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Integrative multi-omics networks identify 
PKCδ and DNA-PK as master kinases of 
glioblastoma subtypes and guide targeted 
cancer therapy

Simona Migliozzi1,2,17, Young Taek Oh1,2,17, Mohammad Hasanain1,2,17, 
Luciano Garofano1,2,17, Fulvio D’Angelo1,2, Ryan D. Najac1, Alberto Picca3,4, 
Franck Bielle4,5, Anna Luisa Di Stefano    4,6,7, Julie Lerond4, Jann N. Sarkaria    8, 
Michele Ceccarelli    9,10, Marc Sanson3,4,11, Anna Lasorella1,2,12,13,14,18   & 
Antonio Iavarone    1,2,12,15,16,18 

Despite producing a panoply of potential cancer-specific targets, the 
proteogenomic characterization of human tumors has yet to demonstrate 
value for precision cancer medicine. Integrative multi-omics using a 
machine-learning network identified master kinases responsible for 
effecting phenotypic hallmarks of functional glioblastoma subtypes. In 
subtype-matched patient-derived models, we validated PKCδ and DNA-PK 
as master kinases of glycolytic/plurimetabolic and proliferative/progenitor 
subtypes, respectively, and qualified the kinases as potent and actionable 
glioblastoma subtype-specific therapeutic targets. Glioblastoma subtypes 
were associated with clinical and radiomics features, orthogonally validated 
by proteomics, phospho-proteomics, metabolomics, lipidomics and 
acetylomics analyses, and recapitulated in pediatric glioma, breast and 
lung squamous cell carcinoma, including subtype specificity of PKCδ 
and DNA-PK activity. We developed a probabilistic classification tool that 
performs optimally with RNA from frozen and paraffin-embedded tissues, 
which can be used to evaluate the association of therapeutic response 
with glioblastoma subtypes and to inform patient selection in prospective 
clinical trials.

The classification systems of malignant tumors have evolved in the 
past 15 years under the pressure of mounting molecular and genetic 
data and remain an active area of cancer research. The need for more 
accurate classifiers derives from the urgency of precision oncology 
and drug development targeting homogeneous tumor subsets1. 
Whereas genomics offers a comprehensive view of the genetic makeup 
of individual tumors, the integration of genomics, protein profiling 
and post-translational regulation delivers a deeper understanding of 

tumor biology and recognizes similarity patterns within individual 
tumor types, and possibly across multiple types of tumors that can 
fine-tune targeted therapeutics2.

Cancer proteomics consortia have recently provided proteog-
enomic data and the initial framework for analysis of the proteomic 
platforms and integration with genomic data3,4.

Here, we reconstructed four functional subtypes of glioblas-
toma (GBM)5 using proteomics, phospho-proteomics, acetylomics, 
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progenitor (PPR) functional GBM subtypes, respectively. We confirmed 
PKCδ and DNA-PKcs as MKs in GPM and PPR tumors from pediatric 
glioma (PG), breast carcinoma (BRCA) and lung squamous cell car-
cinoma (LSCC) cohorts classified according to the four functional 
classes that recapitulate metabolic and proliferation tumor cell states. 
Finally, we developed a probabilistic classification tool for GBM that 
exhibits optimal performance in both frozen and formalin-fixed, 
paraffin-embedded (FFPE) tumor tissue for application in cancer 
clinical pathology.

metabolomics and lipidomics data using the GBM dataset from the 
Clinical Proteomic Tumor Analysis Consortium (CPTAC)6. We devel-
oped a computational approach, Substrate PHosphosite-based 
Inference for Network of KinaseS (SPHINKS) to generate unbiased 
kinome-phosphosite networks and extract the master kinases 
(MKs) driving GBM subtypes. We experimentally validated protein  
kinase Cδ (PKCδ) and DNA-dependent protein kinase catalytic  
subunit (DNA-PKcs) as the MKs that sustain cell growth and tumor 
cell identity of the glycolytic/plurimetabolic (GPM) and proliferative/
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Fig. 1 | Proteogenomic interpretation of GBM functional subtypes. a, Heat 
map showing the 150 highest scoring proteins in the ranked lists of GPM, MTC, 
NEU and PPR GBM subtypes (two-sided MWW test). Rows indicate proteins 
and columns indicate tumors (n = 85 GBM samples). Color tracks indicate 
GBM subtypes (left and top). b, Grid plot showing NES of the highest active, 
non-redundant biological pathways for each GBM subtype (logit(NES) > 0.58, 
FDR < 0.005; two-sided MWW-GST). The number of GBM samples is as in a. IFN, 
interferon. c, Integrative heat map showing CNVs (top) and protein abundance 

(bottom) of genes with fCNVprot gain (amp) or loss (del) (two-sided MWW test). 
Gains/amplifications are indicated in red; loss/deletions are in blue. In each 
panel, tumors are ordered from left to right according to highest to lowest 
subtype activity NES (top track); bottom track indicates tumor classification. 
The number (n) of GBM samples for each subtype is indicated. For each subtype, 
representative genes with the highest frequency of fCNVprot gain (red squares) or 
loss (blue squares) are listed. wt, wild type; NES, normalized enrichment score; 
FDR, false discovery rate; GST, gene set test.
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Proteogenomic analysis captures functional 
subtypes of GBM
We recently reported a single-cell-guided, pathway-based classification 
of isocitrate dehydrogenase (IDH) wild-type GBM that consists of four 
subtypes within two functional branches: neurodevelopment (PPR and 
neuronal, or NEU) and metabolism (GPM and mitochondrial, or MTC)5. 
Here, we used the proteogenomic data of 92 IDH wild-type GBM from 
the CPTAC cohort that was profiled by genomics, transcriptomics, 
proteomics, phospho-proteomics, metabolomics, acetylomics and 
lipidomics to explore the biology associated with the multi-omics 
taxonomy and uncover therapeutic opportunities (Extended Data 
Fig. 1a)6. As functional copy-number variations (fCNVs), the CNVs of 
genes associated with coherent transcriptomic changes in cis and gene 
expression were the primary data sources for the pathway-based clas-
sifier of GBM5, we selected validated fCNVs and transcripts as input 
features of similarity network fusion (SNF)7 and obtained four stable 
clusters (Extended Data Fig. 1b). Using 52 GBM classified according to 
the highest transcriptomic simplicity score as anchors, we classified 33 
of the 40 remaining tumors by the SNF distance matrix (Supplemen-
tary Table 1a). Genes differentially expressed by each SNF cluster were 
enriched with biological activities previously assigned to GPM, MTC, 
PPR and NEU GBM subtypes (Supplementary Table 2a–c)5. Inspection 
of proteome revealed that the most differentially abundant proteins 
and enriched pathways coincided with activities biologically congruent 
with fCNV and gene expression-guided functions and recapitulated 
the predominant biology assigned to each subtype by SNF clustering 
(Fig. 1a,b and Supplementary Table 2d,e).

To ask whether fCNVs impact protein abundance in cis, we inte-
grated genomics, transcriptomics and proteomics data to identify 
genes for which gain or loss correspondingly changed messenger  
RNA and protein expression (fCNVprot). Overall, 2,205 genes with  
fCNV gain and 2,837 genes with fCNV loss had concordant changes in 
protein abundance when compared to copy-number neutral samples 
(Supplementary Table 2f). Among them, 553 (25.08%) fCNVprot gains and 
415 (14.63%) fCNVprot losses segregated with one subtype (Fig. 1c and 
Supplementary Table 2g–j). fCNVprot contributed directly to activation/
deactivation of the subtype-specific biological hallmarks (Extended 
Data Fig. 1c and Supplementary Table 2k).

To understand the relationship between pathway-based classifi-
cation (GPM, MTC, PPR and NEU) and previously proposed transcrip-
tional (TCGA: proneural, classical and mesenchymal)8 and epigenetic 
(MolecularNeuroPathology (MNP): mesenchymal, RTK I, RTK II, RTK 
III, MID, MYCN and G34)9 subtypes of GBM, we selected 199 and 83 IDH 
wild-type GBM profiled by both RNA-seq and DNA methylation arrays 
from TCGA and CPTAC, respectively. We performed a three-way com-
parison. The GPM subtype exhibited clear association with the mesen-
chymal subtypes of TCGA and MNP classifiers. Conversely, MTC tumors 
were mapped to all TCGA and MNP subtypes, with slight preference 
for RTK II and mesenchymal subtype in the TCGA and CPTAC dataset, 
respectively (Extended Data Fig. 1d–f and Supplementary Table 1a,b). 

