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Integrating multiple materials science projects
in a single neural network

Kan Hatakeyama-Sato® ' & Kenichi Oyaizu'™

In data-intensive science, machine learning plays a critical role in processing big data.
However, the potential of machine learning has been limited in the field of materials science
because of the difficulty in treating complex real-world information as a digital language.
Here, we propose to use graph-shaped databases with a common format to describe almost
any materials science experimental data digitally, including chemical structures, processes,
properties, and natural languages. The graphs can express real world's data with little
information loss. In our approach, a single neural network treats the versatile materials
science data collected from over ten projects, whereas traditional approaches require indi-
vidual models to be prepared to process each individual database and property. The multitask
learning of miscellaneous factors increases the prediction accuracy of parameters synergis-
tically by acquiring broad knowledge in the field. The integration is beneficial for developing
general prediction models and for solving inverse problems in materials science.
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amidst the worldwide deluge of datal:2, Recent develop-

ments in deep learning have provided a way to extract
important features from big data automatically and to understand
new phenomena’. Integration of data by machine learning is also
important in materials science. New devices, such as next-
generation batteries and photovoltaics, could be developed more
efficiently by automatically exploring materials with superior
properties, chemical structures, and processes®°.

Despite the high expectations around materials informatics,
even cutting-edge prediction models are not yet able to integrate
big data from materials science, due to the lack of general
knowledge in this field®-13. A number of models predict a variety
of material parameters, including physical and chemical proper-
ties, structures, and spectroscopic responses®18. The recent
development of data mining techniques from scientific literature
is also helpful to increase the number of databases and to enhance
prediction accuracy!41>18. However, a critical drawback has been
that the previous models could not predict more than two
parameters (Table 1 and Fig. la, b) and contained as many
individual prediction algorithms and models as predicting para-
meters®~13, Therefore, the models could not perform essential
tasks that are easy for humans, such as learning, considering, and
predicting multiple real-world phenomena with a single intelli-
gence. This limitation arises from the use of traditional, inflexible
table databases. To integrate knowledge, varied information must
be inputted and outputted (i.e., multimodal learning)!%-29,

In this study, we introduced graphs with a common format to
integrate diverse materials science projects (Fig. 2a, Supplementary
Figs. 1 and 2). The format can express almost all experimental
materials science information, such as structure, properties, pro-
cesses, text, images, and even sounds. All related information from
more than ten projects was inputted into a single neural network to
predict more than 40 parameters simultaneously, including numeric
properties, chemical structures, and text (Fig. 1). Graph approaches
have been employed to analyze the relationships of atom-connec-
tions, chemical features, and reactions®!®17. In this study, we
extended the approach to train a neural network with the general

D ata-driven science is becoming increasingly important

phenomena of science, which are expressed by graphs. The multi-
task training of versatile information was essential to acquire broad
knowledge about materials science. Our graph approach will be the
key to developing general-purpose artificial intelligence for mate-
rials science, including inverse problem solving.

Results

Process informatics for electron-conducting polymers. As a
model case to demonstrate the effect of the graph format, we
examined the process informatics of poly(3,4-ethylenediox-
ythiophene) doped with poly(4-styrenesulfonate) (PEDOT-PSS;
Fig. 3). The polymer is known for its high electron conductivity
and can be used in transparent flexible conductive films, capa-
citors, solar cells, thermoelectrics, and other energy-related
devices?1:22. The conductivity reaches over 3000Scm™! after
the careful chemical treatment of the polymer film?>23. To
achieve higher conductivity, a number of new annealing methods,
including repeated chemical treatments with strong acids, bases,
and solvents, have been reported?3. Informatic approaches have
been partially introduced to predict the properties of PEDOT-
PSSZ425 However, the post-treatment methods have become too
long and complex to be analyzed by conventional machine
learning approaches or to be understood except by a few spe-
cialists (example scheme is shown in Fig. 3a).

