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Overlooking probabilistic mapping renders urban
flood risk management inequitable
José M. Bodoque1✉, Álvaro Esteban-Muñoz1✉ & Juan A. Ballesteros-Cánovas2

Characterizing flood-related hazards has mostly relied on deterministic approaches or,

occasionally, on particular uncertainty sources, resulting in fragmented approaches. To

analyze flood hazard uncertainties, a fully integrated floodplain modeling information system

has been developed. We assessed the most relevant uncertainty sources influencing the

European Floods Directive’s third cycle (2022–2027) concerning extreme flood scenarios

(a 500-year flood) and compared the results to a deterministic approach. Flood hazards

outputs noticeably differed between probabilistic and deterministic approaches. Due to flood

quantiles and floodplain roughness characterization, the flood area is highly variable and

subject to substantial uncertainty, depending on the chosen approach. Model convergence

required a large number of simulations, even though flow velocity and water depth did not

always converge at the cell level. Our findings show that deterministic flood hazard mapping

is insufficiently trustworthy for flood risk management, which has major implications for the

European Floods Directive’s implementation.
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F looding of fluvial systems is one of the most serious climate-
related threats to people’s livelihoods, impacting socio-
economic development1. Even though this threat is already

considerable, climate change and growing urbanization in flood-
prone areas are anticipated to exacerbate it2–4. The latest report
from the Intergovernmental Panel on Climate Change stresses the
need to deal with the worsening effects of climate change and
ensure the most vulnerable people can adapt and stay safe5. In
recent decades, both the population and the economic value of
material assets in flood-prone areas have increased2. According to
McDermott6, 1.81 billion people (almost 23% of the world’s cur-
rent population) are exposed to flooding, which poses a major risk
to people’s lives and livelihoods. Indeed, flooding already has a
huge impact on economies and communities, since the worldwide
annual cost of urban flood damage is USD 120 billion7. Besides,
long-term trends and changes point to an overall rise in popula-
tion and asset exposure to flooding over the coming decades8.

In addition to flood mitigation, it is vital to reduce vulnerability in
flood-prone areas via well-designed land-use planning and flood-
adapted urban development in order to avoid a future increase in
flood risk9. Land-use planning is regarded as one of the most
important measures in mitigating flood risk, and it is acknowledged
that an integrated strategy embedded in spatial planning procedures
plays a crucial role in risk management10. Land-use planning
employs formal instruments such as flood hazardmapping to restrict
settlement development in hazard areas and assure flood-adapted
land uses11. Since flood hazard mapping enables spatial planners to
limit development to the most suitable sites, accurate and relevant
information on the threat of an area prone to flooding is crucial for
land-use planning12,13.

The National Flood Insurance Program in the US and the
European Floods Directive (2007/60/EC) are two examples of
legislation that promotes flood risk management approaches that
encourage land-use planning to prevent new development in
flood-prone areas14. In real-world and research contexts, deter-
ministic flood hazard (DFH) assessment is the approach pri-
marily used for this purpose. This approach relies on using fixed
model input data and boundary conditions, establishing rigid
limits within which all assets and individuals are equally sus-
ceptible to flooding and those outside of which are truly safe15.
Consequently, DFH maps may have detrimental social and eco-
nomic repercussions since they are used to certify flood risk and
assist in decisions about how to plan land uses in flood-prone
areas15. The above argument is supported by the fact that flood
mapping is subject to substantial uncertainties arising from the
general procedures included in the models, how they are set up,
and the input data16. Given all these uncertainties, the outcomes
of a deterministic approach, which simply considers a single
system configuration, may be spuriously precise17.

Using probabilistic flood hazard (PFH) maps appears reason-
able in the context of uncertainty. PFH includes the assessment of
different types of uncertainty related to the natural variability of
hydrological processes (aleatory uncertainties) and the lack of
knowledge or model simplifications (epistemic uncertainties)18.
Di Baldassarre et al.19 argued that probabilistic flood mapping
should be employed instead of deterministic flood mapping
because: (i) uncertainty is always present in hydrological and
hydraulic analysis and can’t be ignored; (ii) uncertainty can only
be shown reasonably when it is quantified and displayed, and this
is only possible in a probabilistic framework; and (iii) experts
should provide decision-makers with understandable probabil-
istic flood maps to support and guide them in making decisions.

The benefits of assessing flood hazards probabilistically have
been proven in recent decades16,19. However, studies that cur-
rently take a probabilistic approach typically tackle the problem
from a fragmented perspective, accounting for only specific

uncertainty sources, e.g., deciphering effects of uncertain
boundary conditions15; uncertainty analysis linked to the rainfall-
frequency analysis20,21; uncertainty assessment of flood hazard
due to levee breaches22,23; depicting uncertainty associated with
streamflow, land use, or geomorphic adjustment14,24,25, or con-
sidering any other combination of uncertainties, e.g., discharge,
topographic, and roughness26,27.

Also, the influence of the input data and boundary conditions
on the outputs of flood hazard analysis is seldom evaluated using
sensitivity analysis28, despite its necessity for reliable flood risk
management29. With a few exceptions, when these impacts are
analyzed, they are not characterized spatially30,31. Finally, con-
vergence analysis32 is commonly used to evaluate the consistency
and reliability of the PFH analysis qualitatively rather than
quantitatively20 and for the entire flooded area, but in the vast
majority of cases without verifying that the hydrodynamic model
converges in every cell of the studied domain30 for both water
depth and flow velocity outcomes.