PPR and NEU had limited overlap with the TCGA and MNP classes, 
with proneural and RTK I contributing to most PPR and NEU tumors 
(Extended Data Fig. 1d,e and Supplementary Table 1a,b). Although the 
epigenetic RTK III, MID, MYCN and G34 subtypes were only minimally 
represented in TCGA and CPTAC datasets (4.5% and 1.2%, respectively), 
six of nine tumors were classified as PPR (Extended Data Fig. 1d,e). We 
also compared functional subtypes with proneural-like, classical-like 
and mesenchymal-like subtypes reported by CPTAC6. GPM tumors 
were mainly CPTAC mesenchymal-like; however, the mesenchymal-like 
group also included a significant fraction of MTC cases (Extended 
Data Fig. 1f), indicating that our classification uniquely discriminates 
tumors exhibiting alternative metabolic fluxes (MTC and GPM) and 
clinical characteristics5. The CPTAC proneural-like subtype included 
similar fractions of PPR and NEU, whereas the classical-like subtype 
was preferentially enriched with PPR tumors.

The analysis confirmed orthogonal distribution of MTC GBM 
and indicated that, with the description of PPR and NEU subtypes, the 
pathway-based classifier more accurately captures the neurogenesis 
stages than the vague definition of proneural state.

Proteogenomics enables integrative modules of 
GBM subtypes
To understand whether each functional subtype of GBM reflects a 
unique configuration of elements that compose a distinct functional 
module, from genetic drivers to clinical characteristics such as age, sex 
and location of the tumor in the brain or radiological features that are 
obtained at diagnosis by magnetic resonance imaging (MRI), we applied 
a univariate logistic regression that determined the association of muta-
tions and fCNV5 with each subtype. In an independent model we asked 
whether proteins encoded by GBM driver genes provide orthogonal 
validation to the genetic associations (Extended Data Fig. 2). We found 
that PPR activity predominantly associated with fCNV amplification/
mutation/high protein abundance of GBM oncogenes (CDK6, EZH2, 
MDM4 and EGFR) and fCNV deletion/mutation/protein depletion of 
CDKN2A, all connected to PPR hallmarks. GPM activity was associated 
with MET fCNV amplification/high protein abundance and NF1 fCNV 
deletion/mutation/protein depletion (Extended Data Fig. 2a,c). Con-
firming our previous findings10, the MTC subtype was associated with 
FGFR3-TACC3 fusion-positive tumors in the cohort of 178 GBM that we 
used to validate the probabilistic classifier (see below and Extended 
Data Fig. 2b)11. fCNV deletion of RERE and SLC45A1 genes located in the 
‘metabolic’ region of chromosome 1p36.23 previously identified as a 
driver of the MTC subtype5 was associated with increased MTC activity. 
The positive correlation between low RERE protein abundance inde-
pendently supported the association whereas the SLC45A1 protein was 
not detected in the CPTAC proteome (Extended Data Fig. 2c). With the 
limitation of the small number of CPTAC samples, the overall analysis 
indicated that protein abundance was generally a better indicator of 
subtype activity than CNV and mutations, a finding that likely reflects 
control of oncogenic protein abundance by non-genetic factors.

Fig. 2 | Association between demographic, imaging-based features and 
functional subtypes. a, Forest plots of age and sex association with GBM 
functional subtypes or the aggregated of PPR and NEU in the TCGA dataset 
(n = 503 GBM samples; univariate logistic regression). log(OR) estimates, 95% 
confidence intervals (CI) and P values are reported (*: P < 0.10; **: P < 0.05). OR, 
odds ratio. log(OR) estimates higher/lower than 0 represent positive/negative 
association. b, Forest plots of the association between tumor location and 
GBM functional subtypes in the TCGA dataset (n = 88 GBM samples; univariate 
logistic regression). log(OR) estimates, 95% CI and P values are reported. c, Bar 
plots showing the proportion of necrosis and edema in functional subtypes 
of GBM from the TCGA cohort (n = 63 GBM samples) and deep white matter 
(WM) invasion from TCGA (n = 40 GBM samples) and REMBRANDT (n = 14 GBM 
samples) datasets. d, Forest plots of the association between contrast-enhancing, 
non-contrast-enhancing tumor or edema and GBM functional subtypes in the 

TCGA dataset (n = 88 GBM samples; univariate logistic regression). log(OR) 
estimates, 95% CI and P values are reported. e, Forest plot of the association 
between contrast-enhancing or non-contrast-enhancing tumor and metabolic 
or neurodevelopmental GBM subtypes in the TCGA dataset (n = 88 GBM samples; 
univariate logistic regression). log(OR) estimates, 95% CI and P values are 
reported. f, Unsupervised clustering on 175 differential quantitative radiomic 
features in GBM subtypes (n = 88 GBM samples, left; two-sided MWW test). Top 
track shows clusters; bottom track shows tumor classification. Representative 
radiomic features for cluster 1 (enriched with PPR tumors) and cluster 4 (enriched 
with GPM tumors) are indicated. Association between radiomic clusters and GBM 
subtypes (right). Circles are color coded and their size reflects the standardized 
residuals (chi-squared test). Orange-to-blue scale indicates positive to negative 
enrichment. Asterisks indicates standardized residuals > 1.5.
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Next, we analyzed the correlation between clinical characteristics 
and subtype transcriptomic activity. GPM activity showed significant 
association with male sex and age between 40 and 65 years. When 
aggregated, PPR and NEU activities approached significance in associa-
tion with female sex (Fig. 2a). GPM tumors were more frequently found 
in the frontal and parietal lobes but were excluded from the temporal 

region. Conversely, MTC tumors were more frequent in the temporal 
lobe and were excluded from the parietal lobe, indicating a reciprocal 
brain location pattern for the metabolic subtypes (Fig. 2b).

To interrogate associations between functional GBM subtypes and 
radiomic features, we used MRI data available from The Cancer Imag-
ing Archive (TCIA)12,13. We categorized the fraction of necrosis, edema 
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and deep white matter invasion and correlated tumor core enhancing 
and non-enhancing volume and volume of edema with subtype activity 
(Supplementary Table 1b,c). We also generated an unbiased clustering 
of histogram-based, volumetric and intensity features. The analy-
ses showed that GPM activity was associated with larger edema and 
contrast-enhancing volume. PPR activity was associated with greater 
necrosis, non-enhancing volumes and lower fraction of deep white 
matter invasion, whereas NEU activity was associated with the lowest 
volume of necrosis and highest fraction of white matter invasion (Fig. 
2c,d). Although the number of samples in each functional subtype was 
insufficient to provide statistical power, when GPM-MTC or PPR-NEU 
samples were combined the metabolic subtypes had significantly 
higher enhancing volume, whereas neurodevelopmental subtypes 
exhibited larger non-enhancing volumes (Fig. 2e). This scenario was 
supported by the association of four unsupervised clusters of 175 
radiomic features with pathway-based subtypes. Cluster 1 had high 
non-enhancing and low enhancing volumes as distinctive features 
and was mostly populated by PPR tumors. Conversely, cluster 4 was 
enriched with GPM tumors and characterized by overrepresentation 
of edema and contrast-enhancing volumes but underrepresentation 
of non-enhancing features (Fig. 2f).

Multi-omics profiling discriminates functional 
GBM subtypes
We inquired whether the divergent features of GPM and MTC subtypes 
might independently emerge from proteomics, metabolomics and 
lipidomics platforms. Comparative analysis of GPM and MTC protein 
profiles showed significantly higher levels of glycolytic enzymes and 
lower levels of mitochondrial enzymes (translocases, tricarboxylic acid 
(TCA) cycle and electron transport chain enzymes) in GPM whereas the 
reciprocal pattern characterized MTC tumors. GPM GBM was preferen-
tially enriched with intermediates of glycolysis, the pentose phosphate 
shunt, fatty acids, sugars and essential amino acids, whereas MTC GBM 
contained higher levels of TCA cycle intermediates, antioxidants and 
non-essential amino acids (Extended Data Fig. 3a).

