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Why big data and compute are not necessarily
the path to big materials science

Naohiro Fujinuma 1'2, Brian DeCost 3®, Jason Hat’crick-Simpers4 &

Samuel E. Lofland® °

Applied machine learning has rapidly spread throughout the physical sciences. In fact,
machine learning-based data analysis and experimental decision-making have become
commonplace. Here, we reflect on the ongoing shift in the conversation from proving that
machine learning can be used, to how to effectively implement it for advancing materials
science. In particular, we advocate a shift from a big data and large-scale computations
mentality to a model-oriented approach that prioritizes the use of machine learning to
support the ecosystem of computational models and experimental measurements. We also
recommend an open conversation about dataset bias to stabilize productive research through
careful model interrogation and deliberate exploitation of known biases. Further, we
encourage the community to develop machine learning methods that connect experiments
with theoretical models to increase scientific understanding rather than incrementally opti-
mizing materials. Moreover, we envision a future of radical materials innovations enabled by
computational creativity tools combined with online visualization and analysis tools that
support active outside-the-box thinking within the scientific knowledge feedback loop.

applications have been used to emulate human intelligence. The field has grown immensely

with the advent of ever more powerful computers with increasingly smaller size combined
with the development of robust statistical analyses. These advances allowed Deep Blue to beat
Grandmaster Gary Kasparov in chess and Watson to win the game show Jeopardy! The tech-
nology has since progressed to more practical applications such as advanced manufacturing and
common tasks we now expect from our phones like image and speech recognition. The future of
ML promises to obviate much of the tedium of everyday life by assuming responsibility for more
and more complex processes, e.g., autonomous driving.

When it comes to scientific application, our perspective is that current ML methods are just
another component of the scientific modeling toolbox, with a somewhat different profile of
representational basis, parametrization, computational complexity, and data/sample efficiency.
Fully embracing this view will help the materials and chemistry communities to overcome
perceived limitations and at the same time evaluate and deploy these techniques with the same
level of rigor and introspection as any physics-based modeling methodology. Toward this end, in
this essay we identify four areas in which materials researchers can clarify our thinking to enable
a vibrant and productive community of scientific ML practitioners:

Since Frank Rosenblatt created Perceptron to play checkers!, machine learning (ML)

1. Maintain perspective on resources required
2. Openly assess dataset bias
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3. Keep sight of the goal
4. Dream big enough for radical innovation

Maintain perspective on resources required

The recent high profile successes in mainstream ML applications
enabled by internet-scale data and massive computation?3 have
spurred two lines of discussion in the materials community that
are worth examining more closely. The first is an unmediated and
limiting preference for large-scale data and computation, under
the assumption that successful ML is unrealistic for materials
scientists with datasets that are orders of magnitude smaller than
those at the forefront of the publicity surrounding deep learning.
The second is a tendency to dismiss brute-force ML systems as
unscientific. While there is some validity to both these viewpoints,
there are opportunities in materials research for productive and
creative ML work with small datasets and for the “go big or go
home” brute-force approach.

Molehills of data (or compute) are sometimes better than
mountains. A common sentiment in the contemporary deep-
learning community is that the most reliable means of
improving the performance of a deep-learning system is to
amass ever larger datasets and apply raw computational power.
This sometimes can encourage the fallacy that large-scale data
and computation are fundamental requirements for success
with ML methods. This can lead to needlessly deploying mas-
sively overparameterized models when simpler ones may be
more appropriate?, and it limits the scope of applied ML
research in materials by biasing the set of problems people are
willing to consider addressing. There are many examples of
productive, creative ML work with small datasets in materials
research that counter this notion>®.

In the small-data regime, high-quality data with informative
features often trump excessive computational power with massive
data and weakly correlated features. A promising approach is to
exploit the bias-variance trade-off by performing more rigorous
feature selection or crafting a more physically motivated model
form’. Alternatively, it may be wise to reduce the scope of the ML
task by restricting the material design space or use ML to solve a
smaller chunk of the problem at hand. ML tools for exploratory
analysis with appropriate features can help us comprehend much
higher dimensional spaces even at an early stage of the research,
which may be helpful to have a bird’s-eye view on our target. For
example, cluster analysis can help researchers identify represen-
tative groups in large high-throughput datasets, making the
process of formulating hypotheses more tractable.