Process informatics aims to optimize procedures by using
statistical tools>2%27, The supposedly important factors for the
target performance are extracted manually, and recorded in table
databases (e.g., heating temperature, mixing speed, and duration;
Supplementary Fig. 1). The table format is normally used because
most machine learning models can only accept numeric arrays>.

The intrinsic problems with the traditional approach are the
inflexible format of the table and ignorance of the experimental
context. The database format must be changed whenever a new
experimental step (e.g., additional mixing) is considered, although
additional steps are often examined to optimize the procedure. It
may not be possible to describe complex experimental informa-
tion fully in a numeric table alone. Even if the table is constructed,

Table 1 Comparison of the present work with previous prediction models.

Targets Predictable Inputted Input® Outputb Ref.
parameters? databases?
Num. Chem. Misc. Num. Chem. Misc.
1 Properties, chemicals, >40 >10 + + + + + + This work
processes, etc.
2 lonic conductivity 1 1(2)¢ + + + 6
3 Material properties 1 (>40)¢ 1(>10)¢ + + 8
4 Polymer properties 1(7)¢ 1 + + 7
5 Nanosheet yield 1 1 + + 9
6 OLED performanced 1 1 + + n
7 Chemical reaction® 1 1 + + 12
8 NMR spectraf 1 1 + + 10
9 Molecular structure8 1 1 + + 13
10 Inorganic semiconductors, - ©) + + 18
etc.h
n Properties, chemicals, etc.l >3) >3) +) +) +) + [CD) (+) 7

aNumber of parameters and databases predicted or interpreted by a single prediction model.

final predictions themselves are done individually (see Supplementary Fig. 12).
dOLED: organic light emitting diode.

Predict yield of chemical reactions.

fPredict NMR spectra of chemicals.

&Known as an autoencoder of chemical structures.

bInputs and outputs of the models. “Num.”, “Chem."”, and “Misc.” indicate numbers, chemical structures, and miscellaneous parameters (e.g., images, sounds, and spectra). For example, prediction model
number 2 in the table predicts ionic conductivity (numbers) of polymer composites from their chemical structures and numeric parameters (composition ratio, etc).
“Multiple models were generated to input/predict multiple databases and parameters by transfer learning. Each model shares mutual algorithms for the improved recognition of important features, but

hFrom text abstracts, the model calculates the embedding vectors of chemicals, expressed by words.
!Individual databases and machine learning models were connected and analyzed by graph approaches.
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Fig. 1 Concept for the present work. a A single neural network model is trained to learn and predict diverse materials informatics projects. b Traditionally, a

model can process only one database and predict one parameter. The Wikipedia logo is reprinted with the CC-BY-SA 3.0 license.
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Fig. 2 About graph approach. a Concept of using a graph database for materials informatics. Traditionally, the experimental, real-world information (Z) is
converted to table databases manually, which require unique algorithms to be formatted as numeric arrays for each case (right part of the figure). Machine
learning models, trained with individual format databases, cannot interpret the other databases. On the other hand, common-formatted graphs were made
to express versatile experimental information in this study (left part). A single machine learning model interprets all inputted experimental information.
b Overview of processing graph structures for machine learning (see Supplementary Fig. 4 for further information).
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Fig. 3 Prediction of electric conductivity. a Predicting the electrical conductivity of PEDOT-PSS from its post-treatment method. b Structure of PEDOT-
PSS. The mixture gives higher conductivity with appropriate post-treatment, which induces the optimum connection of conductive moieties. ¢ Experimental
and predicted conductivity of PEDOT-PSS. Seventy percent of data are selected randomly as the training dataset. The rest is used only for prediction. R?

scores for training and test datasets are 0.87 and 0.70, respectively.

reusing it in other projects may be difficult because it does not
contain the context for the values (Supplementary Fig. 1).