The analysis of lipidomic data using LION14 showed that GPM 
samples had the highest abundance of triacylglycerol, involved in 
lipid storage and ceramide, which triggers mitochondrial dysfunc-
tion (Extended Data Fig. 3b–d and Supplementary Table 2l,m)15–17. 
Conversely, MTC GBM accumulated acyl-carnitine, an integral com-
ponent of mitochondrial fatty acid oxidation15 and diacylglycerol, a 
lipid second messenger required for membrane fusion and fission18. 
The different lipid composition of GPM and MTC GBM was highlighted 
by the analysis of lipid cellular components and functions showing 
enrichment of constituents of lipid droplets in GPM and lipids involved 
in mitochondrial biogenesis in MTC (Extended Data Fig. 3c,d). Within 
the neurodevelopmental axis, PPR contained elevated phosphati-
dylcholines, which are required for cell cycle progression19, whereas 
NEU tumors were enriched in sphingomyelin, phosphatidylserine, 
hexosyl-ceramide and cholesteryl ester, all essential components of 

the myelin sheath that surrounds nerve cell axons20,21 and phosphatidic 
acid, a central intermediate for the synthesis of neuronal membrane 
lipids (Extended Data Fig. 3b–d)22.

As lysine acetylation has emerged as a post-translational modifica-
tion for the regulation of cytoplasmic proteins with crucial metabolic 
activities and deregulated acetylation of metabolic enzymes can drive 
metabolic reprogramming of cancer cells23, we inquired whether lysine 
acetylation might differentially regulate metabolism in GPM and MTC 
subtypes. Unsupervised clustering of metabolism-related proteins 
differentially expressed between MTC and GPM tumors revealed two 
clusters, one enriched with GPM tumors and characterized by accu-
mulation of proteins involved in glucose, amino acid and lipid metabo-
lism, and the other enriched with MTC samples and characterized by 
accumulation of proteins associated with mitochondrial metabolism 
(Extended Data Fig. 3e and Supplementary Table 3a,b). By applying 
the outlier enrichment analysis (BlackSheep)24 to acetylated proteins, 
we found that in contrast to global protein abundance, the highest 
acetylated metabolic proteins in GPM samples included mitochon-
drial enzymes, whereas MTC samples exhibited hyperacetylation of 
enzymes implicated in glycolysis and the pentose phosphate pathway 
as well as amino acid biosynthesis and adipogenesis (Extended Data Fig. 
3f and Supplementary Table 3c). As acetylation has been viewed as an 
inhibitory post-translational modification for the activity of metabolic 
enzymes25, these results present additional levels of coordination of 
the alternative reprogramming in the metabolic axis of GBM subtypes.

We then examined the pattern of nuclear protein acetylation 
across GBM subtypes. Unsupervised clustering of the most variable 
nuclear protein acetylation sites uncovered three clusters (Fig. 3a). 
Cluster 1 was acetylation cold and enriched in GPM and NEU tumors. 
Cluster 2 included tumors with the highest acetylation and was almost 
exclusively composed of PPR samples. Cluster 3 was an intermediate/
low-acetylation cluster that included 46% of PPR samples (16 tumors) 
intermixed with GPM, NEU and MTC tumors (Fig. 3b). Thus, the PPR 
subtype seems to be divided into two subgroups, exhibiting high and 
low nuclear protein acetylation, respectively (Fig. 3c and Supplemen-
tary Table 3d). Tumors in the high-acetylation PPR subcluster had the 
highest proteomics but not transcriptomics proliferation/stemness 
scores, thus highlighting the specific role of the post-translation acetyl 
modification in this subtype (Fig. 3d,e). Differential acetylation of PPR 
GBM among high-acetylation and low-acetylation subclusters involved 
specific acetylation sites of histone and non-histone acetyltransferases 
(lysine acetyltransferases, KATs) whose enzymatic activity is acti-
vated by auto-acetylation26,27. Such activation was clearly manifested 
in high-acetylation PPR by the elevated level of acetyl-lysines in the 
HAT domain of p300 (K1554, K1555, K1558 and K1560) and function-
ally similar residues in the HAT domain of other KATs such as mem-
bers of the MYST complexes (MEAF6, ING4, JADE2, JADE3 and MYST3; 
Fig. 3f and Supplementary Table 3e). The latter introduce acetylated 
marks upon histones H2, H3 and H4 (ref. 28), which were recovered as 
hyperacetylated (H2AX, H2AFV and HIST2H4B) in high-acetylation 

Fig. 3 | Protein acetylation defines distinct PPR subpopulations. a, Heat 
map showing unsupervised clustering of GBM tumors using the most variable 
nuclear protein acetyl sites (n = 320 acetyl sites). The number (n) of GBM samples 
for each cluster is indicated. b, Association between acetylation clusters and 
functional subtypes of GBM. Circles are color coded and their size reflects 
the standardized residuals (chi-squared test). Orange-to-blue scale indicates 
positive to negative enrichment. Asterisks indicate standardized residuals > 2. 
The number (n) of GBM samples is as in a. c, Heat map showing unsupervised 
clustering of differential acetylated nuclear proteins in PPR tumors with high 
(n = 11 PPR GBM samples in cluster 2 of a) and low (n = 16 PPR GBM samples in 
cluster 3 of a) acetylation of nuclear proteins (log2(FC) > 0.3, P < 0.001; two-sided 
MWW test). d, Box plots of PPR activity calculated from the transcriptome 
(left) or global proteome (right) in PPR GBM with low and high acetylation 
(two-sided MWW test). Box plots span the first to third quartiles and whiskers 

show 1.5× interquartile range. The number (n) of PPR GBM samples with low and 
high acetylation is indicated. e, Box plots of stemness activity calculated from 
transcriptome (left) or global proteome (right) in PPR GBM with low and high 
acetylation (two-sided MWW test). Box plots span the first to third quartiles and 
whiskers show 1.5× interquartile range. The number (n) of PPR GBM samples 
with low and high acetylation is indicated. f, Starburst plot integrating global 
protein and acetyl site abundance of high- (n = 11 PPR GBM samples) versus 
low-acetylated PPR GBM (n = 16 PPR GBM samples; two-sided MWW test). The 
x axis indicates protein log2(FC) multiplied by −log10(P). The y axis indicates 
acetyl site log2(FC) multiplied by −log10(P). The horizontal and vertical lines 
denote the cutoff of log2(FC) = 0.5 multiplied by −log10(P = 0.05). g, Gene 
Ontology overrepresentation analysis of acetylated proteins in f using gProfiler 
(FDR < 0.05). The number (n) of PPR GBM samples with low and high acetylation 
is as in f. FC, fold change.
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PPR. Besides KATs and histones, chromatin-modifying enzymes and 
enzymes involved in DNA damage response (DDR) and DNA replication 
stress (RS) were hyperacetylated in high-acetylation PPR, suggesting 
that acetylation contributes to the activation of these biological func-
tions in PPR GBM (Fig. 3g).