There are also specific ML disciplines aimed at addressing the
well-known issues of small datasets, dataset bias, noise,
incomplete featurization, and over-generalization, and there has
been some effort to develop tools to address them. Data
augmentation and other regularization strategies can allow even
small datasets to be treated with large deep-learning models.
Another common approach is transfer learning, where a proxy
model is trained on a large dataset and adapted to a related task
with fewer data points®-10. Chen et alll showed that multi-
fidelity graph networks could be used in comparatively
inexpensive low-fidelity calculations to bolster the accuracy of
ML predictions for expensive high-fidelity calculations. Finally,
active learning methods are now being explored in many areas of
materials research, where surrogate models are initialized on
small datasets and updated as predictions are used to guide the
acquisition of new data generation, often in a manner that
balances exploration with optimization!2. Generally a solid
understanding of the uncertainty in the data is critical for success

with these strategies, but ML systems can lead us to some insights
or perhaps serve as a guide for optimization which might
otherwise be intractable.

We assert that the materials community would generally
benefit from taking a more model-oriented approach to applied
ML, in contrast to the popular prediction-oriented approach that
many method-development papers take. With the current
prediction-oriented application of ML to the physical sciences,
the primary intent of the model is to obtain property predictions,
often for screening or optimization workflows. We propose that
the community would be better served to instead use ML as a
means to generate scientific understanding, using, for instance,
inference techniques to quantify physical constants from experi-
ments. To achieve the goals of scientific discovery and knowledge
generation, predictive ML must often play a supporting role
within a larger ecosystem of computational models and
experimental measurements. It can be productive to reassess!'?
the predictive tasks we are striving to address with ML methods;
more carefully thought out applications may provide more benefit
than simply collecting larger datasets and training higher capacity
models.

Massive computation can be useful but is not everything. On
the other hand, characterizing brute computation as “unscienti-
fic” can lead to missed opportunities to meaningfully accelerate
and enable new kinds or scales of scientific inquiry'4. Even
without investment in massive datasets or specialized ML models,
there is evidence that simply increasing the scale of computation
applied can help compensate for small datasets. For example,
ref. 1> show that simply by increasing the number of training
iterations, large-object detection and segmentation models
trained from random initialization can match the performance of
the conventional transfer learning approach. In many cases,
advances enabled in this way do not directly contribute to sci-
entific discovery or development, but they absolutely change the
landscape of feasible scientific research by lowering the barrier to
exploration and increasing the scale and automation of data
analysis.

A perennial challenge in organic chemistry is predicting the
structure of proteins, but recent advances in learned potential
methods!® have provided paradigm-shifting improvements in
performance made possible by sheer computational power. In
addition, massive computation can enable new scientific applica-
tions through scalable automated data analysis systems. Recent
examples include phase identification in electron backscatter
diffraction!” and X-ray diffraction!8, and local structural analysis
via extended x-ray absorption fine structure!®20. These ML
systems leverage extensive precomputation through the genera-
tion of synthetic training data and training of models; this makes
online data analysis possible, removing barriers to more adaptive
experiments enabled by real-time decision making.

In light of the potential value of large-scale computation in
advancing fundamental science, the materials field should make
computational efficiency?! an evaluation criterion alongside
accuracy and reproducibility?”. Comparison of competing
methods with equal computational budgets can provide insight
into which methodological innovations actually contribute to
improved performance (as opposed to simply boosting model
capacity) and can provide context for the feasibility of various
methods to be deployed as online data analysis tools. Careful
design and interpretation of benchmark tasks and performance
measures are needed for the community to avoid chasing
arbitrary targets that do not meaningfully facilitate scientific
discovery and development of novel and functional materials.
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Openly assess dataset bias

Acknowledging dataset bias. It is widely accepted that materials
datasets are distinct from the datasets used to train and validate
ML systems for more “mainstream” applications in a number of
ways. While some of this is hyperbole, there are some genuine
differences that have a large impact on the overall outlook for ML
in materials research. For instance, there is a community-wide
perception that all ML problems involve data on the scale of the
classic image recognition and spam/ham problems. While there
are over 140,000 labeled structures in the Materials Project
Database?? and the MNIST?# dataset contains about twice that
amount, other popular ML benchmark datasets are much more
modest in size. For instance, the Iris Dataset contains only
50 samples each of three species of Iris and is treated as a stan-
dard dataset for evaluating a host of clustering and classification
algorithms. As noted above dataset size is not necessarily the
major hurdle for the materials science community in terms of
developing and deploying ML systems; however, the data, input
representation, and task must each be carefully considered.