In the present study, text-based experimental procedures were
automatically converted to graphs while maintaining the text
context and inputted directly to a machine learning model
(Fig. 3a and Supplementary Fig. 3). Graph data describe the
relationships among things (expressed as nodes) by connecting
them with edges; in contrast to table databases, this flexibility
enables the expression of diverse information easily, such as text
structures, social networks, and molecular structures?8. A recent
development in deep learning has enabled the automatic
recognition of the graphs and calculation of their characteristic
features?8, Still, individual prediction models had to be prepared
for each genre. Here, we demonstrate that even a single graph and
a prediction model can process multidisciplinary information,
including chemicals, text, and numbers (Fig. 1).

A simple yet powerful approach to describe versatile informa-
tion in graphs was to record both genre and content information
in each node (Fig. 2b, Supplementary Figs. 4 and 5a). The original
text of the post treatments was converted to dependency trees as
undirected graphs by a natural language parser?®. The nodes in
graphs were classified as words, chemical structures, and values.
The node information was then converted to numeric vectors by
three algorithms (see “Methods” and Supplementary Fig. 4). To
process words, a state-of-the-art language-understanding deep-
learning model called BERT3 was used. Molecular information
was converted to vectors by using molecular fingerprints3!.

Values in numeric nodes were kept unchanged. To distinguish
the genres, three numeric arrays were added to the headers. Apart
from the three classes, any information can be embedded in
graphs if it can be converted to numeric arrays, thereby paving
the way to learning general information about materials science
(e.g., inorganic structures, images, and sounds)3.

More than 350 types of graphs related to the post-treatment of
PEDOT-PSS (from over 20 papers) were prepared and inputted
to a graph neural network®32, The model was trained to predict
the electrical conductivity from the post-treatment methods of
the polymer films. In the original database, the procedures were
written as text (Fig. 3a). After automatically converting the text to
graphs, only the nodes containing electrical conductivity were
replaced with the keyword “unknown”. Here, no significant
information is basically lost during the graph conversion because
the quasi-reversibility of text parsing?®. The graphs were used as
the inputs (questions) to the model. The model was trained to
predict the conductivity from the graph-shaped questions. As the
overall user interface, the model can answer the performances of
the polymers only from text. This style is more convenient and
reliable for most users; special effort and knowledge are needed to
prepare traditional table databases, which require the careful,
manual selection of important features for the target phenomena
and formatting into numeric arrays for machine learning.

The prediction accuracy of the conductivity by the neural
network was high. To check the accuracy, the database was split
into training (70%) and test (30%) datasets randomly. Although
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the model was trained only with the training dataset, the R? score
of the prediction and experimental conductivity was greater than
0.7 (Fig. 3c). The score was comparable or slightly higher than the
control experiment, where conductivity was predicted directly
from texts using a conventional natural language model (R?>=
0.66, Supplementary Fig. 5b, c). The high accuracy supported the
validity of the graph approach. Except for a few specialists, such
accurate predictions are difficult to make due to the excessively
complex preparation procedure (see the long preparation method
shown in Fig. 3a). Because the neural network can find essential
features from graphs automatically, manual parameter selection
to prepare the database is not necessary. Automatic text parsing?’
and the general graph approach enable automatic data collection
from materials science big data, where recognition of unstruc-
tured data has been a bottleneck’.

Multitask learning in different projects. A key advantage of
using general graphs is their high capability for describing diverse
experimental information. Because the text context is maintained
in the graphs, users can easily change the target parameters of the
prediction by replacing the target node with the keyword
“unknown”. In contrast to normal table databases, the graph
questions themselves contain the information about what is to be
predicted. This enables one model to learn and predict multiple
databases and parameters easily (multitask and multimodal
training). For instance, we prepared a graph database containing
more than 1000 chemical compounds from Wikipedia (Supple-
mentary Fig. 6). The relationships among chemical structures and
their physical properties were recorded as graphs. Similarly, a
lithium-ion conducting polymer database, which we constructed
previously®, was converted into graphs. In the previous study, a
long script was needed to process the complex conductor infor-
mation so it could be interpreted by a machine learning model
(ie., into numeric arrays)°. However, in the present study, no
additional script was necessary because the conductor informa-
tion could be expressed in the general graph format (Supple-
mentary Fig. 6).