Sustained RS and DDR signaling characterizes 
PPR GBM
The proteomic profiling of PPR GBM combined molecular marks of 
proliferation with activation of DDR (Fig. 1b). Moreover, PPR tumors 

exhibited overrepresentation of DNA replication/replication fork 
and DNA double-strand break repair (DDSB) proteins, suggesting 
that enhanced RS may promote DDR signaling (Fig. 4a). To test this 
hypothesis, we performed data mining and ontology integration from 
mass-spectrometry datasets to identify phosphosites increased in 
cells treated with irradiation, which causes DDSB lesions, ATR inhibi-
tors or hydroxyurea that induce RS (Methods). We selected 15 and 16 
experimentally validated phosphosites specific for cells undergoing 
DDSB and RS, respectively and 3 phosphosites common to DDSB and 
RS. Compared to other tumor subtypes, PPR contained elevated levels 
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abundant proteins in PPR GBM (MWW score > 1.5) compared to the other 
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of GBM classified according to four functional subtypes. Top track, left to right 
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Fig. 5 | Protein phosphorylation-kinase networks by SPHINKS reveal 
subtype-specific master kinases and signaling. a, Heat map depicting the 
70 highest significant outlier phosphorylated proteins in each functional 
GBM subtype (P < 0.005; BlackSheep). Unsupervised clustering and biological 
pathways significantly enriched are presented on the left (P < 0.01; Fisher’s  
exact test). The number (n) of GBM samples for each subtype is indicated.  
b, Global kinase–substrate phosphosite interactome inferred by SPHINKS. Nodes 
represent kinases and substrate phosphosites and lines their interactions. Kinase 
families and phosphorylated amino acid residues are indicated by different 
colors. Node size of the kinases is proportional to the number of interacting 
phosphosites. Yellow interactions indicate substrate phosphosites reported in 
the PhosphoSitePlus database; gray interactions are inferred new interactions. 
The number (n) of GBM samples is as in a. c, Circular plot depicting the most 

active kinases in each GBM subtype compared to all other subtypes (effect size 
> 0.3, P < 0.01; two-sided MWW test) with the outermost circle representing 
the color scale of kinase activity. The five predicted kinase-regulated 
phosphorylation sites with the highest SPHINKS score are indicated by black 
dots with SPHINKS score within the dashed line, > 0.95; SPHINKS score between 
dashed and continuous line, 0.95–0.90; and SPHINKS score inside the continuous 
line, < 0.90. The number (n) of GBM samples is as in a. d, Heat maps showing 
kinase activity (NES), MWW protein abundance score and MWW gene expression 
score of SPHINKS MKs specific for each CPTAC-GBM subtype (two-sided MWW 
test, n = 85 GBM samples). Heat maps depicting MWW gene expression score 
of the same kinases in single GBM cells (n = 17,367 single glioma cells) and PDOs 
(n = 79 PDOs) signify the cancer cell intrinsic expression of the top-scoring 
kinases identified by SPHINKS. Only values of logit(NES) > 0.58 are shown.
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of 11 (73.3%) and 10 (62.5%) of DDR and RS signature phosphosites, 
respectively (Fig. 4b and Supplementary Table 4). Using DDR and RS  
phospho-proteomic signatures, we computed DDR and RS enrich-
ment scores for each tumor and found higher scores in PPR than other 
subtypes, with the NEU group characterized by the lowest scores  
(Fig. 4c, top). The highest PPR scores were retained even when tumors 
were classified according to the difference between proteomic and 
transcriptomic subtype activity (Fig. 4c, bottom), thus reinforcing 
the significance of the proteome for the association between DDR/RS 
and PPR subtype. Western blot using CHK1-ser-317 phosphorylation 
as a basal DDR biomarker of ATR-activated CHK1 (ref. 29) showed that 
GBM patient-derived organoids (PDOs) classified as PPR5 exhibited 
higher levels of basal DDR/RS than GPM PDOs (Fig. 4d).

Master kinase analysis uncovers GBM 
subtype-specific kinases and actionable 
dependencies
To begin exploring the phospho-proteomics landscape of GBM sub-
types and their organization, we cataloged phosphosites specific for 
each GBM subtype and applied the outlier enrichment analysis. We 
obtained four phosphosite modules of overrepresented pathways 
that summarized previously assigned subtype hallmarks (Fig. 5a 
and Supplementary Table 5a–c). We then sought to link phosphosite 
enrichment to the activity of GBM subtype-specific protein kinases. 
To this aim, we developed SPHINKS, which integrates proteomics 
and phospho-proteomics profiles to build an interactome of kinase–
phospho-substrate pairs that are scored according to the strength 
of their interaction across all samples (Fig. 5b). The GBM-specific 
kinase–phosphosite interaction network was generated using a 
semi-supervised support vector machine (SVM) algorithm trained 
on experimentally validated kinase–substrate phosphosite pairs from 
the PhosphoSitePlus database30. SPHINKS produced a GBM kinase–
phosphosite interactome comprising 13,866 predicted interactions 
between 154 kinases and 3,186 phospho-substrates (Extended Data  
Fig. 4a(i–iv)). To benchmark SPHINKS, we assessed the impact of  
missing data in the kinase–phosphosite interactome by comparing 
networks reconstructed from the CPTAC-GBM un-imputed matrix 
of phosphosites lacking missing values (gold standard, 7,302 phos-
phosites) and controlled simulations of imputed matrices composed  
of different ratios of phosphosite missing values (Methods). Receiver 
operating characteristics (ROC) analysis showed that regardless  
of the different thresholds of missing values, the area under the 
curve (AUC) was consistently close to 1, indicating that the output 
of SPHINKS was not affected by missing values (Extended Data  
Fig. 4b). To evaluate the accuracy of SPHINKS to correctly predict 
kinase–phospho-substrates, we performed a tenfold cross-validation 

by randomly dividing validated interactions into ten subsets for train-
ing and testing. AUC values of all iterations between 0.86–0.89 indi-
cated high prediction accuracy (Extended Data Fig. 4c). As some of 
the selected phosphosites in the negative test set might be true sub-
strates, AUC values are likely to be underestimated. To test the stability 
of SPHINKS kinase activity estimates, we generated 100 independent 
networks for each kinase and perturbed them by replacing a prede-
termined percentage of phospho-substrates with random phospho-
sites. Average Δ activity scores (difference between unperturbed and 
perturbed networks) indicated a remarkable stability of the kinase 
activity estimate inferred by SPHINKS (median Δ activity = 3%, for per-
turbations ≤20% interactions in both analyses; median Δ activity = 4% 
in both analyses, maximum of 10% in kinase analysis, for perturbations 
of 50%; Extended Data Fig. 4d).

To uncover MKs associated with distinct GBM subtypes, we 
implemented single-sample MK analysis by computing the weighted 
strengths of connectivity between kinase and predicted substrate phos-
phosites against random phosphosites for each tumor and testing the 
contribution of each MK in each subtype by Mann–Whitney–Wilcoxon 
(MWW) test10 (Extended Data Fig. 4a(v) and Supplementary Table 5d). 
GPM, PPR and NEU GBM exhibited rich and interconnected kinase–sub-
strate networks as opposed to the MTC subtype that was sustained by a 
more limited network (Fig. 5c and Extended Data Fig. 4e). Mapping the 
predicted subtype-specific MKs onto the human kinome tree showed 
a random distribution across kinase families (Extended Data Fig. 4f). 
We validated subtype-specific MKs in bulk GBM, single-cell RNA-seq 
(scRNA-seq) data from 17,367 GBM cells and 79 GBM PDOs5. mRNA 
and protein of the kinases identified by SPHINKS-MK were generally 
upregulated in bulk tumors and cells of the corresponding subtype 
(Fig. 5d and Supplementary Table 5e). We compared SPHINKS-MK with 
kinase–substrate enrichment analysis (KSEA)31 and kinase enrichment 
analysis 3 (KEA3)32. Unlike SPHINKS that reconstructs context-specific 
kinase–phospho-substrate networks and detects potentially new 
kinase–substrate interactions, KSEA and KEA3 derive kinase activity 
from networks of experimentally validated phospho-substrates. For 
KSEA, we obtained kinase activities from validated interactions from 
PhosphoSitePlus (KSEA PhosphoSitePlus) or predicted relationship 
from NetworKIN (KSEA PhosphoSitePlus + NetworKIN). For KEA3, 
we applied MeanRank and TopRank for ranking the integrated kinase 
activity from 11 protein–protein and kinase–substrate interaction 
libraries. We used a dataset reporting changes in the abundance of 
phospho-proteins after perturbation of upstream kinases33,34 (103 
kinase perturbation for 30 kinases and 61,181 phosphosites, the ‘gold 
standard’) and the metric defined as ‘top-k-hit’, which focuses on the 
top kinase predictions34. SPHINKS produced higher activity scores than 
other methods and was superior in correctly identifying the perturbed 

