multidecadal
sea level variations there are quite different, which is more
correlated with the projected APT3 time series in reanalysis
(Supplementary Fig. S5) and shows an acceleration of SLR after
201030, suggesting a potential linkage with the AMOC transition
state. By taking all into account, we divide the U.S. East Coast into
three sea level regimes: Northeast (north of New York), Mid-
Atlantic (New York station; Atlantic City) and Southeast regimes
(south of Cape Hatteras). The sea level composite is then
calculated as the mean of annual sea level anomalies at all stations
in each regime.

We show in Fig. 3 the sea-level composites from TG stations,
initialized decadal hindcasts as well as their associated prediction
skills. In the model, we search for the closest ocean grid to each
TG station and thus obtain the corresponding hindcast timeseries
by compositing sea levels in those ocean grids. The Northeast sea-
level composite at TG stations shows a clear upward trend, largely
due to the anthropogenic warming (Fig. 3b). This sea level rising
trend can be predicted ~10 years in advance (Fig. 3c), in
agreement with the satellite verification as displayed in Fig. 2g.
The detrended sea-level composite at TG stations shows
pronounced multidecadal variations, with high sea levels during
1945–1975, before 1920 and after 2010 and low sea levels during
1920–1940 and 1980–2010 (Fig. 3b). This timeseries is highly
correlated with the projected APT2 timeseries and the AMOC
index in reanalysis (Fig. 2e), with correlations up to 0.7 and
−0.62, respectively. The internal sea level variations (see
Methods) from initialized hindcasts at a lead time of 1-yr and
3-yr closely follow the sea level evolutions at TG stations (Fig. 3b).
The anomaly correlation coefficient suggests that the Northeast
sea-level composite has a prediction skill up to ~4 years (Fig. 3c).
The skillful prediction is largely due to the successful capture of
multidecadal variability of sea level in observations that is very
likely driven by the AMOC. The detrended sea level prediction
skill at each TG station is also examined over the Northeast
regime. The prediction skill varies station by station, ranging
from 1 year to 9 years (Supplementary Fig. S6). Overall, the
prediction skill decreases from north to south, presumably due to
the gradually attenuating ratio of multidecadal variabilities
displayed in sea level timeseries (Supplementary Fig. S5). This
north to south attenuating phenomenon is consistent with the
influence of AMOC mature state on the coastal sea level
predictability as revealed by APT analysis (Figs. 1a and 2b). This
again indicates that the multiyear predictability source of sea level
along the Northeast Coast of U.S. primarily arises from the
AMOC mature state.

The Mid-Atlantic sea-level composite, again, shows a pro-
nounced upward trend that can be predicted ~10 years in advance
(Fig. 3d, e). However, the detrended sea level timeseries there are
very noisy, with strong interannual variabilities in the most recent
20 years. This in turn leads to a disappearance of multiyear
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prediction skill in this regime (Fig. 3e). We look further into each
station and find the sea levels at the Atlantic City are noisier and
less predictable than that at the New York station (Supplementary
Fig. S5, 6). The multiyear sea level prediction skill reemerges
when we move to the Southeast regime. As expected, the long-
term trend of Southeast sea-level composite is predictable a
decade in advance due to the external forcing (Fig. 3f, g). The
detrended sea levels there have a prediction skill up to ~3 years.
The initialized hindcasts at a lead time of 1-yr and 3-yr
successfully capture the decadal to multidecadal sea level
variabilities at TG stations, particularly in the most recent 30
years when there is a rapid SLR after 201029,30. The sea level time
series at all three southeast TG stations are highly correlated and
their prediction skills are comparable (Supplementary Fig. S5, 6).
The sea levels at the Southeast TG stations are more correlated
with the projected APT3 timeseries than the APT2 timeseries in
reanalysis, with correlations of 0.51 and 0.25, respectively. This
suggests that the AMOC transition state plays a larger role in the
sea level multiyear prediction skill in this regime, in agreement
with the APT analysis shown in Figs. 1b and 2c.