Here, we characterize the most important uncertainty sources
affecting the implementation of the European Floods Directive’s
third cycle (2022–2027). To do this, we provide a fully integrated
floodplain modeling information system to probabilistically
quantify errors in flood hazard maps. To this end, we analyzed
the 500-year flood since it represents the flooded area for extra-
ordinary events, encompassing all possible restrictions for land
uses based on the categories of low, medium, and high flood
hazards. We focused on the Duero River (Spain), which crosses
the city of Zamora, where historically there have been large flood
events33 (Supplementary Fig. 1), disrupting the population and
causing large amounts of damage and fatalities34. We use Monte
Carlo (MC) simulations to derive PFH maps aimed at (i) con-
ducting an uncertainty analysis to identify inaccuracies in
flooding depths, flow velocities (both related to flood hazard), and
flooding area model outputs arising from the identified uncer-
tainty sources; (ii) performing a local sensitivity analysis and
global sensitivity analysis to identify the model inputs that have a
major impact on hydraulic outputs; and (iii) accomplishing a
convergence analysis to demonstrate the consistency and relia-
bility of the model outputs. To achieve this, the central limit
theorem (CLT) was applied to the total study area and to each cell
separately. The PFH maps created from the approach deployed
here were compared to a DFH map built using the same input
data and boundary conditions considered to construct the PFH
maps. The degree of agreement between the two approaches was
examined using global and category-level indices.

The procedure displayed here revealed that model sensitivity
varies spatially, with the most sensitive input data being those
with the greatest level of uncertainty (e.g., flood quantiles, channel
roughness). Our findings demonstrate conclusively that the sub-
stantial uncertainty of the upstream boundary condition to the
hydrodynamic model results in a highly variable output of the
flooding area specified by the PFH approach. Meanwhile, there is
a significant disparity between deterministic and stochastic flood
zones. Even though deterministic and stochastic flood zones
overlap, there may be differences between flood hazard categories.
Our results also suggest that, although the stochastics model
converged on a broad scale, there were specific areas of the stu-
died domain where the convergence was not achieved. Particu-
larly, flow velocities did not converge on slope breaks between
riverbanks and the floodplain, and water depths did not converge
along floodplain boundaries when water depths were smaller than
the digital surface model (DSM) error, nor in complex surface-
model areas with considerable related errors. These findings have
major implications for the applicability of the European Flood
Directive, as they reveal that DFH maps are not entirely trust-
worthy for flood risk management.
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Results and discussion
Convergence of the stochastic flood hazard model. The quan-
tification of the convergence of PFH is crucial to better assess and
communicate the reliability of flood hazards maps35 and to
validate its construction as a stochastic product36. However, it is
either ignored or only superficially accounted for in so-called
MC-based procedures37. Our analysis centered on the required
quantitative convergence assessment37 of the PFH’s three most
relevant output data: flooded area (m2), water depth (m), and
flow velocity (m s−1).

Quantitative convergence of the flooded area was only achieved
after 288 hydraulic simulations, when the mean flooded area was
maintained within confidence bounds for at least 60 simulations
(Fig. 1a). However, convergence of water depth and flow velocity
outputs was reached later at the cell scale (Fig. 1b). This local
convergence stability was attained after 421 simulations, when the
number of cells with water depth and flow velocity convergence

remained visibly stable (Fig. 1b). In terms of computation time,
this implied an increase of almost 146.2%, according to the
characteristics of the workstation used (see the Methods section).
Moreover, cell-level convergence of water depth and flow velocity
outputs was not achieved in all evaluated cells. Thus, 26.7% of the
analyzed cells lacked cell-level convergence. Flow velocity failed to
converge in at least 13.7% of the cells (611.5 m2), while water
depth ceased to converge in 9.3% of the cells (417.3 m2).
Moreover, 3.7% of cells (163.9 m2) exhibited no convergence in
water depth and flow velocity (Fig. 1c).

These findings have far-reaching implications for the entire
flood hazard assessment. Thus, although general convergence is
achieved for the flooded area output20,35,38,39, there are local
effects that may prevent convergence at the cell level or, at the
very least, require a substantially greater number of simulations.
Our findings indicate that local convergence in areas with
complex geometry, such as urban areas, riverbanks, islands, and

Fig. 1 Convergence analysis of the PFH model for the 500-year flood. a Depicts the convergence of flooded area outcomes (in ha) achieved through the
PFH approach across the entire study area. To determine convergence, the CLT method was employed. It produced a confidence bound (CB) with a width
corresponding to the maximum acceptable variance for the flooded area outcomes and a length representing the minimum number of simulations needed
(at least 60) to ensure an almost negligible probability of the flooded area results falling outside this bound. Accordingly, the orange CB shows simulations
where the model was unstable, the pale-gray vertical line marks the simulation assessing model stability, and the green CB represents simulations in which
the model remained stable. b Displays the percentage of cells in the study domain that converge in each simulation for water depth and flow velocity
outcomes. The pale-gray vertical line represents the simulation that achieves the highest percentage of convergence for both outcomes, with no major
deviations from this simulation. c Shows the stochastic 500-year flood map control aligned with the 0.50 confidence limit (CL). The flooded area is
highlighted in green for cells that converged on water depth and flow velocity (yellow for those that did not), red for cells that did not converge on flow
velocity, and blue for cells that did not converge on water depth. The orthoimage was obtained from the Spanish National Center for Geographic
Information.
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bars, is challenging because the hydraulic model has greater
difficulty representing reality. This implies that flood hazard
assessment in complex floodplains comprising urban areas is
subject to uncertainties, with important implications for flood
hazard zonation.