Fig. 6 | Validation of dependency of GBM cells on specialized protein kinases. 
a, Viability curves of PDOs, each derived from an independent patient. Each 
curve represents one independent PDO assayed for the indicated compound 
or IR. Data in each curve are mean ± s.d. of n = 3 or 6 technical replicates for 
compound treatment (Source Data Fig. 6) and n = 8 technical replicates for IR. 
Experiments were performed twice with similar results. b, Viability curves of 
GPM PDOs (n = 14 PDOs, each derived from an independent patient) treated with 
BJE6-106. Data in each curve are mean ± s.d. of n = 6 or 18 technical replicates 
for each PDO (Source Data Fig. 6). The experiment was repeated three times 
with similar results. c, Colony-forming assay using GPM PDO cells treated with 
BJE6-106. Data are the mean of n = 3 technical replicates from one representative 
experiment. Experiment was repeated twice with similar results. CTRL, control. 
d, Western blot of GPM PDO cells treated with 50 μM of BJE6-106. Experiment was 
repeated twice with similar results. e, Western blot of GPM PDO cells transduced 
with lentivirus expressing two independent shRNAs targeting PRKCD or non-
targeting shRNA (NT). Experiment was repeated three times with similar results. 
f,g, Growth curves of two independent GPM PDOs, PDO 019 (f) and PDO 008 (g) 
transduced as in e. Data are mean of n = 5 (f) and n = 6 (g) technical replicates 
from one representative experiment. Experiments were repeated twice with 

similar results. h, Quantification of sphere-forming assay for GPM PDO cells (PDO 
008) transduced as in e. Data are mean ± s.d. of n = 3 independent infections/
biological replicates. i, Rate of glucose uptake in GPM PDO cells (PDO 019) 
transduced as in e. Data are mean ± s.d. of n = 6 for shRNA NT, n = 3 for shPRKCD 
1 and n = 4 for shPRKCD 2 technical replicates from two independent infections/
biological replicates. j, Concentration of triacylglycerol in GPM PDO cells (PDO 
019) transduced as in e. Data are mean ± s.d. of n = 4 for shRNA NT, n = 3 for 
shPRKCD 1 and n = 6 for shPRKCD 2 technical replicates from two independent 
infections/biological replicates. k, Cell viability after IR minus or plus nedisertib 
of PPR PDOs (n = 8 PDOs, each derived from an independent patient) and GPM 
PDOs (n = 8 PDOs, each derived from an independent patient). Data in each curve 
are mean of n = 4 technical replicates. Experiment was repeated twice with similar 
results. l, Western blot of PPR PDO cells treated with IR (4 Gy) or IR plus nedisertib 
(556 nM). Experiment was repeated twice with similar results. m, Quantification 
of γ-H2AX foci per nucleus in PPR PDO cells (PDO 044) after treatment as in l; the 
number (n) of nuclei is indicated (Source Data Fig. 6). Data are mean ± s.e.m. In 
each quantitative experiment, significance was established by two-tailed t-test, 
unequal variance or the Mann–Whitney test for experiment in m. In western 
blots, vinculin and β-actin are shown as loading controls.
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kinases (Extended Data Fig. 5a). We also calculated the difference 
between the activity rank inferred by SPHINKS and each of the other 
methods (Δ rank score) of 129 kinases common to all five methods for 
each GBM subtype using CPTAC-GBM proteomic/phospho-proteomic 
data. For all comparisons, most of the kinases exhibited a negative Δ 
rank score, indicating that SPHINKS has a consistently higher predictive 
power than other approaches (Extended Data Fig. 5b).

PKCδ and DNA-PKcs are subtype-specific 
actionable MKs in GPM and PPR
The application of SPHINKS-MK uncovered PKCδ as the top-scoring MK 
of the GPM subtype (Fig. 5c). PKCδ controls crucial steps of glucose and 
lipid metabolism in multiple tissues35. In cancer, PKCδ is a central sign-
aling node of the insulin–IGF–AKT–mTOR pathway that orchestrates 
metabolic reprogramming toward aerobic glycolysis and increased 
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uptake of nutrients36–38. PKCδ also mediates resistance to antitumor 
therapies possibly by upregulating glucose uptake in cancer cells39. 
As the metabolic functions controlled by PKCδ are hallmarks of GPM 
GBM5, we tested the role of PKCδ in the plurimetabolic phenotype and 
viability of this subtype. Exposure of GBM PDOs classified as GPM to 
eight compounds targeting different glycolytic enzymes or irradiation 
confirmed that each treatment was ineffective in these cells (Fig. 6a). 
Next, we asked whether activation of PKCδ in GPM GBM segregated 
with insulin-IGF-AKT signaling. By the comparative analysis of pro-
tein and phospho-protein abundance of pathway-specific signaling 
molecules in GPM versus all other subtypes, we found that crucial 
components of the insulin–IGF–AKT pathway were activated in GPM 
tumors by elevation of protein abundance and/or phosphorylation, and 
co-segregated with PKCδ abundance and activation (Extended Data 
Fig. 6a). AKT1/2 and STAT3, central nodes in insulin–IGF-PKCδ signal-
ing, were activated in GPM GBM. Additionally, activation of the mTOR 
kinase (RAPTOR-ser-863) and substrates (p70S6K and 4E-BP-ser-37/
thr-46 phosphorylation) was consistent with the relevance of  
this pathway for the metabolic reprogramming of GPM tumors 
(Extended Data Fig. 6a). Stimulation of GPM PDOs by IGF1/2 and  
insulin induced phosphorylation of PKCδ on tyr-311, a phosphosite  
crucial for its activity40, concurrently with AKT-thr-308 and ser-473 
phosphorylation (Extended Data Fig. 6b,c). To test the essentiality of 
PKCδ for fitness and the plurimetabolic state of GPM cells, we treated 
GPM PDOs with BJE6-106 (ref. 41), a third-generation inhibitor of  
PKCδ and found that most of the tested models exhibited marked  
sensitivity to PKCδ inhibition (Fig. 6b). BJE6-106 also caused dose- 
dependent inhibition of colony formation (Fig. 6c) and time-dependent 
decrease of AKT-ser-473 and STAT3-tyr-705 phosphorylation (Fig. 6d).  
Genetic knockdown of the PRKCD gene (Fig. 6e) corroborated the 
requirement of PKCδ for growth and viability of GPM PDOs (Fig. 6f–h) 
as well as glucose uptake and lipid accumulation (Fig. 6i,j).

The catalytic subunit of DNA-dependent protein kinase 
(DNA-PKcs) was among the most active MK in the PPR subtype of GBM 
(Fig. 5c,d). DNA-PKcs is one of the three members of PIKKs with prin-
cipal roles in the activation of DDR. DNA-PKcs is activated by multiple 
types of genotoxic stress, including DDSB and RS42,43. Given the specific 
activation of DDR and RS in PPR GBM (Figs. 1b, 3g and 4), we postulated 
that active DNA-PKcs may counter the increased rates of DNA replica-
tion and DDR in PPR cells. Consequently, we asked whether inhibition 
of DNA-PKcs with M3814 (nedisertib), a DNA-PKcs inhibitor currently  
in clinical studies44, promotes vulnerability of PPR GBM when used 
in combination with ionizing radiation (IR), the key element in  
the standard of care for patients with GBM. Treatment of PPR GBM 
PDOs with a nedisertib–IR combination markedly reduced tumor cell 

viability compared to each individual treatment, with a radiation dose 
enhancement factor (DEF) > 2 for six PPR PDOs. Conversely, nedisertib–
IR combination was ineffective in GPM PDOs (Fig. 6k and Extended Data 
Fig. 6d). We confirmed these results using the clonogenic assay as a 
quantitative method of radiosensitivity (Extended Data Fig. 6e). Expo-
sure of PPR PDOs to IR rapidly induced phosphorylation of DNA-PKcs 
ser-2056, the key autophosphorylation site marking kinase activa-
tion45. As expected, nedisertib inhibited ser-2056 phosphorylation in 
irradiated cells (Fig. 6l). Combinatorial treatment caused persistent 
DNA damage as shown by sustained phosphorylation of ser-343 of  
NBS1 and ser-824 of KAP1, indicators of active DDSB, as opposed  
to rapid de-phosphorylation in PDOs exposed to IR alone (Fig. 6l). 
Consistently, the number of γ-H2AX foci, which regressed to basal 
levels in PPR cells treated with irradiation alone, remained elevated 
throughout the course of the experiment in the presence of DNA-PKcs 
inhibition (Fig. 6m).