Viewed as a monolithic dataset, the materials literature is an
extremely heterogeneous multiview corpus with a significant
fraction of missing entries. Even if this dataset were accessible in a
coherent digital form, its diversity and deficiencies would pose
substantial hurdles to its suitability for ML-driven science. Most
research papers narrowly focus on a single or a small handful of
material instances, address only a small subset of potentially
relevant properties and characterization modalities, and often fail
to adequately quantify measurement uncertainties. Perhaps most
importantly, there is a strong systemic bias toward positive
results?>. All of these factors negatively impact the generalization
potential of ML systems.

Two aspects of publication bias play a particularly large role:
domain bias and selection bias (Fig. 1b) . Domain bias results
when training datasets do not adequately cover the input space.
For example, ref. 26 recently demonstrated that the “tried and
true” method of selecting reagents following previous successes
artificially constrained the range of chemical space searched,
providing the ML with a distorted view of the viable parameter
space. Severe domain bias can lead to overly optimistic estimates
of the performance of ML systems?”-28 or in the worst case even
render them unusable for real-world scientific application?%-30,

Selection bias arises when some external factor influences the
likelihood of a data points inclusion in the dataset. In scientific
research, a major source of such selection bias is the large number
of unreported failures (Fig. 1a). For instance the Landolt-
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Bornstein collection of ternary amorphous alloys lists 71% of
the alloys as being glass formers while the actual occurence of
glass-forming compounds is estimated to be about 5%3!. This
further complicates the already challenging task of learning from
imbalanced datasets by skewing the prior probability of glass
formation through dataset imbalance. Schrier et al.32 reported on
how incorporating failed experiments into ML models can
actually improve upon the overall predictive power of a model.

Furthermore, the annotations or targets used to train ML
systems do not necessarily represent true physical ground truth.
As an example, in the field of metallic glasses the full width half-
maximum (FWHM) of the strongest diffraction peak at low
wavevector is often used to categorize thin-film material as being
metallic glass, nanocrystalline, or crystalline. Across the literature
the FWHM value used as the threshold to distinguish between the
first two classes varies from 0.4 to 0.7 A~! (with associated
uncertainties) depending upon the research group. Although
compendiums invariably capture the label ascribed to the
samples, they almost ubiquitously omit the threshold used for
the classification, the uncertainty in the measurement of the
FWHM, and the associated synthesis and characterization
metadata. Comprehensive studies often report only reduced
summaries for the datasets presented and include full details only
for a subset of “representative data”. These shortcomings are
common across the primary materials science literature. Given
that even experts can reasonably disagree on the interpretation of
experimental results, the lack of access to primary datasets
prevents detailed model critique, posing a substantial impediment
to model validation?>33. The push for creating F.A.LR. (Findable,
Accessible, Interoperable, and Reusable®#) datasets with human/
computer readable data structures notwithstanding, most of the
data and meta-data for materials that have ever been made and
studied have been lost to time.

Systematic errors in datasets are not restricted to experimental
results alone. Theoretical predictions from high-throughput
density functional theory (DFT) databases, for example, are a
valuable resource for predicted material (meta-) stability, crystal
structures, and physical properties, but DFT computations
contain several underlying assumptions that are responsible for
known systematic errors, e.g., calculated band gaps. DFT experts
are well aware of these limitations and their implications for
model building; however, scientists unfamiliar with the field may
not be able to reasonably draw conclusions about the potential
viability of a model's predictions given these limitations.
Discrepancy between DFT and experimental data will expand
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Fig. 1 Impact of datasets and feature sets in implementing ML for materials research. a Materials literature with a heterogeneous dataset due to domain
bias and selection bias. Domain bias results when training datasets do not adequately cover the research space. Selection bias arises when some external
factors such as questionability and inexplicability restrict the likelihood of a data inclusion in the datasets; such data can be either experimental, theoretical,
or computational. b Holistic description of the synthesis, composition, microstructure, and macrostructure of materials, which are related to material

properties and performance. Identifying a sufficient feature space with essential variables such as synthesis parameters requires careful observation and

lateral thinking.
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as systems get increasingly more complex, a longstanding trend in
applied materials science. A heterogeneous model, in particular,
may cause large uncertainty depending on the complexity of the
input structure, and many times little to no information is
detailed about the structure or the rationale for choosing it.