Sensitivity of the stochastic flood hazard model. To evaluate the
relevance of input data uncertainties in the final PFH model, we
performed a local sensitivity analysis on hydraulic outputs asso-
ciated with the general scale (i.e., total flooded area) as well as a
global sensitivity analysis focused on the local scale (i.e., the
importance of input data on water depth and flow velocity outputs
is displayed at the cell scale). As seen in Fig. 2, the flood quantile is
the primary source of uncertainty on the general scale, with the
capacity to alter the flooded area by −45.0% to +62.1%. These
results support the notion that historical and multi-archive paleo-
flood data must be appended to systematic data series of instan-
taneous peak flows to improve at-site flood frequency analysis40,41.

Flooded area ranked between −49.1% and +54.4% due to land
use/land cover uncertainties. Interestingly, another important
uncertainty source is related to river channel roughness (from
−48.7% to +49.7%), indicating that inconsistencies in the
characterization of land use/land cover along the river channel
might result in considerable changes to the flooded area.
Moreover, as Abily et al.30 have shown, bathymetry and
topography are important sources of uncertainty (ranging from
−48.6% to +4.3% and from −16.0% to +16.5%, respectively),
albeit predominantly in poorly topographically defined locations.
Bathymetry, in particular, may have generated a major negative
bias in the flooded area, emphasizing the critical need for its
accurate characterization.

On the local scale, the Sobol Index (SI), which represents the
relative influence of an input data over an output data, indicated
that an inadequate definition of an input data leads to greater
individual sensitivity. Looking at the water depth outcomes
(Fig. 3a), we found that the flood quantile and channel roughness
scored highest at 84.6% and 14.2% of cells, respectively.
Particularly, the flood quantile showed higher SI values in 9.8%
of cells (SI rank: 0.4 to 0.6), moderate values in 70.4% of cells (SI
rank: 0.2 to 0.4), and lower values in 4.4% of cells (SI < 0.2).

Roughness seems to have similar relative influence in the
model, with SI ranked between 0.4 and 0.6 in 7.2% of cells and
between 0.6 and 0.8 in 7.0% of cells. Interestingly, the spatial
representation of the first-rank SI (Fig. 3b) indicated that the
sensitivity related to the flood quantile is mostly located in cells
outside the river channel, whereas the sensitivity associated with
roughness is restricted to the river channel. This confirms that the
characterization of roughness within the river channel is crucial
for the reliability of the PFH model24,26,28,35, even being
comparable with the flow quantile sensitivity42. This may also
be connected to the significance of roughness in urbanized
areas39. As a result, it is preferable to use more robust methods to
characterize roughness, particularly in river channels, such as
developing flow-dependent schemes that relate grain roughness
coefficient to either grain size or channel slope43 or evaluating the
roughness linked to riparian zones, whose analysis provides
robust results when equations considering tree spacing, trunk
diameter, wood area index, and leaf area index are used44.

In addition, our findings implied that local inaccuracies in
bathymetry may have a major effect on the water depth and,
therefore, on the entire flooded area. As illustrated in Fig. 3a,
despite bathymetry being ranked in the first position with a SI
greater than 0.4 in only 0.3% of cells, it has a considerable
influence on the water depth outcomes, as indicated by the
flooded area (Fig. 2). The other analyzed parameters (i.e., land
use/land cover, energy slope, and topography) were ranked
between the second and fourth positions but had lower SI values
(0 to 0.2). These findings imply that there is still considerable
room for improvement in minimizing the influence of epistemic
uncertainties on the outcomes of PFH, particularly through a
better characterization of flood quantiles, roughness of the
channel bed, bathymetry and DSM of floodplains. This reinforces
the idea that defining the PFH for the 500-year flood in the
absence of reliable historical or paleohydrological data is
challenging41. Therefore, the sensitivity analysis demonstrated
that a thorough characterization of input data, particularly in
regard to determining flood quantile, is essential for effective
management of the 500-year flood in terms of risk mitigation.

Differences between deterministic and stochastic flood hazards
models. Our findings demonstrated that there are considerable
disparities between DFH and PFH maps, which have important
implications for flood hazard assessment. As shown in Fig. 4a, the
DFH model displayed a flooded area of 262.8 ha, while the PFH
model showed an expected flooded area of 313.6 ha, ranging from
121.1 ha (0.95 CL) to 442.7 ha (0.05 CL). Consequently, when
comparing the PFH and DFH methods, the DFH approach on
average underestimated the flooded area by 16.2%. The dis-
tribution of flooded area values in the PFH model exhibited a
bimodal distribution, which reflects the arrangement of the
floodplain and the channel. As a result, a sizeable number of
simulations (25.6%) occupied a small area of the floodplain
(between 135 and 190 ha), whereas a remarkable 50.6% of
simulations occupied the entire floodplain (>320 ha). This implies
that the floodplain along the partly confined river reach under
study is quickly occupied and that subsequent variability occurs