Functionally conserved pediatric and adult 
cancer subtypes share MKs
In an effort to ascertain whether the key biological functions discrim-
inating the GBM subtypes coalesce into grouping patterns sharing 
the same kinase-driven dependencies, we first determined whether 
a functional classification could be obtained in PG, BRCA and LSCC 
for which genomics, proteomics and phospho-proteomics datasets 
are available46–48.

For PG, we integrated protein and gene expression data of 103 sam-
ples classified as high-grade (PG-HGG) or low-grade (PG-LGG) gliomas 
using SNF (Supplementary Tables 1d and 6a). We identified four subtypes 
of PG, recapitulating the functional classifier of GBM for proteomic, 
phospho-proteomic and gene expression data (GPM, MTC, PPR and 
NEU; Fig. 7a and Supplementary Table 6b–g). PG-HGG mostly clustered 
within the PPR subtype, whereas PG-LGG was distributed across the four 
subgroups (Fig. 7a,b). When PG-HGG and PG-LGG were analyzed indepen-
dently for differential protein abundance, high- and low-grade tumors 
clustered into three and four groups, respectively, with the MTC subtype 
excluded from PG-HGG (Extended Data Fig. 7a,b and Supplementary 
Table 6h–k). BRAF KIAA1549-BRAF fusions and BRAF-V600E mutation are 
common in PG-LGG49. Glioma harboring BRAF-V600E were mostly classi-
fied as MTC, whereas PG-LGG harboring KIAA1549-BRAF fusion or BRAF 
wild-type were enriched with GPM and NEU tumors, respectively (Fig. 
7a,c). Kaplan–Meier and log-rank test demonstrated significantly worse 
survival for the PPR subtype, a finding compatible with the predominant 
contribution of high-grade tumors to this group (Extended Data Fig. 7c).

We also classified 118 BRCA samples into four subtypes having 
coherent gene expression, protein and phospho-protein abundance 

Fig. 7 | Functional activities of GBM subgroups classify different cancer types 
and inform survival and master kinases. a, Heat map showing the 150 highest 
scoring proteins (top) and phosphosites (bottom) of four functional subtypes of 
CPTAC-PG; rows show proteins/phosphosites and columns show tumors (n = 104 
PG samples; two-sided MWW test). Left and top tracks indicate the functional 
subtypes; middle track indicates tumor grade; and bottom track indicates 
BRAF status. Unsupervised clustering of protein/phosphosite signatures and 
pathways significantly enriched are reported on the left (P < 0.05; Fisher’s exact 
test). b, Association of tumor grade with functional PG subtypes. Bars indicate 
standardized residuals (chi-squared test). The number (n) of PG samples is as 
in a. c, Association of BRAF status with functional subtypes of PG-LGG (n = 82 
PG-LGG samples). Bars indicate standardized residuals (chi-squared test). d, 
Heat map showing the 150 highest scoring proteins (top) and phosphosites 
(bottom) of functional subtypes in CPTAC-BRCA (two-sided MWW test). Rows 
are proteins/phosphosites and columns are tumors (n = 118 BRCA samples). Left 
and top tracks indicate functional subtypes; middle track indicates NMF multi-
omics classification of CPTAC-BRCA (I, inclusive); and bottom track indicates 
tumor grade. Unsupervised clustering of protein/phosphosites signatures and 
pathways significantly enriched are reported on the left (P < 0.05; Fisher’s exact 
test). e, Association of NMF-based BRCA with functional subtypes. Circles are 

color coded and their size reflects the standardized residuals (chi-squared test). 
Orange-to-blue scale indicates positive to negative enrichment. The number (n) 
of BRCA samples is as in d. f, Heat map showing the 150 highest scoring proteins 
(top) and phosphosites (bottom) of functional subtypes in CPTAC-LSCC (two-
sided MWW test). Rows are proteins/phosphosites and columns are tumors 
(n = 106 LSCC samples). Left and top tracks indicate functional subtypes; middle 
track indicates the NMF multi-omics classification of CPTAC-LSCC; bottom 
track indicates tumor grade. Unsupervised clustering of protein/phosphosites 
signature and pathways significantly enriched are reported on the left (P < 0.05; 
Fisher’s exact test). g, Association of NMF-based LSCC with functional subtypes. 
Circles are color coded and their size reflects the standardized residuals (chi-
squared test). Orange-to-blue scale indicates positive to negative enrichment. 
The number (n) of LSCC samples is as in f. h, Grid plot showing top-scoring 
MKs common to each functional GBM, PG, BRCA and LSCC subtype (GBM, 
n = 85 samples; PG, n = 104 samples; BRCA, n = 118 samples; LSCC, n = 106 
samples). Dots are colored according to kinase activity and their size reflect 
the significance of the differential activity in each group (effect size > 0.3 and 
P < 0.01; two-sided MWW test). All asterisks in e,g indicate standardized residuals 
higher than 1.5.
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signatures. The three major groups represented 95% of the samples 
(GPM, PPR and MTC), whereas the NEU group included only five tumors 
(Fig. 7d and Supplementary Tables 1e and 7a–g). We found a striking 
association of the HER2-I (I, inclusive as defined by integrative CPTAC 

analysis) subgroup with the GPM subtype, Basal-I with PPR, LumA-I with 
MTC and LumB-I with NEU (Fig. 7e). Enrichment of HER2-I in the GPM 
subtype is consistent with hyperactivation of mTOR and a metabolic 
shift from aerobic respiration to glycolysis in this BRCA subtype50.  
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The stability of the functional classification of BRCA was verified using 
TCGA and METABRIC gene expression data, thus authenticating the bio-
logical activities as general features for BRCA categorization (Extended 
Data Fig. 8a,b and Supplementary Tables 1f,g and 7h–k). The positive 
association between PPR and Basal-I subtype was further supported by 
the strong enrichment of DNA replication and proliferation-associated 
pathways in the Basal-I subtype (Fig. 7d). Consistent with the prolonged 
survival of LumA-I, the MTC-BRCA subtype had a significantly better 
prognosis (Extended Data Fig. 8c).

Finally, we used the functional classifier to segregate 106 LSCC 
tumors and tested the association with the five known LSCC-specific 
molecular NMF-based subtypes described by CPTAC (Fig. 7f,g and 
Supplementary Tables 1h and 7l–r). LSCC tumors were classified 
into two major subtypes (GPM and PPR) and a much smaller MTC 
subgroup. In this limited dataset we did not identify NEU tumors. 
We found a positive correlation of the MTC subtype with the Basal-I 
subgroup. EMT and inflamed secretory LSCC subtypes as two 
independent groups were functionally unified by the activation of 
immune, epithelial-to-mesenchymal transition (EMT) and angio-
genesis functions of the GPM subtype. The PPR subtype included 
proliferative-primitive and classical subtypes, both sustained by 
proliferative-related pathways (Fig. 7f,g)48,51. The robustness of the 
functional subtyping was validated in the TCGA-LUSC (lung squamous 
carcinoma) dataset (Extended Data Fig. 8d and Supplementary Tables 
1i and 7s,t). In this larger cohort, 12 tumors exhibited activation of 
synaptic functions, a hallmark of the NEU subtype. MTC-LUSC tumors 
exhibited more favorable clinical outcomes, suggesting that also in this 
tumor type OXPHOS activation produces a less aggressive biology and/
or increases sensitivity to therapy (Extended Data Fig. 8e)5. Dependency 
of BRCA and LUSC MTC cells on mitochondrial activity was supported 
by the association between MTC activity of BRCA and LUSC cell lines in 
the DepMap dataset52 and sensitivity to menadione, a cytotoxin that 
specifically targets mitochondria (Extended Data Fig. 8f).