Finally, even balanced datasets with quantified uncertainties
are not guaranteed to generate predictive models if the features
used to describe the materials and/or how they are made are not
sufficiently descriptive. Holistically describing the synthesis,
composition, microstructure, macrostructure of existing materials
for their property/performance (Fig. 1b) is a challenging problem
and the feature set used (e.g., microstructure 2-point correlation,
compositional descriptors and radial distribution functions for
functional materials, and calculated physical properties) is largely
community driven. This presupposes that we know and can
measure the relevant features during our experiments. Often
identifying the parameters that strongly influence materials
synthesis and the structural aspects highly correlated to function
is a matter of scientific inquiry in and of itself. For example,
identifying the importance of temperature in cross-linking rubber
or the effect of moisture in the reproducible growth of super-
dense, vertically aligned single-walled carbon nanotubes requires
careful observation and lateral thinking to connect seemingly
independent or unimportant variables. If these parameters (or
covariate features, e.g., chemical vapor deposition system pump
curves) are not captured from the outset, then there is no hope of
algorithmically discovering a causal model, and weakly predictive
models are likely to be the best case output.

There is no silver bullet that will solve the issue of dataset bias,
but there are several concrete steps that can be taken to begin
addressing it. For instance, as a community we can commit to re-
balancing the data pool against selection bias by including in our
supplementary material one failed (or subpar) result for every
successful result in the main text. Domain bias is best addressed
by first acknowledging its existence and then encouraging
researchers (possibly through funding) to spend time exploring
outside of the well-known regions within their respective fields
(perhaps resulting in additional data points to address selection
bias). In terms of the need to capture all relevant material
features, we accept that (happily) new insights will constantly
crop up, and when they do, public datasets should be updated to
contain the newly important features. Even if the new field is left
empty for historical records, its existence will draw attention to its
relevance for model builders. Finally, individuals applying ML in
their research should analyze and discuss sources of bias in the
data used to train and evaluate models and their potential impact
on reported results.

Productivity in spite of dataset bias. Bias in historical and as-
collected datasets should be acknowledged, but it does not
entirely preclude their use to train an ML targeted toward sci-
entific inquiry. Instead one can continue to gain productive
insights from ML by taking the appropriate approach and
thinking analytically about the results of the model.

Especially with small datasets, it is important to characterize the
extent of dataset bias and perform careful model performance
analysis to obtain realistic estimates of the generalization of ML
models. Rauer and Bereau?® provide compelling examples of these
effects of dataset bias by comparing the empirical distribution in
chemical space of three similar molecular property datasets.
Dataset bias can cause common measures of a model’s general-
ization ability to become overconfident; typically generalization
ability is measured through cross-validation where a portion of the
data is withheld from the training data. Recent research in the
chemical and materials informatics literature has focused on

developing dataset unbiasing techniques that aim to find cross-
validation splits that more faithfully serve as a check against
overfitting. For example, the Asymmetric Validation Embedding
method?” quantifies the bias of a dataset split by using a nearest-
neighbor model to memorize the training data. If the nearest-
neighbor lookup can achieve a good validation accuracy, then the
training and validation sets are deemed to be too similar.
Searching for cross-validation splits that minimize this bias metric
can improve the robustness of the benchmark, but the
Asymmetric Validation Embedding metric is specific to classifica-
tion tasks. In contrast, the leave-one-cluster-out cross-validation3’
is more general, using only distances in the input space to define
cross-validation groups to reduce information leakage between
folds. Extending these kinds of debiasing methods to additional
material classification and prediction tasks will have an outsized
impact on applied artificial intelligence for practical scientific
advances and discoveries because by nature these goals depend on
excellent generalization and extrapolation performance.