Fig. 2 Local sensitivity analysis of the stochastic flood hazard model
(500-year flood) with a specific focus on the flooded area output across
the entire study domain. This figure shows a tornado plot, which indicates
the relative relevance of input parameters in influencing the flooded area
output. This plot displays horizontal bars for each input parameter being
examined. The bars are arranged in decreasing order according to their
influence on the flooded area output, with the most significant parameter at
the top and others following in descending order. The direction in which
each bar extends from the centerline indicates whether increasing or
reducing that specific parameter value results in an increase or reduction in
the flooded area output. The bigger the spread between opposing ends of a
bar, the more effect it has on the output.
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mostly in water depth rather than the total flooded area, which is
an output commonly used for flood risk management purposes.
As a result, there is a greater probability of experiencing a flood
closer to 0.05 CL (0.0034) or 0.95 CL (0.0041) than receiving the
expected flood (0.0026). Moreover, the probability of a determi-
nistic flood is even smaller (0.0018). It is quite feasible that the
flood extent of any particular flood will be greater or lesser than
the expected flood. Accordingly, in 77.8% of cases, the F-statistic
estimated between both approaches was less than 0.77, while the
F-statistic for the expected flood was 0.84. Figure 4b shows a
spatial depiction of both methods, easing the visualization of
these differences.

Considering differences in flow velocity (Supplementary Fig. 3)
and water depth as the primary hydrodynamic outputs to
establish flood hazard categories, the findings revealed greater
disparities across the two approaches (Fig. 5). We found that only
45.1% of the cells displayed the same flood hazard category
throughout both methods. Along the channel, there was a very
high degree of agreement in the flood hazard categories supplied
by both methodologies; however, in the floodplain, there was a
substantial degree of disagreement in the computed flood hazard
categories. These differences are further reinforced by the overall

accuracy and Kappa values obtained by comparing the flood
hazard categories of the PFH and DFH models (45.1% and 0.3,
respectively). Here, we found that the PFH’s definition of the
medium-flood hazard category is vague owing to associated
uncertainties. As shown in Fig. 5, the DFH only hits 32.9% of this
category, whereas the high and low flood hazard categories match
89.9% and 100.0%, respectively. Moreover, the majority of cells
(35.5%) did not match with any flood hazard category since they
were exclusively deployed by the stochastic approach. Therefore,
our findings revealed that the deterministic approach may be
inaccurate for the spatial flood hazard category representation
and that the medium-flood hazard category could be of limited
use when the stochastic approach delivers mapping outputs with
high uncertainty (e.g., 500-year flood).

Implications for flood hazard and risk management. Here, we
incorporate all prior stochastic outcomes intended to enhance
flood hazard characterization in urban areas and reduce inequi-
ties in flood risk management, therefore identifying stochastic
flood risk management zones (Fig. 6). The sensitivity analysis of
extreme flood scenarios demonstrated that poorly defined input

Fig. 3 Global sensitivity analysis of the stochastic flood hazard model (500-year flood) for the water depth output at the local scale. a Portrays the
influence of input factors on this output, considering their spatial weight throughout the entire domain under study. A hierarchical ranking system was
established to assess the influence levels of input factors (first, second, third, and fourth ranking positions) by evaluating the SI for each factor. The bar
chart illustrates the percentage of cells assigned to each input factor for each ranking position, representing its influence on the water depth output across
the entire study domain. b Depicts a map illustrating the spatial representativeness of the first-ranked input factors in relation to the output water depth.
The legend below the sensitivity map shows how the SI fluctuates over the whole examined domain for each input factor, with lighter hues of the same
color corresponding to lower SI values and darker shades corresponding to higher SI values. The orthoimage was obtained from the Spanish National
Center for Geographic Information. The sensitivity maps for water depth and flow velocity outputs for the four ranking positions are displayed in
Supplementary Fig. 2.
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Fig. 4 Comparison between stochastic and deterministic approaches for the 500-year flood. a Depicts the bimodal PDF that follows the set of flooded
area values obtained by the PFH approach utilized here. This bimodal PDF is cut vertically by lines depicting flooded areas and their associated probabilities,
as determined by the deterministic approach (green dashed line) and the stochastically determined floods (pale-pink line, dark-pink line, and dark-red line)
when considering the 0.95 CL, 0.5 CL, and 0.05 CL, respectively. The F-statistic is also indicated to illustrate the level of disagreement between the
deterministic flooding and the stochastic flooding for the 0.5 CL. The 500-year flood area produced by using the 0.5 CL is displayed in b. In addition, the
limits or contours of the deterministic flood area and stochastically produced flooding are displayed, taking into consideration both the 0.95 CL and
the 0.05 CL. The orthoimage was obtained from the Spanish National Center for Geographic Information. For the stochastic velocity map, see
Supplementary Fig. 3.