Next, we applied SPHINKS to generate tumor-specific kinase–
phosphosite interactomes for PG, BRCA and LSCC, including 669, 
1,399 and 1,985 kinase–phosphosite relationships from 76, 198 and 103 
kinases and 210, 1,899 and 699 phosphosites for PG, BRCA and LSCC, 
respectively and identified subtype-specific MKs (Supplementary 
Tables 8–10 and Extended Data Fig. 9) that we validated by global 
protein abundance and mRNA expression (Supplementary Tables 
8–10). Most subtype-specific MKs were activated only in one tumor 
type (Extended Data Fig. 9). Among top-ranking tumor-specific MKs, 
FYN was MK of the GPM subtype in BRCA. FYN is a member of the SRC 
family of kinases driver of EMT in breast cancer53,54. VRK1 was among the 
top-ranking PPR MKs in BRCA. VRK1 is a chromatin-associated kinase 
that regulates cell cycle events and DDR previously proposed as thera-
peutic target in combination with DNA damage inducing therapy55,56. 
Nine protein kinases emerged as top-ranking subtype-specific MKs 

common to GBM, PG, BRCA and LSCC. Among them, PKCδ scored as 
pan-GPM and DNA-PKcs as pan-PPR MKs (Fig. 7h).

Development of a probabilistic functional 
classifier of GBM
We designed an algorithm for the probabilistic classification of indi-
vidual tumors into GBM functional subtypes. When compared to RNA 
derived from fresh frozen samples, FFPE-extracted RNA is characterized 
by lower quality, typically affecting different mRNA species to variable 
extent57. Thus, we tested two classifiers, one informed by RNA-seq data 
from frozen tumor samples (‘frozen model’) and the other by RNA-seq 
data from FFPE tumors (‘FFPE model’). For the frozen model, we trained 
the classifier using the multinomial regression model with lasso penalty 
on the TCGA IDH wild-type GBM dataset profiled by Agilent expres-
sion array, which we had classified in previous work (Extended Data  
Fig. 10a and Supplementary Table 11a)5. As a feature set, we selected  
the 50 highest ranking genes for each functional subtype (a total of  
200 gene features)5. To extract a reduced number of features that 
maximize the distinctiveness of the phenotypes, we applied a 
cross-validation approach and selected the model exhibiting the lowest 
misclassification error (17.19% cross-validation error and 6.32% error on 
the training set), obtaining 103 gene features with positive or negative 
coefficients (Supplementary Table 11b). We classified a tumor sample 
when the fitted probability was the highest and the simplicity score 
was above a predefined threshold (Methods). We tested the predic-
tion ability of the ‘frozen classifier’ using 127 GBM from TCGA and 85 
GBM from CPTAC profiled by RNA-seq. We classified 80% and 79% of 
the TCGA and CPTAC-GBM, respectively. The diagnostic ability of the 
classifier was confirmed by the AUROC of each subtype above 0.85 in 
each validation dataset (Fig. 8a). We determined the accuracy of the 
assignment of each tumor to the correct subtype58. Misclassification 
error was < 18%, sensitivity approached 85%, specificity was close to 
100% and precision > 80%, indicating a robust performance of the 
classifier (Fig. 8b and Supplementary Table 11c). The frozen model was 
validated on an independent cohort of 45 frozen samples for which 
matched FFPE samples were available (see below), obtaining similar 
results (Extended Data Fig. 10b).

For the FFPE model, to account for the lower quality of 
FFPE-extracted RNA, we sequenced the transcriptome of 45 frozen and 
FFPE matched samples and selected 4,668 genes that exhibited consist-
ent expression profiles in both sample types (genes supposedly unaf-
fected by FFPE treatment, Spearman correlation, ρ > 22; Supplementary 
Table 12). With the classification of frozen samples as the gold standard, 
we generated subtype-specific signatures using expression profiles 
of the corresponding FFPE samples. We then trained the multinomial 
regression model using FFPE-specific signature genes from TCGA-GBM 
Agilent cohort (66 gene features, 19.76% cross-validation error and 
11.07% error on the training set). The performance of the classifier 

Fig. 8 | Probabilistic classifier for the identification of functional tumor 
subtypes of IDH wild-type GBM and schematic multi-omics and clinical 
modules of functional subtypes of GBM. a, GBM subtype-specific ROC 
curves for the multinomial regression model using RNA-seq data from frozen 
samples. Validation includes RNA-seq data from TCGA (left) or CPTAC (right) 
GBM samples. The number (n) of GBM samples for each dataset is indicated. b, 
Comparison bar plot of sensitivity, specificity and precision in each GBM subtype 
of the multinomial regression model as in a. Dashed lines and corresponding 
values indicate the average of each performance measure (blue, sensitivity; 
orange, specificity; purple, precision) in each GBM subgroup. The number (n) of 
GBM samples for each dataset is indicated. c, GBM subtype-specific ROC curves 
for the multinomial regression model using RNA-seq data from FFPE samples. 
Validation includes RNA-seq obtained from FFPE tumor samples. The number 
of GBM samples for each dataset (n) is indicated. d, Comparison bar plot of 
sensitivity, specificity and precision in each GBM subtype of the multinomial 
regression model as in c. Dashed lines and corresponding values indicate the 
average of each performance measure (blue, sensitivity; orange, specificity; 

purple, precision) in each GBM subgroup. The number (n) of GBM samples 
for each dataset is indicated. e, Functional activities, genetic alterations, MKs, 
clinical characteristics, radiomic features and therapeutic vulnerability compose 
modules that distinguish each functional subtype. GBM driver genes in each 
module recapitulate the functional hallmark of each subtype (for example, CDK6 
amplification/CDKN2A deletion for the PPR proliferation/stemness features; 
MET amplification/NF1 deletion for glycolysis/RAS pathway activation in GPM 
GBM; FGFR3-TACC3 fusion for mitochondrial activation in MTC tumors). GPM is 
the only subtype that significantly associates with a specific sex (male) and age 
group (45–65 years). GPM and MTC subtypes exhibit positive correlation with 
frontal/parietal and temporal tumor location, respectively. GPM, PPR and NEU 
are linked with radiologic features that are compatible with the biological traits 
of these subgroups (CET, NET and DWM invasion, respectively). In agreement 
with the enhanced OXPHOS and MK activity of PKCδ and DNA-PKcs in MTC, GPM 
and PPR, respectively, these subtypes are distinctly sensitive to mitochondrial, 
PKCδ and DNA-PKcs inhibitors. CET, contrast-enhancing tumor; NET, non-
contrast-enhancing tumor; DWM, deep white matter).
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was assessed on an independent cohort of 133 FFPE samples profiled 
by RNA-seq, classifying 73% of the samples. To assess the stability  
and accuracy of the FFPE model, we unbiasedly assigned FFPE samples 
to a subtype by unsupervised consensus clustering of 178 samples  
(133 FFPE plus 45 FFPE with matched frozen specimens; Extended Data 
Fig. 10c). Using the classification of the 45 frozen samples as ‘anchors’, 
we assigned each cluster to a functional GBM subtype and compared 
the resulting unbiased label assignment with the subtype classification 
from the FFPE model for the 133 unmatched FFPE samples only. The 

classifier performance indexes were similar to those calculated for 
the frozen model (misclassification error of 15%; AUROCs, sensitivity, 
specificity and precision > 0.84; Fig. 8c,d and Supplementary Table 
11b,c). The FFPE model was also validated on 45 FFPE samples using 
the classification of the matched frozen specimens as ground truth, 
obtaining comparable results (Extended Data Fig. 10d).

We have implemented a Shiny app of the frozen and FFPE classi-
fication tools for general research use at https://lucgar88.shinyapps.
io/GBMclassifier.
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Discussion
Here, we sought to establish a link between multi-omic features 
that regulate the biology of GBM subtypes and protein kinases that 
could directly enable subtype-specific phenotypes. We built and 
applied SPHINKS-MK, an algorithm that integrates proteomics and 
phospho-proteomics datasets into a single network for the unbiased 
extraction of subtype-specific MKs. By informing pharmacologic and 
genetic experiments in subtype-matched GBM organoids, SPHINKS-MK 
delivered PKCδ and DNA-PKcs as experimentally validated MKs for the 
aggressive GPM and PPR subtypes of GBM. The four subtypes and the 
underlying phenotypes were also recovered across different tumor 
types, highlighting the fundamental biological traits that are extracted 
by the functional classification. In the multi-cancer context, PKCδ and 
DNA-PKcs have emerged as broadly actionable MKs of GPM and PPR 
subtypes. Inspired by the subtype-specific therapeutic opportunities, 
we present a probabilistic classifier that enables rapid translation of 
precision therapeutics for subgroups of patients with GBM.