One method for maintaining “good” features and models is to
adapt an active human intervention in the ML loop. For example,
we have recently demonstrated that Random Forest models that are
tuned to aggressively maximize only cross-validation accuracy may
produce low-quality, unreliable feature ranking explainability>°.
Carefully tracking which features (and data points) the model is
most dependent on for its predictions allows a researcher to ensure
that the model is capturing physically relevant trends, identify new
potential insight into material behavior, and spot possible outliers.
Similarly, when physics-based models are used to generate features
and training data for ML models, subsequent comparison of new
predictions to theory-based results offers the opportunity for
improvement of both models?”. The preceding examples are all a
human-initiated post-hoc investigation of model outputs. Kusne
et al.38 recently demonstrated the inverse example where the ML
model can request expert input, such as performing a measurement
or calculation, that is expected to lower predictive uncertainties.

Dimensionality reduction tools and latent space models are
useful to assess the general distribution of a data set. Visualiza-
tions from such models can illustrate potential bias and unequal
distributions of a dataset by inspecting the internal structure/
distribution and the true dimensionality. For instance, ref. 3° used
principle component analysis as a method for investigating the
role of dataset bias by investigating the density of data points with
scores plots. Gomez-Bombarelli et al.*? have used variational
autoencoders to identify sparsely sampled regions in the
parameter space by pushing them toward the outside of the
latent space distribution. They demonstrated that variational
autoencoders can highlight when the model is incapable of
recognizing certain classes, indicating the data is outside of the
distribution that the model was trained on. A holistic analysis
helps gain knowledge about both the ML models and the datasets
and thus may lead to more effective research steps.

A culture of careful model criticism is also important for robust
applied ML research®!. A narrow focus on benchmark tasks can
lead to false incremental progress, where, over time, models begin
overfitting to a particular test dataset and then lack general-
izability beyond the initial dataset. Ref. 42 demonstrated that a
broad range of computer vision models suffer from this effect by
developing extended test sets for the CIFAR-10 and ImageNet
datasets extensively used in the community for model develop-
ment. This can make it difficult to reason about exactly which
methodological innovations truly contribute to generalization
performance. Because many aspects of ML research are empirical,
carefully designed experiments are needed to separate genuine
improvements from statistical effects, and care is needed to avoid
post-hoc rationalization (Hypothesizing After the Results are
Known (HARK)#3).
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That there is historical dataset bias is both unavoidable and
unresolvable, but once identified this bias does not necessarily
constrain the search for new materials in directions that directly
contradict the bias*%. For instance, ref. 2° identified anthropo-
genic biases in the design of amine-templated metal oxides, in
that a small number of amine complexes had been used for a vast
majority of the literature. Their solution was to perform 548
randomly generated experiments to demonstrate that a global
maximum had not been reached but also to erode the systemic
data bias their models observed. This is not to say that such an
approach is a panacea for dataset or feature set bias as such
experiments are still designed by scientists carrying their own
biases (e.g., using only amines) and may suffer from uncaptured
(but important!) features. Of course, a question remains how to
best remove human bias from the experimental pipeline.

One potential path forward is deployment of automated
systems that perform the ultimate selection of the experiment to
be performed and manage data acquisition, functionally to attack
the small dataset problem by using automation to fill in the
cracks. Using these tools and adopting objective functions that
permit random or maximum expected improvement exploration
may help researchers avoid biasing their research toward
particular solutions, allowing them to focus more on higher-
level problem formulation and hypothesis specification. Cur-
rently, model prototyping often is done in notebook computing
environments, which are convenient for exploring new ideas but
make it easy to create unsustainable software. More accessible
tools for exploring new ideas while maintaining traceability,
reproducibility, flexibility, interactivity, and integration with
laboratory equipment will help researchers focus on goal setting,
intuition and insights for featurization, and data curation. This is
analogous to ML life-cycle management*>, which is used in
industrial settings to ensure traceability of predictions to specific
models formulations.