Fig. 5 Spatial representation and quantitative comparison of deterministic flood hazard categories with stochastic flood hazard categories. The level of
agreement between the deterministic and stochastic methods in obtaining 500-year flood hazard maps (with the latter considering the 0.5 CL) is shown.
The black contour delimits the stochastic outputs. A confusion matrix was employed to assess the level of agreement by comparing cells throughout the
entire area of interest. Consequently, global accuracy and the kappa coefficient were computed and visually presented in bar graph style at the bottom left
corner of this figure. Additionally, the level of agreement for each flood hazard category is displayed cell-by-cell as a percentage, considering the entire
flooded area (refer to the top horizontal bar chart). The percentage of agreement for each hazard category is also depicted in horizontal bar charts
positioned directly below the preceding bar chart. Red, orange, and green depict cells in the simulated area where the deterministic and stochastic methods
concur for high, medium, and low flood hazard categories, respectively. Light pink and pale-orange colors indicate cells where the deterministic approach
underestimates the high and medium-flood hazard categories, as determined by the stochastic method. Lastly, gray color represents pixels that display
flooding only when the stochastic approach is employed. The orthoimage was obtained from the Spanish National Center for Geographic Information.
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data may have a major effect on the outcomes. First, the accep-
tance of these findings necessitates rigorous assessments of the
uncertainties, particularly the flood quantile definition as well as
roughness and bathymetry. Second, based on the analysis of the
500-year flood, our results suggest that stochastically-based risk
management could require one of the following decisions in order
to manage it: (i) focus the assessment on the area defined by the
expected flood (0.50 CL); (ii) manage the risk in the area defined
by the most frequent scenario flood (between the 0.50 CL and the
0.05 CL); and (iii) manage the risk in two zones defined by two
differentiated flooding scenarios according to their probability.

Our findings support the conclusion that the third option would
be the best alternative in complex urban areas. The first zone would
be defined by the flood extent associated with the most likely case on
the first unimodal function (close to the 0.95 CL), and the second
zone would be defined by the flood extent associated with the most
likely scenario on the second unimodal function (close to the 0.05
CL), which has a lower probability of occurrence than the first zone.
Different flood hazard categories might then be considered, and
appropriate restrictions may be imposed for each. However, as
previously mentioned, the medium-flood hazard category is poorly
defined using a stochastic approach, so it is advised to utilize just two
hazard categories—high and low—with two types of risk reduction
measures—more restrictive and less restrictive—according to the
previously specified zones.

Lastly, the convergence map provides crucial information on
areas where it is assumed that there is no local convergence, i.e.,
where the outputs are not credible enough. In these zones, even
with a large number of simulations using a stochastic approach,
the water depth and flow velocity data seem to be less certain.
Thus, it might be decided to adopt more restrictive measures to
reduce flood risk. Alternate options include enhancing the model
with sensitivity analysis information (i.e., through a well-defined
high-sensitivity input) or increasing the number of simulations to
achieve better local convergence.

Methods
Model boundaries. The study site is focused on the Duero River crossing the city
of Zamora (Supplementary Fig. 1), a sixty-thousand-inhabitant town in north-
western Spain (Castilla y Leon region). Zamora is located in the middle part of the
Duero Basin, where the river is characterized by a meandering morphology and

vegetated bars. The floodplain at Zamora is asymmetric, with a 300-meter-wide
alluvial floodplain on the southern margin and a channel carved into silicified
sandstones and conglomerates on the northern side. The average annual discharge
in the studied reach is 96.3 m3 s−1 (for the period from 2002 to 2018). Maximum
discharges from December to May, which can be 30 times greater than the mean
discharge, and minimum discharges from July to September are the general
hydrological features. Most of the largest floods are caused by prolonged winter
rains (lasting several weeks) related to successive Atlantic frontal depressions and
occasionally coupled with snowmelt from neighboring mountain ranges. These
floods have gentle hydrographs due to the fact that drainage basin up to Zamora is
46,225 km2. Besides, there are man-made structures around the urban site (i.e.,
weirs, bridges, walls, and buildings) that conform to a complex environment for
flood modeling. Zamora has suffered historical flooding with economic and social
flood damages34,45 and is defined as a relevant potential flood hazard area by the
Spanish government, whereby the Environmental Ministry applies activity
restrictions based on deterministic flood hazard maps.

The model boundary was established along 6.6 km of the city-crossing river
(Supplementary Fig. 1), encompassing an area of 835.4 hectares. We utilized the
freely accessible 2D hydraulic model HEC-RAS 6.1 by means of diffusion wave
equations and a finite difference approach46, taking advantage of its multithreading
and automation (i.e., using Python) capabilities38. We developed a robust,
geometrically consistent, and detailed hydraulic model20,24. Input data were: (i) a
1-m spatial resolution DSM enhanced with buildings, walls, streets, and bridge
piers information; (ii) a 1-m spatial resolution digital bathymetry model (DBM);
(iii) Manning’s n coefficients retrieved from land use/land cover data; (iv) upstream
(input flow) and downstream (energy slope) boundary conditions; and (v)
hydraulic structures. In addition, we built an optimized flexible computational
mesh with a minimum cell size of 1 m, and we restricted the model time step
between 1 and 5 min, complemented with a warm-up period of 12 h, ensuring a
correct water depth and flow velocity calculation.

Framework. Using the hydraulic model outlined above, we devised a framework to
compare the traditional DFH approach with the upcoming PFH approach in order
to improve the creation of stochastic maps that enhance flood risk management
(Fig. 7). We spatially compared water depth, flow velocity, and flood hazard at both
a general (within the model’s limits) and local scale (in each 1-meter model cell).
We relied on the 500-year flood (Supplementary Note 1) since it was adequately
defined by historical data34 and exemplified the study’s objective.

