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Organic photostimulated luminescence associated
with persistent spin-correlated radical pairs
Manabu Sakurai1, Ryota Kabe2,3✉, Masaaki Fuki4, Zesen Lin2,3, Kazuya Jinnai3,5, Yasuhiro Kobori 1,4,

Chihaya Adachi 3,5,6 & Takashi Tachikawa 1,4✉

Photostimulated luminescence allows energy or data to be stored and released using elec-

tromagnetic waves as both the input and output, and has attracted considerable interest in

the fields of biomedical and information technologies. However, this phenomenon is mostly

limited to solid inorganic materials. Here, we report photostimulated luminescence from

purely organic blend films, composed of electron donor, acceptor, and trap/emitter mole-

cules. Charges in the films are accumulated as radical ions by ultraviolet light irradiation and

then extracted by near-infrared light irradiation. Even after storage in the dark for one week

they produce visible light with good repeatability, color tunability, and are responsive to weak

external magnetic fields. These findings might broadly impact existing applications and

provide new prospects for innovative flexible devices.
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Organic semiconductors are promising materials for future
technologies, such as flexible optoelectronic devices,
high-density data storage, and biophotonics, owing to

their structural diversity, mechanical elasticity, low cost, and facile
processing1–4. Optical and electronic properties of these materials
can be tailored through molecular design to yield efficient light
emission or electric power conversion with tunable bandgap
energies.

Recently, organic long persistent luminescence (LPL) systems
producing a glow-in-the-dark effect have been demonstrated by
retaining long-lived charge-separated states (CSSs) over periods
of up to an hour at room temperature in blend films consisting of
two or more organic compounds5,6. These systems are free of rare
metals and can be fabricated via simple melt-casting at relatively
low temperatures or solution processing at room temperature.
Since then, a variety of organic LPL materials have been devel-
oped by combining different electron donor/acceptor pairs7–10.

Meanwhile, conventional rare metal-based LPL systems are
known to exhibit intense photostimulated luminescence (PSL), in
which excess charges are accumulated at defects or dopant sites
during pre-illumination (e.g., X-ray) and then be released by
second illumination (e.g., visible light) to emit photons for a
variety of applications (e.g., BaFBr:Eu2+ imaging plate)11–14. In
addition, the long-lived charges in LPL materials are a promising
candidate for coherent spin manipulation logic devices15,16 and
magnetic luminescence manipulation17. However, these applica-
tions are limited by prompt spin relaxation, usually in the
nanosecond range, due to spin–orbit coupling in inorganic
materials containing heavy atoms. The development of organic
PSL materials would thus open up new fields of flexible optoe-
lectronic devices and biomedical tools.

In this paper, we demonstrate purely organic PSL over a wide
range of colors utilizing ultraviolet (UV) and near-infrared (NIR)
light for multiple write-in and read-out cycles, respectively, by
adding a molecule with dual roles as an electron trap and light
emitter to the organic LPL systems. The slower spin relaxation in
the absence of heavy atoms allowed manipulation of the LPL/PSL
processes by weak external magnetic fields.

Results
Organic PSL systems. As a model system, we first explore a
ternary blend film of electron donor (4,4′,4″-tris[(3-methylphenyl)
phenylamino]triphenylamine; m-MTDATA) (1 mol%), electron
acceptor (2,8-bis(diphenylphosphoryl)dibenzo[b,d]thiophene;
PPT), and electron trap/emitter (5,6,11,12-tetraphenyltetracene;
Rb) (1 mol%, unless otherwise noted) (Fig. 1a).

Excitation of the film with UV light induces the formation of
CSSs between m-MTDATA and PPT, resulting in a green-
emitting charge transfer (CT) excited state or exciplex (Fig. 1b)18.
The excitation energy of the CT excited state is transferred to Rb
via Förster resonance energy transfer, resulting in persistent
orange emission (see Supplementary Note 1 and Supplementary
Figures 1 and 2)6. At the same time, a portion of the electrons are
captured by neutral Rb molecules, which have lowest unoccupied
molecular orbitals (LUMOs) that are ~0.8 eV lower than that of
PPT, to form the long-lived radical anions of Rb (Rb•−) (Fig. 1c).
Since Rb•− possesses strong absorption bands in the NIR region,
NIR excitation can induce electron transfer from doublet excited
Rb•− to neighboring PPT molecules, thereby producing mobile
electrons in the PPT film for the generation of singlet excited state
of Rb (1Rb*).