Chemical graph databases were easily converted to question
graphs by replacing the property nodes with the keyword
“unknown”. More than ten properties, including ionic conduc-
tivity, melting point, pKa, viscosity, and vapor pressure, were set
as questions (Supplementary Fig. 6). A machine learning model
was trained with the PEDOT-PSS and Wikipedia databases to
predict the recorded properties (Fig. 4a and Supplementary
Fig. 7). Multitask and multimodal training is not feasible with the
traditional table databases, due to their inflexible format; the
process information about PEDOT-PSS and the chemical
properties in Wikipedia cannot be described fully in an integrated
table.

Although there was no obvious relationship between the
post-treatment of PEDOT-PSS and compounds in Wikipedia,
the prediction accuracy of the electrical conductivity of
PEDOT-PSS was improved by multitask training. The
PEDOT-PSS database was split into training and test datasets
randomly with different split ratios (0-0.9). All data from
Wikipedia were combined with the training dataset (Fig. 4a). As
expected, the R? score for the test dataset increased as the split
ratio increased (Fig. 4b). Most importantly, the scores were
always higher when Wikipedia was learned simultaneously. A
similar improvement was observed for the multitask learning of
the lithium-ion conducting polymer database. The score was
more than three times higher with the multitask learning than
with only learning PEDOT-PSS, with a split ratio of 0.3
(corresponding to learning ca. 100 cases of PEDOT-PSS). To
our knowledge, this is the first report of multitask learning of

different databases and improvement of prediction accuracy in
materials science.

To reveal the detailed process of multitask learning, we
analyzed the intermediate calculation steps in the model, by
visualizing the outputs of a hidden layer in the neural network
(Fig. 4c, Supplementary Figs. 8-11). The hidden layer converted
the inputted graphs to 32-dimensional numeric arrays as the
vector representation (Supplementary Fig. 5a). The vectors
contain essential information about the input and output, termed
‘latent space’>13. We compressed the 32-dimensional vectors into
two-dimensional arrays®3 for easier understanding (Fig. 4d).
When only the Wikipedia database was used for training (split
ratio of 0), the plots from PEDOT-PSS and Wikipedia databases
were separate, indicating that the model interpreted them as
different species. In contrast, the plots were combined after
multitask learning because the model found hidden mutuality
among the data and partially shared calculation algorithms for
predicting the different parameters. Further mechanism analysis
of the multitask is not accessible due to the “black box” problem
of deep learning’. However, the recent idea of machine learning,
represented by influence functions®4, may help researchers reveal
the internal processes (e.g., clarify the relationships among
specific databases and parameters).

A similar idea to multitask learning, called ‘transfer learning’,
has also been proposed to improve prediction®8, in which
different prediction models partially shared the calculation steps
to recognize important data features efficiently. However, the
final calculations were done by individual algorithms (for details
see Supplementary Fig. 12). The individuality limits the
advantages of the synergistic effects of learning multiple databases
and acquiring broad knowledge of the field. In contrast, in the
graph approach, a single intelligence interpreted multiple
databases and properties. This finding is essential for exploring
the materials informatics of experimental projects, most of which
have6 limited database capacity owing to the high experimental
cost®.

General materials informatics prediction model. A more gen-
eral materials informatics prediction model was pursued by
increasing the number of learning databases. From public data,
we collected 14 experimental materials science databases, con-
taining over 40 properties (see Supplementary Information). The
main compounds in the databases were monomeric molecules,
organic polymers, and their mixtures. In addition to their basic
physical properties, advanced features, such as redox potentials
were included (Fig. 1). Prediction of redox potential is necessary
to develop energy-related devices but was not fully successful,
mainly because the potentials are changed by the effects of sol-
vents and salts and complex systems are difficult to handle in the
table format and simulations®”. In the graph databases, the redox
potentials were easily recorded as a function of redox molecules,
solvents, and electrolyte salts.