The deterministic hydraulic model for the 500-year flood was developed
utilizing a highly accurate topography that incorporated the DSM and the DBM.
The flood quantiles were computed by fitting a log-Pearson Type-III
(Supplementary Note 2) to the flow gauge data, which spans 105 years and contains
79 annual maximum instantaneous flow data (Supplementary Fig. 4). The mean
value of the ranges specified for each input was used to describe the downstream
boundary condition, Manning’s n values, and weir inputs (i.e., weir coefficient and
elevation of the top of each weir). Through the deterministic approach, input data
uncertainties were not considered.

The stochastic flood approach was based on a MC procedure and consisted of
performing: (i) uncertainty analysis to quantify the errors of the flow depth, flow
velocity, and flooded area given the uncertainties of the input data; (ii) sensitivity

Fig. 6 Stochastic flood risk management zones resulting from stochastic outcomes integration. Accordingly, flood hazard categories of high, moderate,
and low are depicted. All of these flood hazard categories are divided into two types of zones based on: (1) their convergence (plain colors) and lack of
convergence (grated colors); and (2) their high probability (bright colors) and lower probability of occurrence (pale colors). In the table-format legend, all
the possible combinations are shown. The deterministic limit contour is drawn to illustrate the various stochastic flood hazard categories that exist both
inside and outside of the deterministic limit contour. The orthoimage was obtained from the Spanish National Center for Geographic Information.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00940-0 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:279 | https://doi.org/10.1038/s43247-023-00940-0 | www.nature.com/commsenv 7

www.nature.com/commsenv
www.nature.com/commsenv


analysis to determine the sources of errors and their significance; and (iii)
convergence analysis to know the reliability of the model outcomes.

We tailored these three analyses throughout an updated floodplain modeling
information system framework16 (Fig. 7). Within this framework, five actions were
taken: (1) define model inputs subject to uncertainty; (2) create a pseudorandom
sample with the Latin Hypercube Sampling method47 for running MC models in
uncertainty analysis and computing probabilistic maps (Supplementary Note 3);
(3) perform sensitivity analysis with Random Balance Designs Fourier Amplitude
Sensitivity Test (RBD-FAST) method48 to estimate the first-order sensitivity index
and compute sensitivity analysis maps (Supplementary Note 3); (4) perform
convergence analysis with CLT as convergence criterion36 and compute
convergence analysis maps (Supplementary Note 3); (5) analyze the results of the
stochastic uncertainty analysis, sensitivity analysis and convergence analysis maps
to find possible hydraulic model improvements or to increase the MC simulations
number (if necessary). To implement the floodplain modeling information system
framework, we created a script in Python 3.10 and ran it in a workstation with a
CPU Intel(R) Core (TM) i7-8750H (2.20 GHz, 2208Mhz, 6 main cores, and 12
logic cores), and a 128 GB-capacity RAM.

After acquiring the deterministic and stochastic maps, we compared the
findings on a general and local scale using the expected stochastic values49,50 (see
Figs. 4 and 5). We evaluated differences in the flooded area (ha) on a general scale
using the F form statistic (Eq. 1)25,26. On 1 × 1m-cells, we compared water depth
(m) and flow velocity (m s−1) at a local scale. In particular, we compared the flood
hazard model by examining the deterministic and stochastic classifications of flood
hazard, using the expected stochastic values as a benchmark. In order to do this, we
used a confusion matrix, which provided us with the overall accuracy (Eq. 2) and

the Kappa coefficient (Eq. 3)51.

F %ð Þ ¼ Aref \ An
mod

Aref ∪An
mod

´ 100 ð1Þ

where, Aref is the area flooded by the deterministic model, and An
mod is the area of

flooding for the stochastic model n.

Overall Accuracy %ð Þ ¼ TPþ TN
TPþ FNþ TNþ FP

ð2Þ

where TP are true positives (i.e., the deterministic and probabilistic outputs assign
the same flood hazard category to a particular cell), TN are true negatives (i.e., the
deterministic and probabilistic outputs prove that there is no flooding for a given
cell), FP are false positives (i.e., the deterministic output for a particular cell
indicates a distinct category of flood hazard than the probabilistic output), and FN
are false negatives (i.e., the deterministic output indicates the absence of flooding
for a particular cell, but the probabilistic output reveals flooding).

K ¼ p0 � pe
1� pe

ð3Þ

where po is the empirical probability of agreement on the hazard classes (observed
agreement ratio) and pe is the expected agreement assigned.

Uncertainty analysis. We created one sample for every MC model using the Latin
Hypercube Sampling method. The probability distribution functions assigned to
each input data and the multidimensional space resulting from all probability
distribution functions combinations were correctly and efficiently represented

Fig. 7 Stochastic integrated framework for flood risk management. The red arrows and boxes with red outlines show the start and end points of the
Python script process; the blue boxes represent the basic steps of the process; and the orange boxes represent the mapping outcomes that were generated
at each step.
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using this technique24,37. As described below, we applied Latin Hypercube Sam-
pling to all inputs, concentrating on the probability distribution functions selection,
robustness, and quality of each input data (Supplementary Note 4).