Properties of organic PSL. Optical write-in and read-out pro-
cesses based on organic PSL are schematically illustrated in
Fig. 2a. First, an organic film is exposed to UV light for ~1 min to

write in information. The irradiated film is kept in the dark for a
defined time and then exposed to NIR light for reading out the
stored information as visible PSL. Figure 2b displays a photo-
graph of the m-MTDATA/PPT/Rb film prepared by reported
procedures in an argon-filled glove box6. After stopping UV
irradiation, orange LPL was clearly seen from the film, except for
from the masked region, and gradually weakened over time.
Surprisingly, NIR light irradiation of the film dramatically
enhanced this orange emission to the point of being visible to the
naked eye after keeping the film in the dark at room temperature
for one day after stopping UV irradiation and with a commercial
digital camera 1 week after UV irradiation (Fig. 2c). The irra-
diated triangular area seemed to have been retained to ensure
long-term storage ability.

Luminescence properties of the uniform films were selectively
examined by using an inverted fluorescence microscope (Supple-
mentary Figure 3). As shown in Fig. 2d and Supplementary
Figure 4, the LPL intensity suddenly increased more than 15
times upon NIR irradiation (see the arrow) without apparent
changes in the spectral shape (Supplementary Figure 5), while no
emission enhancement was observed without UV pre-irradiation.
This observation is indicative of PSL, which could be repeated for
ten write-in/read-out cycles for the same area with an ~10% loss
in initial intensity (see Supplementary Note 1 and Supplementary
Figure 6).

To confirm the existence of Rb•−, we measured optical
absorption spectra for the m-MTDATA/PPT/Rb films before
and after UV irradiation, and then derived differential spectra.
The characteristic absorption bands of Rb•− were observed at
~800 and 1000 nm19 only for the film containing Rb (Fig. 2e and
Supplementary Figure 7), while both films exhibited a broad band
from 900 to 1400 nm, which is analogous to the absorption
spectrum of m-MTDATA radical cations (m-MTDATA•+)20.
The absorption decayed slowly over time after stopping UV
irradiation, indicating a gradual depletion of radical species
accumulated in the film (see Supplementary Notes 2 and 3 and
Supplementary Figures 8 and 9). The involvement of Rb•− was
further supported by electron spin resonance (ESR) spectral
measurements (see Supplementary Note 4 and Supplementary
Figure 10).

To verify the origin of PSL, an action spectrum, where intensity
changes upon NIR stimulation are plotted as a function of
excitation wavelength, was measured (Supplementary Figure 11).
The obtained spectral shape roughly matches the absorption
spectrum of Rb•−, thus suggesting the importance of spectral
matching between stimulation light and electronic absorption of
radical anions of trap/emitter molecules. A negligible enhance-
ment seen for the film without trap/emitter molecules is possibly
due to a small extinction coefficient (ε) of PPT•− (Fig. 2e), as
compared with Rb•− (ε ≈ 2 × 104M−1 cm−1 at ~800 nm)19.

Color tenability. The proposed scheme is applicable for color
tuning with different trap/emitter molecules (2,5,8,11-tetra-tert-
butylperylene (TBPe), 9,10-bis[N,N-di-(p-tolyl)-amino]anthra-
cene (TTPA), 2,8-di-tert-butyl-5,11-bis(4-tert-butylphenyl)-6,12-
diphenyltetracene (TBRb), and 4-(dicyanomethylene)-2-methyl-
6-julolidyl-9-enyl-4H-pyran (DCM2)) whose LUMO levels are
lower than that of PPT (−2.2 eV). All the samples exhibited
detectable PSL with different colors and spectra similar to their
LPL without NIR irradiation (Fig. 3 and Supplementary Figure 5).
Compared with TBRb and DCM2, relatively weak NIR responses
were observed for TBPe and TTPA. Since these molecules have
LUMO energies lower than the others, we can exclude the pos-
sibility that the PSL simply originates from the thermal release of
electrons from trap sites by NIR irradiation. In fact, significant
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PSL was observed for the m-MTDATA/PPT/Rb film even at 77 K
(Supplementary Figure 12). In the case of TBPe, the weak
PSL may be due to inefficient excitation of radical anions since
TBPe•− has very weak absorption bands in the NIR region21.
These results also suggest that trapping of electrons at depths
deeper than 0.5 eV from the LUMO level of PPT could be
necessary for intense PSL.