Keep sight of the goal

While the implementation of ML in materials science is often
focused on a push for better accuracy and faster calculations,
these are not always the only objectives or even the most
important ones. For the ML novice it is helpful to remember to
keep the scientific aim at the forefront when selecting a model
and then designing training and validation procedures. Consider
the trade-off between accuracy and discovery. If one is optimizing
the pseudopotentials to use for DFT4%47, then design may be
centered around accuracy of predicting material characteristics
when compared to an existing benchmark set, and this may lead
to better predictions for other known compounds. On the other
hand, one may want to sacrifice accuracy for exploratory studies.
The aforementioned high-accuracy model may fail to predict the
novel combination of physical properties of an undiscovered
compound. In fact, even if the phase had been recently identified
and included in the training set, the model may not be trust-
worthy due to the inherent lack of benchmark datasets whenever
new science appears.

There are clearly cases where ML is the obvious choice to
accelerate research, but there can be concerns about the suitability
of ML to answer the relevant question. Many applied studies
focus only on physical or chemical properties of materials and
often fail to include parameters relating to their fundamental
utility such as reproducibility, scalability, stability, productivity,
safety, or cost*®. While humans may not be able to find corre-
lations or patterns in high-dimensional spaces, we have rich and
diverse background knowledge and heuristics; we have only just
begun the difficult work of inventing ways of building this
knowledge into ML systems. In addition, for domains with small

datasets, limited features, and a strong need for higher-level
inference rather than a surrogate model, ML should not neces-
sarily be the default approach. A more traditional approach may
be faster due to the error in the ML models associated with
sample size, and heuristics can play a role even with larger
datasets®®.

One alternative is to employ a hybrid method which may
include a Bayesian methodology to analysis®® or may use ML to
guide the work through selective intervention®!. ML is only a
means to model data, and a good fit to the dataset is no guarantee
that the model will be useful since it may have little to no rela-
tionship to actual science as it attempts to emulate apparent
correlations between the features and the targets (Fig. 2). To
provide some insight into this issue, Lee and Lundberg>? devel-
oped Shapley additive explanations based on game theory to
assess the impact of each feature on ML predictions.

A corollary is that any ML predictions, especially when working
with small datasets, may be unphysical. Again, we stress that it
doesn’t imply that we should never use ML for small datasets. As
demonstrated by ref. >3, non-negative matrix factorization can be
constrained to provide predictions only within physical spaces. In
any case, we need to employ ML tools judiciously and understand
their limitations in the context of our scientific goals. For instance,
while most ML models are reasonably good at interpolation®4, ML
is not nearly as robust when used for extrapolation, although this
can be mitigated to some extent by including rigorous statistical
analyses on the predictions®>.

A discussion of errors and failure modes can help one
understand the bounds of the validity of any ML analysis
although it is often lacking or limited. An honest discourse
includes not only principled estimates of model performance and
detailed studies of predictive failure modes but also notes how
reproducible the results within and across research groups.
Explanation of model failure modes is required for validating the
use of ML for any application.

Finally, one of the biggest potential pitfalls that can occur, even
for large, well-curated datasets, is that one can lose sight of the
goal by focusing on the accuracy of the model rather than using it
to learn new science. There is a particular risk of the community
spending disproportionate effort incrementally optimizing mod-
els to overfit against benchmark tasks*?, which may or may not
even truly represent meaningful scientific endeavors in them-
selves. We note that in the case of the MatBench benchmark
dataset and ML challenge®®, many of the top performing models
are neural networks. While these models have impressive pre-
dictive capability their interpretability (and thus their ability to
inform scientific progress) is limited. This is also the case for the
Open Catalyst Challenge®’.

The objective should not be to identify the one algorithm that is
good at everything but rather to develop a more focused effort that
addresses a specific research question. For ML to reach its true
potential to transform research and not just serve as a tool to
expedite materials discovery and optimization, it needs to help
provide a means to connect experimental and theoretical results
instead of simply serving as a convenient vehicle to describe them.