Uncertainty was analyzed for the high-resolution digital model (HRDM) on a
cell-by-cell basis. We coupled the DBM (Supplementary Note 5), with the DSM
(Supplementary Note 6), yielding the HRDM (Supplementary Fig. 5), whose
elevation values in each cell served as the reference central values (c). We
obtained the DSM and DBM from high-quality data sources, then refined and
filtered them to appropriately represent surface and bathymetry (Supplementary
Notes 5 and 6 and Supplementary Fig. 5). As proposed previously by other
authors such as Milan et al.52, the approach adopted here focused on assessing
spatially distributed error (cell-by-cell) throughout the HRDM in order to
spatially identify the sources of uncertainty inside the HRDM. For this estimate,
we conducted topographical and bathymetric surveys using a digital global
positioning system -DGPS (with centimeter accuracy) and a single-beam
echosounder embedded in an aquatic drone (with sub-centimeter accuracy) to
cover the model area with a set of independent control points with a higher
resolution than the HRDM (Supplementary Notes 5 and 6). To evaluate errors,
we estimated the absolute differences between the independent control points and
the HRDM values. Subsequently, a geostatistical analysis (Supplementary Notes 5
and 6) was performed to determine the spatial error at the pixel level. In order to
determine the error in each cell, the central (c) and error values (ε) were retrieved.
Then, we define a triangular probability distribution function in each cell by
setting its minimum (a ¼ c� ε), maximum (b ¼ cþ ε) and central (c) values
(Eq. 4).

f a; c; bð Þ ¼ 0 for x<a
2 x � að Þ

b� að Þ c� að Þ for a≤ x<c
2

b� a
for x ¼ c

2 b� xð Þ
b� að Þ b� cð Þ for c<x ≤ b 0 for b<x

� �

ð4Þ
To derive the Manning coefficients, we first used the CORINE Land Cover

database53 to establish the most prevalent types of land uses/land cover at the study
site54. Then, each land use/land cover unit was assigned a possible range of
Manning’s n values, following the approach developed by Chow55 and using
Manning’s n values from the Spanish methodological guidance for the
development of the national flood zone mapping system56. We adopted a uniform
distribution (Eq. 5) for Manning’s n to account for the uncertainty associated with
the roughness of the channel-floodplain system. This approach is widely
used20,26,27,35, given the lack of knowledge about the probability distribution that
this coefficient follows57:

f a; bð Þ ¼ 1
b� a

for a≤ x ≤ b ð5Þ
With regards to the upstream boundary condition, the flow gauge nearest to the

study reach (flow gauge code 2121; UTM-X ETRS89 H30N 272809; UTM-Y
ETRS89 H30N 4599163; operational since 2002) does not possess a sufficiently
extended annual time series of maximum instantaneous peak flow to carry out a
meaningful flood frequency analysis. Instead, we propagated a time series collected
from a flow gauge located 40 km upstream that has been operational since 1912
(flow gauge code 2062; UTM-X ETRS89 H30N 298658; UTM-Y ETRS89 H30N
4598753). We characterized alluvial aquifer-river interaction and water storage on
the floodplain surface as a result of the existence of landforms such as abandoned
meanders and orthogonally arranged man-made structures (i.e., mainly rural roads
and irrigation channels). We take three steps to do this: (i) handle the time series to
obtain as much data as possible and to check its statistical validity; (ii) perform a
Log-Pearson type III-based flood frequency analysis (Supplementary Note 2) to
obtain the fitted 5-percent and 95-percent confidence limits values; and (iii)
propagate this value downstream to create a triangular probability distribution
function (Eq. 4) (Supplementary Note 1).

Uncertainties arising from flow simulation in hydraulic controls like weirs were
examined by taking into account the weir coefficient and the elevation of the top of
the weir. The range of weir coefficient values, which can be assumed within a
uniform distribution (Eq. 5), was established by using the standard weir formula of
Poleni18,58. Thus, the existing inline structures in the reach under study were
classified as trapezoidal-shaped crested weirs. Regarding the elevation of the top of
the weir, a representative value was considered to be the average of the elevations
extracted from the Light Detection and Ranging (LiDAR) data. For the uncertainty
analysis, we used a uniform distribution, whose range of values was established by
extracting the maximum elevation error at the weir crest from the geostatistical
analysis performed on the DSM.

Energy slope was employed to establish the downstream boundary condition,
assuming that the slope of the reach is equal to the energy slope. Consequently,
energy slope was estimated by calculating the reach slope between the last
modeled weir and the subsequent downstream weir (1.49 km between weirs). A
depth value was then computed using Manning’s equation55. To approach the
uncertainty analysis of energy slope, the lowest and maximum slopes of the
reach arising from the estimated bathymetric error were determined. Then, we
fit this range to a uniform distribution (Eq. 5).

Sensitivity analysis. We conducted a sensitivity analysis to identify sources of
uncertainty in the model’s output (flooded area, water depth, and flow velocity)59.

First, we conducted a local sensitivity analysis to independently determine the
relevance of each source of uncertainty on the flooded area output model at a
general scale (the whole area within the model boundaries) and create a tornado
plot (Fig. 2). Secondly, we performed a global sensitivity analysis, in which all
uncertainty sources on water depth and flow velocity were examined collectively at
each cell (local scale) (Fig. 3a).