Magnetic field effects. Besides the NIR stimulation, the spin state
of trapped charges could be controlled by magnetic fields. Here, we
demonstrate magnetic field effects (MFEs) on LPL/PSL by applying
external magnetic fields (B) with an electromagnet to the sample
under the inverted fluorescence microscope22. Interestingly, sig-
nificant decreases of emission intensity (i.e., negative MFEs) were
observed for LPL/PSL (Fig. 4a and Supplementary Figure 13a, b),
while no MFE was seen for the film without Rb (Supplementary
Figure 13c), implying a crucial role of trap/emitter molecules. The
MFEs in the LPL process can be expressed as

χLPLðBÞ ¼
LPLðB; tÞ � LPLð0; tÞ

LPLð0; tÞ ð1Þ

where LPL(B, t) and LPL(0, t) represent the LPL intensity at time t
in the presence and absence of magnetic field, respectively. The
χLPL(B) values were plotted as a function of B and were then fitted
by the Lorentzian function (inset of Fig. 4a). The absolute values of
saturated χLPL(B) increased with increasing Rb concentration,
while the B1/2 values (defined as the magnetic field at which the
change in emission intensity reaches half of its saturation value)
remained constant (see Supplementary Note 5 and Supplementary
Figure 13d, e). Meanwhile, an increase of emission intensity (i.e.,
positive MFEs) was observed for fluorescence from the films both
with and without Rb under UV irradiation (see Supplementary
Note 6 and Supplementary Figure 14).

Discussion
Rb molecules are known to exhibit upconversion (UC) photo-
luminescence through triplet–triplet annihilation (TTA) of exci-
ted triplet states in both the solution and solid state23–25. To
investigate the involvement of TTA-UC in the mechanism of PSL,
we measured the luminescence of the ternary blend film con-
taining pentacene (PEN) (1 mol%), in which TTA-UC is ener-
getically impossible26. Considering the LUMO level (ca. −3.3 eV)
of PEN27, photogenerated electrons in the film can be captured by
neutral PEN molecules (Fig. 1c). In addition, PEN•− has an
absorption band in the NIR region (700−900 nm) for
stimulation27. As demonstrated in Supplementary Figure 15, a
strong PSL was confirmed by doping PEN instead of Rb, sup-
porting our newly proposed mechanism and its versatile applic-
ability (see Supplementary Discussion 1 for a discussion of the
mechanism of PSL).

In organic LPL materials, a number of CSSs are stored in the film
under and after pre-excitation (Supplementary Figures 8 and 9). As
shown in Fig. 4b, the spin distribution progresses to a singlet–triplet
equilibrium in a statistical ratio of 1:3 when the spin mixing
effectively occurs within the lifetime of spin-correlated CSSs. The
luminescent species (singlet CT (1CT) state or singlet excited state
of Rb (1Rb*)) were formed from singlet CSSs (1CSSs) via slow
detrapping process with the rate (kdetr) of 10−2–100 s−1 (see the
mechanism of MFEs in the Supplementary information)28. The
NIR stimulation of 1CSSs increases the proportion of luminescent
species by accelerating the detrapping process (see the PSL process
in Fig. 4c). In the presence of B of ~10mT, the Zeeman splitting
suppresses the population flow from 3CSS to 1CSS by reducing the
rate of spin mixing between 3CSS± and 1CSS (k0 ≈ 108 s−1, which
was estimated from B1/2) to the spin relaxation rate (krel= 103–106 s
−1)16, and thus decreases the LPL/PSL intensity (see the MFE
process in Fig. 4c). For the appearance of MFEs, modified spin