Dream big enough for radical innovation

To date, ML has increased its presence in materials science for
mainly three applications: (1) automating data analysis that used
to be done manually; (2) serving as lead-generation in a
materials-screening funnel, illustrated by the Open Quantum
Materials Database and Materials Project; and (3) optimizing
existing materials, processes, and devices in a broadly incremental
manner. While these applications are critically important in this
field, radical innovation historically has often been accomplished
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Fig. 2 Comparison of theoretical and ML Models of the Hall-Petch effect. The success of a given ML model may have little or no relationship to the
actual physical processes as the model is merely interpolating between observations. For example, a Gaussian Process model can "capture” the

changeover in the behavior of the flow stress in metals from being dependent on grain boundary density in large-grain metals’8 to being dominated by
grain boundary sliding in nanocrystalline alloys’® even though the model is unaware of either mechanism. However, outside the range of acquired data
the lack of encoding scientific understanding results in rapidly increasing uncertainties, even in well-calibrated systems. Code for reproducing this figure is

available at https://github.com/usnistgov/ml-materials-reflections8C.

outside of the context of these three general research frameworks,
driven by human interests or serendipity along with stubborn
trial and error. For instance, graphene was first isolated during
Friday night experiments when Geim and Novoselov would try
out experimental science that was not necessarily linked to their
day jobs. Escobar et al.>8 discovered that peeling adhesive tape
can emit enough x-rays to produce images. Shirakawa>® dis-
covered a conductive polyacetylene film by accidentally mixing
doping materials at a concentration a thousand times too high.

Design research has argued that every radical innovation
investigated was done without careful analysis of a person’s or
even a society’s needs®. If this is the case, an ultimate question
about ML deployment in materials science would be, can ML help
humans make the startling discovery of “novel” materials and
eventually new science? The new science often relies on a discrete
discovery possibly outside the context of an existing theory, which
is noticeably different from current ML applications which tackle
problems like chess and Jeopardy!.

According to a proposed categorization in design research®,
one can position their research based on scientific and application
familiarity (Fig. 3a). Here, incremental areas (blue region) can
provide easier data acquisition and interpretation of results but
may hinder new discovery. In contrast, an unexplored area may
more likely provide such unexpected results but presents a huge
risk of wasting research resources due to the inherent uncertainty.
Self-aware resource allocation and inter-area feedback will be
needed to balance novelty with the probability of successful
research outcomes. Although there is currently a lack of ML
methods that can directly navigate one in the radical change/
radical application region to discover new science, we expect that
there are methodologies that can harness ML to increase the
chance of radical discovery.

Active outside-the-box exploration driven by ML-assisted
knowledge acquisition. Human interests motivate outside-the-
box research that may lead to a radical discovery, and these
interests are fostered by theoretical or experimental knowledge

acquisition. Therefore, any applied ML and automated research
systems may contribute to discrete discovery by accelerating the
knowledge feedback loop (Fig. 3b). Such ML-involved research
loop can include a proposal of hypotheses, theoretical and
experimental examination, knowledge extraction, and general-
ization, which may lead to an opportunity for radical thinking.
Analysis and online visualization tools can help better interpret
the result and mechanism of ML-involved research, which facil-
itates new hypotheses and generalization through knowledge
extraction. Such interactive analysis/visualization can be imple-
mented in various steps of the research loop such as feature
selection, ML model investigation, and ML interpretation.

For ML to play a meaningful role in expediting this loop, one
also should maintain exploratory curiosity at each step and be
inspired or guided by any outputs while attentively being involved
in the loop. In addition, at the very beginning of proof-of-concept
research, either in a current research loop or outside-the-box
search, the fear of reproducibility should not prevent the attempt
at new ideas because the scientific community needs to integrate
conflicting observations and ideas into a coherent theory®!.

One can harken back to Delbruck’s principle of limited
sloppiness®?, which reminds us that our experimental design
sometimes tests unintended questions, and hidden selectivity
requires attention to abnormality. In this context, ML may help
us notice the anomaly or even hidden variables with a rigorous
statistical procedure, leading to new pieces of knowledge and
outside-the-box exploration. For instance, ref. 3 used automated
experiments and statistical analysis to clarify the effect of trace
water (a hidden variable) on crystal/domain growth of halide
perovskite (an important property), which had often been
communicated only in intra-lab conversation. Since such
correlation analysis can only shed light on a domain where
features are input, researchers still need comprehensive experi-
mental records containing both data and metadata to be fed,
possibly regardless of their initial interests. Also, an unbiased and
flexible scientific attitude based upon observation may be crucial
to reforming a question after finding the abnormality.
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Radical
Change

Fig. 3 Use of outside-the-box thinking in advancing scientific research with ML. a Conceptual research domain defined by a scientific concept and an
applicational goal where the arrows represent a radical shift in research driven by outside-the-box thinking and/or creative artificial intelligence (Al).

b Machine-learning-involved research loop in conjunction with possible generalization and outside-the-box thinking pathways. Blue arrows illustrate
research flows in an incremental domain, green arrows show knowledge-based new research steps, and orange arrows illustrate radical shifts based on

new hypotheses and generalizations in the loop.