For machine learning, some databases were selected randomly
and learned with a single prediction model (Supplementary
Fig. 13). By increasing the number of training databases, the
number of predictable parameters increased because the model
could understand the larger amount of information inputted.
When the model was trained with all 14 databases, it could
predict over 40 properties with high accuracy (Fig. 5, Supple-
mentary Fig 14a, Supplementary Table 1, and Supplementary
Data 1). The prediction accuracy was not high enough (R? < 0)
with the parameters with insufficient amounts of training data
(typically less than 100 cases, Supplementary Fig. 14b). We
emphasize that the prediction errors by the multitask training
were basically smaller than the control experiments, introducing
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Supplementary Figs. 9 and 10.

different random forest regressors to predict each parameter from
corresponding chemical fingerprints (i.e., standard single-task
training, Supplementary Fig. 14c). For higher accuracy, we are
integrating other public experimental databases and even
computational results. Together with revealing the synergetic
effects of multitask learning, even one- or zero-shot learning3®
may be achievable with the model, which can benefit from both
human-like context understanding capability and hugecomputa-
tional power to process big data. General prediction models will
be beneficial to the wider research community because of their
broad knowledge and ability to answer unknown questions;
internet search engines can only answer questions about known
issues and human professional resources are limited.

Inverse problem solving by graph approach. One of the ultimate
goals of materials informatics is fully solving inverse problems.
Instead of predicting the results of conditions carefully specified
by humans, machine learning models are expected to answer
much more ambitious questions, such as “Which post-treatment
protocol for PEDOT-PSS will yield a conductivity of 104 S cm—12”
or “What is the organic polymer structure that gives a melting

point of 500 °C?”. Although there are no available procedures or
structures that give high performances, integration of big scien-
tific data may find the answers. In contrast, many informatics
challenges must be overcome. The main difficulties are related to
uniqueness of mapping, common sense, and generation of com-
plex answers (Supplementary Fig. 15). For example, there would
be multiple polymer structures exhibiting a melting point of the
desired value. Therefore, an inverse function of melting point to
structure cannot be determined uniquely (uniqueness problem).
Furthermore, most candidate structures must be excluded auto-
matically based on common sense from the field, namely by fil-
tering out inappropriate compounds, for example, synthetically
challenging or unstable compounds. Finally, generating complex
information, represented by chemical structures, is still an open
question in deep learning!>.

A general prediction model with the graph approach may be
the key to solving inverse problems in materials science. Here, a
graph neural network was trained with all the information from
the 14 databases. In the previous section, nodes of numeric values
(material properties) were set as the targets for prediction,
whereas all types of nodes (number, word, and compound) in
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z-scores. R? scores for test datasets are displayed. If test cases were not enough for evaluation, train scores are shown with brackets instead. Statistical
results are also summarized in Supplementary Table 1. Larger graphs are shown in Supplementary Fig. 14a.

each graph were selected for prediction here (Supplementary
Fig. 16). Final answers were constructed by finding the most
similar vectors in the text and compound databases with the
predicted values (see “Methods”). In the future, it may be possible
to generate completely new answers by integrating an auto-
encoder!3. After training, the model could predict the original
text in the graphs with a high accuracy of 96% (Supplementary
Table 2). Even the 4% failed predictions were close to the answers
(Supplementary Table 3). Typical mistakes were predicting
“electrical conductivity” instead of “ionic conductivity” (answer)
and “melting point” instead of “boiling point” (answer). This was
because the model could understand the similar meanings of
natural language by neural networks3, resulting in near-miss
answers.