Fig. 1 Schematic illustration of organic PSL systems. a Molecular structures of m-MTDATA, PPT, and trap/emitter molecules. b Proposed reaction
scheme of organic PSL. During UV excitation, an electron is transferred from the excited state of donor (D) to acceptor (A) to form the CT excited state or
exciplex (Dδ+Aδ−). The electrons in the film diffuse between A molecules and are partly captured by trap/emitter (T) molecules, forming their radical
anions (T•−). The excited state of T•− (T•−*) formed by NIR stimulation causes electron transfer to A. The excited state of T (T*) is then formed via FRET
from the regenerated CT state or superexchange charge recombination, resulting in visible PSL. The luminescence from T* is also modulated by external
magnetic fields through long-distance spin entanglement between singlet and triplet states of the D•+···T•− pair. EnT energy transfer, ET electron transfer,
CS charge separation, and CR charge recombination. c Highest occupied molecular orbital (HOMO) and LUMO levels of m-MTDATA, PPT, and trap/
emitter molecules.
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distribution through spin entanglement should maintain within the
relaxation time (i.e., kdetr ≥ krel). One possible reaction pathway is
that long-distance 1CSSs in the film containing Rb molecules
as deep traps recombine to generate 1Rb* via superexchange-
mediated hole transfer29 with rates faster than the spin
relaxation (see Supplementary Discussion 2 for a discussion of
the mechanism of MFEs and Supplementary Figure 16), as
opposed to a recent mobile long-lived carrier dynamics in ZnS
nanocrystal that exhibited no MFE30. Meanwhile, the undoped
systems may not fit the above criteria for LPL, possibly due to
smaller k0 at shorter charge separation distances31 and/or
higher krel for PPT•− possessing heavier sulfur and phos-
phorus atoms32.

The responsiveness to magnetic fields (B1/2 ≈ 3 mT)
observed for the present systems is distinguishable from that
(B1/2 > 100 mT) reported for the Rb-based system exhibiting
singlet fission33 and makes them attractive for applications.
Combined with write-in and read-out characteristics of PSL,
manipulation of long-lived spin states in organic materials by
weak magnetic fields will energize researchers in various fields
such as molecular spintronics, which is a promising next-
generation technology34–36.

Methods
Materials. m-MTDATA (purity 99.4%, high-performance liquid chromatography
(HPLC)) and Rb (purity 99.9%, gas chromatography) were obtained from Sigma-
Aldrich (USA) and PPT (purity 99.9%, HPLC) was synthesized according to the
literature37. These materials were purified by sublimation. TBPe (sublimed, purity
>99%, HPLC), TTPA (sublimed, purity >99%, HPLC), TBRb (sublimed, purity
>99%, HPLC), and DCM2 (purity >99%, HPLC) were obtained from Lumines-
cence Technology Corp. (Taiwan) and used without purification. PEN (sublimed,
purity 99.999%) was obtained from Tokyo Chemical Industry Co., Ltd (Japan) and
used without purification. Purities of m-MTDATA and PPT were analyzed by
HPLC (Waters, Alliance e2695) by using InertSustain C18 column (GL Science)
(Supplementary Figure 17), and purities of other compounds are based on the
specification of the suppliers. The predicted density of PPT using Advanced
Chemistry Development (ACD/Labs) software was taken from SciFinder for cal-
culation of molecular distance.

Sample fabrication. The ternary blend films were prepared by reported
procedures6. Briefly, m-MTDATA (1 mol%), PPT (98 mol%), and trap/emitter
molecules (1 mol%, unless otherwise noted) were dissolved in dichloromethane.
Then, the solvent was removed under reduced pressure in the dark. The mixture
was dried using three cycles of the freeze-pump method. In an argon-filled glove
box, the dried mixture was placed on a glass plate and heated up to 250 °C for 10 s.
After melting, the substrate was rapidly cooled down to room temperature and
encapsulated using a cover glass and UV-cured epoxy resin (Fig. 2b). For low-
temperature experiments, a quartz glass tube containing a mixture of PPT (98 mol
%), m-MTDATA (1 mol%), and Rb (1 mol%) was evacuated under vacuum at
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room temperature and then heated up to 250 °C to melt the mixture. After cooling
down to room temperature, the sample tube was inserted into a transparent glass
Dewar vessel. The vessel was filled with liquid nitrogen for emission measurements
at 77 K.