To conduct the local sensitivity analysis on the flooded area, we used the
deterministic simulation result as the reference flooded area. Then, we
conducted two simulations in which we varied the studied data’s range
(minimum and maximum value), whereas the remaining input data was kept
unchanged. This procedure was repeated to examine the possible uncertainties
associated with: (1) DSM; (2) DBM; (3) land uses; (4) upstream boundary
condition; (5) downstream boundary condition; (6) weir coefficients; and (7)
weir top elevation. Using a tornado diagram, we assessed each data’s
contribution to global uncertainty.

The global sensitivity analysis was carried out using the RBD-FAST method60,
which was integrated inside a Python script49. This method is an adapted variant of
the FAST method, allowing for efficient computation of the first-order SI. It
provides an approximation of the total-order sensitivity index, which evaluates the
contribution of each individual input factor to the overall output variance while
accounting for non-linear interactions among factors. This method uses a variance-
based sensitivity analysis to calculate the SI, which breaks down the model output’s
variance into various components that may be assigned to specific input factors or
combinations of them37,60. This decomposition provides valuable insight into
which factors have the greatest influence on the model’s output and how they
interact.

First-order SI was calculated using the RBD-FAST technique through Latin
Hypercube Sampling, delivering a highly cost-efficient approach in terms of
computing time without affecting the reliability of the sensitivity index sought60.
The RBD-FAST method was used to perform the global sensitivity analysis at the
cell level, taking into account the following uncertainties: (1) estimated vertical
error for DSM, DBM, or weir elevation; (2) accepted ranges in the literature for
Manning’s n and weir coefficient; (3) confidence intervals for quantiles to be used
as upstream boundary conditions; and (4) energy slope as downstream boundary
conditions. All global sensitivity analysis findings were processed with all these
sources of uncertainty in mind, yielding tabular and cartographic representations
of the ranking (i.e., ranking of the input data based on their relative effect on model
outputs) and SI values (Fig. 3).

Convergence analysis. We analyzed the convergence of the MC-based ensemble’s
first moment for the outputs flooded area, water depth, and flow velocity, and we
devised a criterion to consistently end the MC process. The proposed criterion is
based on the CLT36, which seeks a band of a given width (provided by the max-
imum acceptable variance for the output of interest) and length (the minimum
number of simulations) such that the probability of the MC samples falling outside
of this band is virtually null.

Convergence analysis provides evidence of the process’s consistency and
reliability. Consistency and reliability of a stochastic model are demonstrated when
its stability and, thus, convergence can be confirmed. A stochastic model has
converged when all possible outcomes are well represented (i.e., when the
outcomes’ underlying distribution function has been properly described),
indicating that the mean of the outputs is stable35,37. Unlike previous studies that
mostly relied on visual inspection30,35, we quantified convergence using MC trials
employing the CLT36 for each output data of interest (i.e., flooded area, water
depth, and flow velocity). The CLT approach evaluates the mean evolution of the
output data in order to quantitatively verify that all the stochastic possible values
are properly represented in the findings, and hence in the probability distribution
function. CLT produces two bounds for this evolution based on the output data
variance, resulting in a fluctuating bandwidth (Eq. 6). Each time a new value is
added to the existing set of data, the output mean must remain within the
established bounds. Convergence is assured (e.g., Fig. 1a, after 288 simulations) if
the new mean values stay within the bounds for 60 consecutive simulations,
because the likelihood of new unknown values appearing is minimal. If the new
average value exceeds the bounds, however, new variance-based constraints are
computed. By achieving this condition, we assure that the model of the result
converges.

CB ¼ α

2
x raiz

v
n
BW ¼ Mnþ�CB ð6Þ

where α is the level of significance (set in 0.95), v is the variance of the set
of values obtained up to the simulation n, and n is the current simulation
number.

The CLT method was initially used to examine the convergence of the
flooded area over the whole study area (Fig. 1a). Furthermore, we employed the
CLT approach at the local scale to evaluate the convergence of water depth and
flow velocity in each cell (Fig. 1b). We repeated the procedure described above in
each cell across all simulations, identifying each cell as stable or unstable based
on whether it met the quantitative convergence condition. Finally, to visually
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depict these cell states, we display the ultimate configuration on a map, yielding
the convergence map (Fig. 1c).

Data availability
Flow data utilized in this study to conduct the flood frequency analysis, which yielded the
flow quantile for the 500-year flood, is accessible online. Land use/land cover data used as
a proxy to estimate the hydrodynamic model’s roughness was derived from the CORINE
Land Cover (https://land.copernicus.eu/pan-european/corine-land-cover). Results of
river-aquifer-floodplain interaction modeling, which allowed propagation of the 500-year
flood quantile to the cross-section utilized as the hydraulic model’s upstream boundary
condition, are readily available online (https://doi.org/10.5281/zenodo.6530210)61. High-
resolution digital model (HRDM) that integrates the examined surface with the
bathymetric configuration of the analyzed Douro River reach is accessible online (https://
doi.org/10.5281/zenodo.6381535)62. All outcomes from adopting the integrated
stochastic framework for flood risk management described in this study are freely
accessible online (https://doi.org/10.5281/zenodo.7060133)63.

Code availability
The Python code supporting the findings of this study is openly available at https://doi.
org/10.5281/zenodo.706002264.
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