The prediction accuracy of compounds was lower (36%),
mainly because of the uniqueness problem (Supplementary
Fig. 16). For instance, a chemical structure with a specific density
(1.58 gcm™3) and a melting point (203 °C) was questioned. The
answer was “trehalose”; however, there should be other structures
satisfying these two conditions. This problem with uniqueness
lowered the apparent accuracy of compound prediction. In
practical use, users can add optional conditions freely for
desirable compounds. The structure will be determined uniquely
if other properties such as heat capacity, hydrophilicity, and
chemical stability are specified. Because machine learning models
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have no actual experimental experience, including this type of
tacit knowledge that researchers have will be the key to ensuring
the quality of predictions.

Discussion

We used a graph format to express diverse materials informatics
information. This common format allows databases from differ-
ent projects to be combined easily. A single neural network
interpreted miscellaneous information, including chemical
structures, more than 40 material properties, and text. Multitask
and multimodal learning was essential not only for increasing
prediction accuracy, but also for developing general-purpose
prediction models for materials science. Integrating big data and
improving the inverse problem-solving methods will allow this
method to be used as an artificial materials science expert, which
will change the traditional research and development cycle.

Methods

General information. Databases were constructed or collected from public data.
All experimental data collected from the literature were converted into undirected
graphs using original Python 3 scripts. Graph nodes were classified into three types:
values, text, and chemical compounds, which were converted into numeric arrays
automatically by different algorithms. All graph edges were treated equally. To
train a neural network, values of target nodes (=y) in graphs were replaced with a
specific keyword “__unknown__”. The generated graphs were inputted as x to
the model.
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Databases. The PEDOT-PSS database was constructed in this work. The lithium-
ion-conducting polymer database was constructed in our previous work®. The
experimental properties of various compounds were collected from Wikipedia
(https://ja.wikipedia.org/), Wikidata (https://www.wikidata.org/), Computational
Chemistry Comparison and Benchmark DataBase (CCCBDB, https://cccbdb.nist.
gov/), chemical suppliers, and the literature. All data were collected and rechecked
by the authors.

Computer. Data processing and machine learning were conducted on a desktop
computer (Intel Core i9-9900K CPU @ 3.60 GHz, 32 GB memory, GeForce RTX
2080 graphical processing unit, and Ubuntu 16.04 operating system).

Graph preparation from text. Text information about post-treatment of PEDOT-
PSS was collected and converted to graphs by the following procedures (Fig. 3). We
extracted the related experimental procedures from original articles (mainly
experimental sections) and summarized them as text. The text was written in a set
format for ease of machine learning (e.g., avoiding inconsistent spelling). In the
future, automatic text collection (probably by machine learning) will be examined,
to reduce the cost and to eliminate the human nature of data preparation. On the
other hand, we note that the system can be robust against orthographical variances
and different text expressions owing to the language-understanding deep-learning
model®” (as long as sufficient data are given).

In the text, compounds were expressed as their IDs, such as C0001 and C0123,
and their structure information was recorded in a compound database. In the
database, the compound ID and simplified molecular input line entry system
(SMILES) expressions were associated (about 50 types of chemicals). Numeric
values were standardized as z-scores by each unit (e.g., siemens per centimeter and
degrees Celsius, Supplementary Fig. 3). The text was parsed automatically by an
open module (StanfordNLP 0.2.0)%° to construct dependency trees of words. Nodes
of less important words and symbols (e.g., “at”, “were”, “and”, “was”, “by”, and
“to”) were removed after parsing. Nodes of conductivity values (y) in graphs were
replaced with “__unknown__” to prepare the inputs (x) for machine learning. An
open-source library (NetworkX 2.4, https://networkx.github.io/) was used to
generate graphs.

Graph databases for multitask learning. For multitask learning, all databases,
typically written as tables, were converted to graphs by Python scripts if necessary.
In the graphs, the relationships among the factors were connected by edges
(Supplementary Fig. 1d). As a common rule, a numeric parameter was connected
in the order “parameter name”—“value”—“[unit]” to describe a property of a target
node. Numeric values were standardized as the z-score by each unit (e.g., degrees
Celsius and siemens per centimeter). For multitask learning, a graph database of
PEDOT-PSS was reconstructed manually (apart from the text database described in
the previous section) because the automatic parser made graphs according to a
different rule (Supplementary Fig. 3). A free graph editor (yEd 3.19) was used to
draw graphs in the “graphml” format, which was compatible with the NetworkX
library.