Along the U.S. East Coast, the trend-like sea level skill verified
by TG observations shows an increasing tendency from south to
north (red lines in Fig. 3c, e, g), which is consistent with the APT
analysis (Fig. 2a). This is because the external radiative forcing

not only induces a steric SLR that can be predicted on decadal
time scales. It also weakens the AMOC, and the AMOC-related
predictive skill is dominated by the AMOC mature state that
shows increased skills from south to north along the U.S. East
Coast (Figs. 1a and 2b). Adding these two factors together results
in non-uniform trend-like sea level skills along the U.S. East
Coast. In other words, the AMOC-induced SLR and its associated
long memory facilitate the trend-like sea level skills over the U.S.
Northeast Coast.

Summary and conclusion
In the present study, we assess the multiyear to decadal prediction
skill of sea level over the North Atlantic regions by combining
observations, multi-century control simulations with climate
models, and initialized retrospective decadal hindcasts/forecasts.
A statistical optimization APT method is used to identify the
most predictable North Atlantic sea-level components. We
identified three North Atlantic sea-level components that are
skillfully predictable on multiyear to decadal timescales. The most
predictable sea level component is characterized by a basin wide
upward trend. This trend-like component is highly predictable at
least 10 years ahead in SPEAR decadal hindcasts. The external
radiative forcing is the main predictability source for the trend-
like component. The second and third predictable sea level
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Fig. 3 Sea level multiyear to decadal prediction skill along the U.S. East Coast. a The locations of 14 tide gauge (TG) stations used in this study. The
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components are related to the AMOC mature state and transition
state, respectively. The former is characterized by sea level
anomalies over the western subpolar gyre regions, with a max-
imum to the east of Newfoundland that extends to the U.S. East
Coast, while the latter is featured by a tripole structure. These
AMOC-related components are also clearly seen in control
simulations, which have potential predictabilities up to 5–7 years
in a perfect model context. In the initialized decadal hindcasts,
the sea level skills are still maintained, with ~5 years for the
second component and ~3 years for the third component after
verified by satellite observations. The skill degradation likely
results from model biases and uncertainties in initialization.

When we focus on the U.S. East Coast, the trend-like sea level
skill due to external forcing tend to increase from south to north
along the coast. This non-uniform skill is largely associated with
the AMOC weakening in response to the external radiative for-
cing. The AMOC-induced dynamic SLR facilitates the trend-like
sea level skill over the U.S. Northeast Coast. The detrended sea
level skills along the U.S. East Coast are more related to the
AMOC mature (transition) state in the Northeast (Southeast)
regime, which can be predicted ~4 (3) years ahead when verified
by TG observations. Overall, the AMOC long persistence due to
subsurface ocean memory eventually reflects in sea levels along
the U.S. East Coast, leading to multiyear to decadal prediction
skills of sea level there.

Our initialized decadal forecasts indicate that the total sea level
over the U.S. Northeast Coast will continue to rise in the next
decade (Fig. 4a), since the external forcing and AMOC states all
contribute positively to the SLR (Fig. 2d, e). The internal sea level
component will continually have above normal anomalies for the
next few years, although the amplitude of the anomalies will keep
flat (Figs. 4b and 2e). It is also seen that the 10-yr sea level
prediction initialized between 1995–2003 well captures the tran-
sition to multiannual high sea level events after 2005 (Fig. 4b).
During these initialization years, the AMOC states were in
mature positive phase (Fig. 2e), which are favorable for predicting
the AMOC transition from positive to negative phases that are
accompanied with a rising sea level trend. This again highlights a
crucial role of the AMOC in the sea level prediction over the U.S.
Northeast regime. However, we note that all hindcasts under-
estimate the extreme sea level high event during 2009–2010
(Fig. 4). This is because this extreme event is not only linked with
the AMOC but also associated with the significant negative North
Atlantic Oscillation (NAO) index13 that is unpredictable on
multiyear to decadal timescales.

In the current study, we demonstrate the multiyear to decadal
predictability/prediction of sea level over the North Atlantic
regions based on the GFDL SPEAR_LO decadal prediction sys-
tem. We suggest that the multidecadal buoyancy driven AMOC
variability is an important predictability source for the multiyear
sea level prediction along the U.S. East Coast. In a future climate,
the AMOC variability is very likely to decrease in response to
global warming40. This may indicate that the sea level along the
U.S. East Coast is less predictable on multiyear timescales in a
future warming climate than the present day. This will be studied
in our future work. In addition, we note that the SPEAR_LO does
not include a land ice component, thus the SPEAR_LO cannot
simulate the influence of Greenland ice sheet melt on the AMOC,
sea level and geoid changes along the U.S. East Coast41,42. The
SPEAR_LO underestimates the river discharges to the coastal seas
as well43,44. These factors lead to a smaller magnitude of SLR over
the U.S. East Coast in the model compared to the TG records,
which eventually affects the trend-like sea level prediction skills.
Moreover, the SPEAR_LO only has ~1o ocean resolution28,
therefore the Gulf Stream separation point has an obvious over-
shoot bias, and the coast and shelf break are not resolved very