Deep generative inverse design to assist in creating material
concepts. Functionality-oriented inverse design® is an emerging
approach for searching chemical spaces® for small molecules and
possibly solid-state compounds®. Here, generative models
simultaneously learn how to map existing materials to a set of few
key variables and how to generate “new” materials from those key
“latent” variables. One can then optimize a material by finding
latent variables that should maximize the property and then
generating a new material from those coordinates. Novel com-
pounds likely to have desired properties can then be sampled
from the generative model®”. While the design spaces, such as the
166 billion molecules mapped by chemical space projects®8, are
far beyond the human capability to understand them compre-
hensively, ML may distill patterns connecting functionalities and
compound structures spanning the space. This approach can be a
critical step in conceptualizing materials design based upon
desired functionalities and further accelerating the ML-driven
research loop. One application of such inverse design is to create
a property-first optimization loop which includes defining a
desired property, proposing a material and structure for that
property, validating the results with (automated) experiments,
and refining the model.

While these generative methods may start to approach
creativity, they still explicitly aim to learn an empirical
distribution based on the available data. Therefore, extrapolation
outside of the current distribution of known materials is not
guaranteed to be productive. For instance, these methods would
probably not generate a carbon nanotube given only pre-
nanotube-era structures for training or generate ordered super-
lattices if there is none in the training data. In addition, these
huge datasets are mainly constructed based on simulation, and we
need to be careful about a gap between simulated and actual
experimental data as discussed previously. Still, a new concept
extracted from inverse design may inspire researchers to jump
into a new discrete subfield of material design by actively
interpreting the abstracted property-structure relationship.

Creative artificial intelligence for materials science. The essence
of scientific creativity is the production of new ideas, questions,
and connections®®. The era of artificial intelligence as an inno-
vative investigator in this sense has yet to arrive. However, since
human creativity has been captured by actively learning and
connecting dots highlighted by our curiosity, it may be possible
that machine “learning” can be as creative as humans in order to
reach radical innovation.

While conventional supervised natural language processing’?
has required large hand-labeled datasets for training, a recent
unsupervised learning study’! indicates the possibility of extract-
ing knowledge from literature without human intervention to
identify relevant content and capturing preliminary materials
science concepts such as the underlying structure of the periodic
table and structure-properties relationships. This unsupervised
learning was demonstrated by encoding latent literature into
information-dense word embeddings, which recommended some
materials for a specific application ahead of human discovery.
Since the amount of currently existing literature is too massive for
human cognition, such generative artificial intelligence systems
may be useful to suggest a specific design or concept given
appropriately defined functionalities.

Beyond latent variable optimization, one may consider
computational creativity, which is used to model imagination in
fields such as the arts”2, music’3, and gaming. This endeavor may
start with finding a vector space to measure novelty as a
distance’%. A novelty-oriented algorithm searches the space for a
set of distant new objects that is as diverse as possible as to
maximize novelty instead of an objective function’”. Since there
would be some bias for measuring the distance along with
exploratory space, deep learning novelty explorer (DeLeNox) was
recently proposed’® as a means to dynamically change the
distance functions for improved diversity. These approaches
could be applied to materials science to diversify research
directions and help us pose and consider novel materials and
ideas though measuring novelty may be subjective and most
challenging for the community, and one always needs to be
mindful of ethical and physical materials constraints.

Outlook

Machine learning has been effective at expediting a variety of
tasks, and the initial stage of its implementation for materials
research has already confirmed that it has great promise to
accelerate science and discovery’’. To realize that full potential,
we need to tailor its usage to answer well defined questions while
keeping perspective of the limits of the resources needed and the
bounds of meaningful interpretation of the resulting analyses.
Eventually, we may be able to develop ML algorithms that will
consistently lead us to new breakthroughs. In the meantime, a
complementary team of humans, ML, and robots has already
begun to advance materials science.
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