An integrated compound database was made by combining the compound
information in each database and a chemical supplier’s catalog (Tokyo Chemical
Industry Co.). A total of over 29,000 chemical structures were recorded. The
integrated database was used for the multitask learning experiments (i.e., except for
the automatic text parsing experiment in Fig. 3 and Supplementary Fig. 8). The
prediction score can decrease slightly when a larger compound database is used
(e.g., compare R scores in Figs. 3c and 4b) because of the larger loss of compound
information after converting into 64-dimensional numeric vectors with larger data.
Therefore, the compressing algorithms should be improved in future research.

Converting graphs to numeric matrices and vectors. For machine learning,
graphs were converted into adjacency matrices and numeric vectors (Supple-
mentary Fig. 4a). Adjacency matrices, expressing the node connections, were
simply calculated by a function of NetworkX. A matrix, D, was prepared according
to the following steps: (1) assign unique IDs to each node; and (2) determine Dj;,
which is 1 if nodes i and j were connected, and otherwise is 0.

Each node content was converted to 64-dimensional numeric arrays
(Supplementary Fig. 4b). Other information, such as images and sounds, can be
also treated by implementing additional processing scripts (see below). The first
four-dimensional arrays of the vectors were headers to distinguish the node types.
Three types of different random numeric arrays were assigned using an embedding
function of Chainer 7.2.0, an open library for deep learning. The remaining 60-
dimensional arrays were prepared by three different algorithms according to
node types.

Numeric nodes: When the node represents a number, the corresponding 60-
dimensional numeric array will be a repeat of the value. For instance, an array of
(0.5, 0.5,..., 0.5) is set for the value node of 0.5.

Text nodes: To process text nodes, a natural language recognition model
(BERT?0, pretrained model of “uncased_L-24_H-1024_A-16", accessible at https://
github.com/tensorflow/models/tree/master/official/nlp/bert) was employed. The
model could calculate 768-dimensional numeric vectors of the corresponding
words, phrases, and text. Similar text expressions or meanings were converted to

similar vectors by BERT?(. The 768-dimensional vectors were compressed to 60-
dimensional numeric arrays using a principal component analysis (PCA)
algorithm, implemented with an open-source library (scikit-learn 0.22.2).

Compound nodes: Organic compounds were recorded as unique IDs (e.g.,
C0023) in graph nodes. By referencing a compound database, their structure
information, expressed by 60-dimensional numeric arrays, was loaded. In the
compound database, molecular structures were recorded as SMILES expressed by
character strings. Their chemical features were calculated using an open module of
chemistry (RDKit 2019.03.2, https://www.rdkit.org/), to obtain extended-
connectivity fingerprints of the 2048-bit data. The binary data were split every 4
bits (e.g., (0011), (0000), (1111), ...) and converted to corresponding integers (e.g.,
512-dimensional array of (3, 0, 15, ...)). Finally, a 60-dimensional array was
prepared followed by PCA compression and standardization.

Other nodes: In this study, only numeric, text, and molecular structure nodes
were implemented in the graphs. In the future, other information, such as
inorganic crystal structures, images, sounds, and spectra, will be processed by
adding appropriate scripts to express them as vectors.

Dataset preparation. Target values (y) on the nodes in graphs were replaced with
a keyword “__unknown__” to prepare problems (x) automatically (underlines are
added to distinguish from the word “unknown”). If one graph has more than two
target values (e.g., melting point and density), the replacement and problem gen-
eration were done individually to generate multiple problems; there were not
multiple “__unknown__” nodes in one graph. The numeric nodes of the material
properties were set as the target values (y) for prediction. For inverse problem
solving in the last section of the main manuscript, all nodes (numbers, chemicals,
and text) in all graphs were set as problems.