well45,46. The interannual sea level variabilities over the U.S.
Northeast Coast in the model do not exactly covary with obser-
vations due to these factors, which can lead to prediction skill
degradation of sea level. In addition, the SPEAR_LO does not
simulate climate-unrelated factors, such as the land subsidence
and land uplift that can change the relative SLR47,48. Ideally,
predictions of multiyear to decadal sea level change over the
North Atlantic regions should take all these factors into con-
sideration. Although the SPEAR_LO has many shortages that
may degrade the prediction skill, the key of the present paper is
not to quantify the prediction skill, but rather to reveal the
potential predictability sources. We hope the future model
development and inter-model comparisons could address these
and other shortages, therefore providing more accurate prediction
information for better decision making and socioeconomic
management.

Materials and methods
Observations. We use the sea surface height (SSH) from the
Copernicus Marine Environment Monitoring Service49, which is
generated using satellite observations and is a mapped/inter-
polated product. The gridded version with a resolution of 0.25
degree is used in the present study. We also use the coastal sea
level at tide gauge (TG) stations processed and distributed from
the University of Hawaii Sea Level Center50. To focus on low
frequency sea level variability, we use the annual mean sea level
anomalies and correct the inverted barometer effect (IB) in tide
gauge records to match the satellite observations. The IB is given

by IB ¼ Pa�Pgmean

ρ0g
, where Pa is local sea level pressure, Pgmean is the

global ocean averaged sea level pressure, ρ0 is the sea water
density and g is gravity. The sea level pressure dataset is from the
55-year Japanese Reanalysis (JRA-55)51.

Model. The GFDL Seamless system for Prediction and Earth
system Research (SPEAR) is used in the present study28. Here, we
use the low ocean resolution version called SPEAR_LO. The
ocean and ice components are from MOM652, which has a ~1o

horizontal resolution (with refinements to 1/3o meridional reso-
lution in the tropics) and 75 hybrid ocean layers in the vertical.
The atmosphere and land components are from the AM4-
LM453,54, which has a ~100 km horizontal resolution and 33
vertical levels.

We run a 4000-year control simulation of SPEAR_LO, with
atmospheric composition fixed at preindustrial 1850 concentra-
tions. The SPEAR_LO control simulation broadly captures the
observed mean dynamic sea level features, including the high sea
levels in the subtropical region and the low sea levels in the
subpolar gyre region (Supplementary Fig. S7a, b). Compared to
observation, the low sea levels in the subpolar gyre in model are
more confined to the western part of the basin. The model also
shows similar sea level variability over the North Atlantic mid-
latitude as the observation (Supplementary Fig. S7c, d). However,
the sea level shows too weak (strong) variabilities in the west (east)
of 55oW in model compared to observation, presumably due to
weak eddy activities and recirculation in our coarse resolution
model. It is worth noting that the SPEAR_LO doesn’t have the land
ice component, astronomical tide as well as climate-unrelated
factors such as the land subsidence and land uplift. We also
conduct large-ensemble simulations of SPEAR_LO, which cover
the historical and 21st century periods28,55 and are driven by both
natural and anthropogenic forcings. The ensembles are comprised
of 30 members, with each member initialized from different time of
the control run that are 20 years apart in order to sample different
phases of internal variability in the climate system.
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We developed a reanalysis for initializing retrospective decadal
prediction system based on SPEAR_LO, which is named as
SPEAR_atm_sst_restore21,56. In SPEAR_atm_sst_restore, the
atmospheric component was restored toward the 55-year
Japanese Reanalysis (JRA-55) on a 6-hourly time scale51 and
the SST within 60oS-60oN was restored to the Extended
Reconstructed Sea Surface Temperature version 5 (ERSSTv5)57.
The retrospective decadal hindcasts/forecasts using SPEAR_LO
were then initialized from SPEAR_atm_sst_restore21,56. The
hindcasts/forecasts have 20 members and were initialized on 1
January every year from 1961 to 2020 from different members of
reanalysis and integrated for 10 years with the temporally varying
historical forcings. The lead-time-dependent climatology is
subtracted from hindcasts/forecasts before analysis in order to
remove the systematic model drift.