Characterizations. To observe PSL, the sample was excited by monochromatic
NIR light (e.g., 800 nm, 12 mW cm−2 at the sample) emitted from a Xe lamp
(Asahi Spectra, MAX-303) with a bandpass filter, after stopping UV light irra-
diation (365 nm, 35 mW cm−2 at the sample) using an LED light source (Thorlabs,
M365LP1). Before repeated experiments, the sample was exposed to intense NIR
light (750–1050 nm) from the Xe lamp for 10 min to remove as many long-lived
trapped electrons as possible. The optical absorption spectra were obtained using
UV–vis–NIR spectrophotometer (JASCO, V-770). The NIR-induced changes of
absorption spectra were obtained using the SEC2020 spectrometer system (BAS)
and 785 nm laser (Thorlabs, LDM785). The cyclic voltammetry was carried out
using an electrochemical analyzer (BAS, Model 610E). The measurements were
performed in dried and oxygen-free dichloromethane (CH2Cl2) or N,N-

dimethylformamide (DMF) using 0.1 M tetrabutylammonium hexafluoropho-
sphate (TBAPF6) as a supporting electrolyte. A platinum fiber was used as a
working electrode, glassy carbon as a counter electrode, and Ag/Ag+ as a reference
electrode. Redox potentials were referenced against ferrocene/ferrocenium (Fc/Fc
+). The HOMO level of m-MTDATA and LUMO levels of PPT and trap/emitter
molecules (excepting PEN27) were calculated according to the equations of EHOMO

or LUMO= –Eredox (vs. Fc/Fc+)−4.8 eV38. The energy gaps between HOMO and
LUMO levels were calculated from the onsets of the absorption spectra observed
for solution samples. The absorption spectra of radical anion or radical cation of
the materials were obtained by UV–vis–NIR spectrophotometer (Shimadzu, UV-
3600 Plus). Samples in dried and oxygen-free CH2Cl2 or DMF with 0.1 M TBAPF6
were oxidized or reduced by the platinum mesh electrode through the use of an
electrochemical analyzer (BAS, Model 610E).

Fluorescence microscopy measurements. The fluorescence microscopy mea-
surements were performed on an inverted fluorescence microscope (Nikon, Ti-E).
A 365-nm LED (Thorlabs, M365LP1; 0.85W cm−2 at the sample) was used to
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excite the sample through an objective lens (CFI Plan Apo λ 100 × H, Nikon; NA
(numerical aperture)= 1.45). A 810-nm LED light source (Thorlabs, M810L3; 810
nm, 12 mW cm−2 at the sample) was used for NIR stimulation. A Xe lamp (Asahi
Spectra, MAX-303) and bandpass filters were used for NIR excitation with the
same numbers of emitted photons to obtain the action spectrum. The NIR light
was irradiated from above the sample. The emission from the sample was collected
by the same objective lens, after which it was magnified by a 1.5× built-in mag-
nification changer. It subsequently passed through a dichroic mirror (Semrock,
FF697-SDI01 or Di02-R405) and a short-pass filter (Semrock, FF02-694/SP-25) or
a long-pass filter (Semrock, BLP01-405R) to remove the undesired scattered light.
The emission images were recorded with an electron-multiplying charge-coupled
device camera (Roper Scientific, Evolve 512) using Micro-Manager (https://www.
micro-manager.org/). The intensity profiles were obtained by subtracting the dark
counts from the raw data. For the spectroscopy, only the emission that passed
through a long-pass filter (Semrock, BLP01-405R) and a slit entered the imaging
spectrograph (SOL instruments, MS3504i) equipped with a CCD camera (Andor,
DU416A-LDC-DD). Magnetic fields were applied using a custom-made electro-
magnet and calibrated with a gauss meter. All experimental data were obtained at
room temperature unless otherwise noted.

Data availability
The data associated with the reported findings are available in the manuscript or the
Supplementary information. Other related data are available from the corresponding
authors upon request.
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