Unless noted otherwise, the graph data were split into train and test datasets
randomly (splitting ratio of 0 to 0.9). The train dataset was used to train a graph
neural network and the test dataset was used only for prediction.

Machine learning. The prepared datasets were trained with a neural network
(Supplementary Fig. 5). The Chainer library was used to script the model, which
had a graph neural network layer to recognize graphs and three dense layers to
calculate the final outputs. The graph neural network was prepared based on an
open-source library in Chainer-chemistry 0.7.0. The Implemented function of the
gated graph neural network was used. Only the input part of the function was
modified to input the adjacency matrices and node vectors described above,
whereas the original version was customized to input only the connection of atoms
in molecules.

The neural network was trained to reduce the mean square errors between the
predicted and actual values. Minibatch sizes of 32 and 128 were selected for only
PEDOT-PSS learning and multitask learning, respectively. Training was repeated
with 100 epochs with the Adam optimizer?”. The dimension of output values was 1
for the normal prediction mode of numeric nodes.

The model was constructed with a 64-dimensional output to solve inverse
problems in the last section of the main manuscript. The last 60-dimensional
vectors were used for prediction (i.e., the first four-dimensional arrays were used
only to distinguish node types). The predicted vectors were compared with the
word (or compound) list in the integrated databases. Ones giving the highest cosine
similarity with the predicted vectors were extracted as the prediction result. In the
future, direct outputs of words and compounds may be achieved using
autoencoders or similar techniques!3. Numeric nodes were predicted by averaging
the predicted 60-dimensional vectors. All hyperparameters were optimized
manually. Automatic parameter tuning will be tested in future research with higher
computing power (e.g., multiple GPUs).

Prediction by conventional models as the control experiments. Language model
to predict conductivity directly from text (related to Fig. 3 and Supplementary
Fig. 5): In Fig. 3, conductivity was predicted via graph structures, which were
converted from texts. On the other hand, conventional recurrent neural networks,
such as long short-term memory (LSTM)38, can treat text information directly. As
a control experiment, conductivity was predicted from the texts. The conductivity
values in the texts were replaced with “__unknown__” to make problems (Sup-
plementary Fig. 5b). After converting words into embedding vectors, the word
inputted to a LSTM layer (which outputs 16-dimensional latent vectors, imple-
mented by Keras 2.3.1). Conductivity was calculated via a dense layer without
activation functions.

Random forest regressors to predict chemical properties (related to Fig. 5 and
Supplementary Fig. 14): As the control to the multitask training, machine learning
was conducted in a conventional way with a Wikipedia database. Random forest
was selected as a conventional yet robust prediction algorithm*. First, compound
information was converted to 60-dimensional arrays through the same process as
the graph approach. Then, individual random forest regressors (by scikit-learn)
were introduced and trained to predict each chemical property recorded in the
database (absolute standard enthalpy of formation, boiling temperature,
decomposition temperature, density, flash temperature, ionization energy, melting
enthalpy, melting temperature, refractive index, vapor pressure, and pKa) from the
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60-dimensional arrays. Train and test datasets were prepared randomly with a
splitting ratio of 9/1.

Data availability

Databases used for the analyses are available at https://github.com/KanHatakeyama/
Integrating-multiple-materials-science-projects/ (https://doi.org/10.5281/
zenodo.3910817). All related data that support the findings of this study are available
from the corresponding authors upon reasonable request. Original data for
Supplementary Table 1 are provided as an additional supplementary file (Supplementary
Data 1).

Code availability

Source codes (i.e., prediction of conductivity from texts, multitask learning, inverse
problems, and control experiments) and databases used for the analyses are available at
https://github.com/KanHatakeyama/Integrating-multiple-materials-science-projects/
(https://doi.org/10.5281/zenodo.3910817).
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