APT methods. The average predictability time (APT) method is
used to identify the most predictable components of annual mean
North Atlantic sea-level in both control simulation and initialized
decadal hindcasts26,27. The APT method was first proposed by
DelSole and Tippett and was widely applied in many prediction
studies across various timescales58–60. The APT is defined as
twice the integral of predictability over all lead times:

APT ¼ 2 ∑
1

τ¼1
1� δ2τ

δ21

� �
; ð1Þ

where δ2τ is ensemble forecast variance at lead time τ and δ21 is
climatological variance. We then seek an inner product qTx to
maximize APT, where q is a projection vector, x is the state vector
and T denotes the transpose operation. Maximizing APT leads to
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a generalized eigenvalue problem:

2 ∑
1

τ¼0
ð∑1 �∑τÞq ¼ λ∑1q; ð2Þ

where λ is the eigenvalue and is also the APT value. Thus, the
APT decomposition is analogous to an Empirical Orthogonal
Function (EOF) analysis, but here we decompose predictability
instead of variance. For the initialized decadal hindcasts, we can
easily get the climatological variance and forecast variance at
different lead years since we have 20 ensemble members and 10
years prediction runs. For the control run, we only have a long
single ensemble member, thus we adopt a linear regression model
to estimate APT according to DelSole and Tippett24,25. The
regression model is

x̂tþτ ¼ Lτx tð Þ þ ϵ tð Þ; ð3Þ
where x tð Þ represents the predictor at time t, x̂tþτ is the predictand
at time t þ τ, Lτ is the regression coefficient and ϵðtÞ is the resi-
dual term. Substituting (3) into the eigenvalue problem (5) leads to

2 ∑
1

τ¼1
CτC

�1
0 CT

τ

� �
q ¼ λC0q; ð4Þ

where Cτ denotes the time lagged covariance matrix, C0 is the
climatological variance, λ represents the eigenvalue and q denotes
the projection vector, respectively.

When applying the APT method to control simulation, we first
extract the leading 30 principal components of both the
predictors and predictands. The resulting principal components
are then split into half: The first half of data is called training data
and are used to maximize APT in Eq. (4), while the second half is
left for verification. The squared multiple correlation R2

τ is used to
evaluate the potential predictability:

R2
τ ¼

qTCτC
�1
0 CT

τ q
qTC0q

: ð5Þ

We use the training data to calculate q and use the verification
data to obtain the Cτ and C0 two covariance terms. The slower
decrease of R2

τ as a function of lead time, the larger potential
predictability and vice versa. We use the Monte Carlo approach
to test the statistical significance of APT26,27. If the APT value
calculated from training data exceeds the 95% value from the
Monte Carlo methods, the APT value from the training data will
be significant at a 95% confidence level. We only show significant
APT components in our article.

External forcing removal. To remove the effect of external
radiative forcing, the linear trend at each TG station is removed
before analysis. In the model, we remove the forced signal from
the initialized decadal hindcasts at each lead time, where the
external forcing is obtained from SPEAR_LO large ensemble
simulations using the signal-to-noise maximizing EOF
analysis34,35. We also tested other methods to remove the forced
signal in model, such as the ensemble mean of large ensemble
simulations and the linear trend. Similar prediction skills can be
obtained for all these three methods. The signal-to-noise max-
imizing EOF technique extracts the forced signal by maximizing
the ratio of signal variance (variance of ensemble mean) with
respective to the noise variance (variance of member deviations
from the ensemble mean) using large ensemble simulations.

Data availability
The Data and Services Center (AVISO) observed sea surface height (SSH) are available at
https://marine.copernicus.eu/access-data. The sea level timeseries from tide gauge
stations is available at University of Hawaii Sea Level Center https://uhslc.soest.hawaii.
edu/. The data for figures are available online at https://doi.org/10.5281/zenodo.8386988.

Code availability
The source code of ocean component MOM6 of SPEAR_LO model is available at https://
github.com/NOAA-GFDL/MOM6.
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