The four GBM subtypes initially inferred from a pathway-based 
scRNA-seq analysis are supported by orthogonal analyses from pro-
teomics, phospho-proteomics, metabolomics, lipidomics and acety-
lomics platforms. The divergent metabolism of the GPM and MTC 
subtypes was independently captured by the analysis of acetylomics, a 
post-translational modification previously associated with the inactiva-
tion of metabolic proteins25. Acetylation also emerged as major determi-
nant factor instructing the identity of the proliferation-, stemness- and 
DDR-related biology that is activated in PPR cells. Stratification of PPR 
GBM based on acetylation of nuclear proteins uncovered a hyperacety-
lated PPR group of tumors with outlier activation of these activities. 
This finding underscores the crucial role of acetylation of nuclear 
proteins for activation of transcription and chromatin-remodeling 
factors and enzymes involved in the DDR59. The significance of the 
pathway-based classification of GBM is further emphasized by the 
association of the individual subtypes with clinical variables such as age 
and tumor location within the central nervous system and frequency of 
recurrent alterations of driver genes. The interrogation of MRI features 
associated with each subtype showed that the metabolic subtypes, and 
particularly the GPM subgroup, are characterized by higher contrast 
enhancement, potentially reflecting more prominent perivascular 
invasion of tumor cells with consequent disruption of the endothelial 
tight junctions of the blood–brain barrier. Conversely, tumors classified 
along the neurodevelopmental axis are associated with non-enhancing 
features. Among them, the unique correlation between NEU tumors 
and deep white matter invasion is consistent with the proposed ability 
of neuronally differentiated GBM cells to engage healthy brain cells at 
the tumor periphery for neomorphic synaptic connections that guide 
invasion through white matter tracks5 (Fig. 8e).

Although prediction of active protein kinases in cancer has been 
so far of limited impact for cancer therapy, there is tremendous appeal 
of kinases as both drivers and drug targets. SPHINKS-MK interro-
gated the full scope of tumor-specific kinomes and phosphorylomes 
reconstructed into an integrated functional network and identifies 
high-activity kinases specific for tumor subtypes. The benchmarking 
of SPHINKS showed that the algorithm is stable and exhibits a predic-
tion power higher than other inference methods. PKCδ emerged as the 
top-scoring kinase of the GPM subtype. Genetic and pharmacologic 
inhibition of PKCδ defined its role in oncometabolic processes at the 
intersection of insulin, IGF and lipid metabolism and validated PKCδ 
as crucial therapeutic target of the GPM subtype of GBM. DNA-PKcs 
was experimentally validated as essential MK of the PPR subtype. The 
synergistic and lethal effect of inhibition of DNA-PKcs and IR in PPR 
but not GPM cells provided the mechanistic interpretation of therapy 
resistance in this GBM subtype. As DNA-PKcs inhibitors have been intro-
duced into clinical trials44,60, our findings indicate that preselection of 
patients with PPR tumors is likely to enhance therapeutic success. The 
GBM classifier was validated as a stratifying method for pediatric and 

adult tumors, revealing consistent patterns across different tumor 
types (for example, favorable survival associated with MTC tumors) and 
context-dependent features (BRAF mutations and fusions associated 
with divergent metabolic subtypes in PG). The identification of PKCδ 
and DNA-PKcs as subtype-specific MKs from SPHINKS-inferred PG, 
BRCA and LSCC kinase–phosphosite interactomes delivers targeted 
therapeutic directions for GPM and PPR subtypes across multiple 
tumor types.

The probabilistic classification tool will facilitate the yet unfulfilled 
stratification of patients with GBM for the accrual to clinical trials using 
FFPE specimens and advance precision therapies targeting individual 
subtypes of this aggressive tumor.

Methods
Ethics statement
PDOs have been described previously5. PDOs were obtained using 
excess material collected for clinical purposes from specimens 
de-identified at the source. This work was designated Institutional 
Review Board exempt under paragraph 4 and covered under Insti-
tutional Review Board and Onconeurotek tumor bank certification 
(NF S96 900) and authorization from an ethics committee (CPP Ile 
de France VI, ref. A39II) and the French Ministry for Research (AC 
2013–1962).

Patient datasets and profiling platforms
For each cancer type6,9,46–48,61–63, multi-omics data availability, tumors 
analyzed, clinical and survival data are listed in Supplementary Table 1.

Data processing
Gene expression. Data from CPTAC were downloaded as fpkm. 
Non-protein-coding and low-expressed genes were removed. Data were 
quantile and log2 normalized. Data from METABRIC (Illumina HT-12 v.3) 
were downloaded as median normalized. RNA-seq data from TCGA were 
downloaded using TCGAbiolinks. Upper quantile within-normalization 
with GC content correction and between-normalization were applied.

DNA methylation. Data from CPTAC (EPIC array) were downloaded as 
β-values, pre-processed with functional normalization with minfi64, 
quality checked, with common single-nucleotide polymorphism filter-
ing and probe annotation. Values missing in < 20% across all sample 
were imputed using the average of the corresponding probe. Data from 
TCGA were pre-processed with functional normalization and probes 
targeting sex chromosomes or not associated with gene promoters65 
were removed. Processed β-values and classification of the MNP cohort 
were downloaded from the Gene Expression Omnibus (GSE90496, 
MNP reference set) and supplementary tables published previously9.

Copy number. Thresholded CNVs were assessed using GISTIC. 
Protein-coding genes were retained. fCNVs were obtained as described5.

Global proteome and phospho-proteome. Values missing in <50% 
across all samples were imputed with DreamAI66 and were quantile 
and log2 normalized.

Lipidome and metabolome. Data were downloaded as log2-tranformed 
and median normalized. Values missing in fewer than five or ten 
tumors for lipids or metabolites, respectively, were imputed using 
average abundance of the corresponding molecule. Data were quantile 
normalized.

Acetylome. Data were imputed with DreamAI and log2-transformed.

Functional classification of CPTAC IDH wild-type GBM
We used Agilent expression profiles of 304 TCGA-GBM IDH wild-type 
previously classified5 as training set of a k-nearest neighbors (k-NN) 
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classifier (k = 3) to classify CPTAC tumors. To account for differences in 
gene expression between TCGA and CPTAC, we generated ranked lists 
of genes differentially expressed in each CPTAC subtype compared to 
the others using the MWW test and defined as subtype-specific sig-
natures the 50 highest scoring genes. For each tumor, we derived the 
intensity of each subtype as the average expression of genes in each 
subtype-specific signature. A simplicity score was obtained as the 
difference between the two highest subtypes intensities, and tumors 
with simplicity score > 0.6 were retained (17 GPM, 6 MTC, 16 NEU and 
13 PPR core samples).

To assign membership to 40 unclassified tumors, we integrated 
fCNV and gene expression using SNF for 89 tumors. The features set 
of the classifier (subtype-specific fCNV gains/losses from TCGA and 
subtype-specific gene signatures from CPTAC core samples) were 
aggregated by SNFtool to generate a fused tumor network and a tumor 
similarity matrix (K = 20, α = 0.5 and t = 20). Spectral clustering was 
performed on the similarity matrix. The distance matrix (1 − similarity) 
was used to establish membership of 38 unclassified GBM according 
to the closeness to core tumors with k-NN (k = 3). Five tumors with 
conditional probability < 0.6 remained unclassified.

Cross-classification analysis
We classified TCGA- and CPTAC-GBM samples according to MNP DNA 
methylation classification9 using MNP-GBM and assignment as training 
set of k-NN. The top 10,000 variable probes shared by MNP and TCGA 
or CPTAC samples were selected. We extracted the top 30 principal 
components by principal-component analysis and assigned an MNP 
classification to TCGA or CPTAC samples using k-NN (k = 9)6. While 
an official MNP classifier exists online (https://www.molecularneuro-
pathology.org/mnp), we were not able to access it as the site did not 
approve our registration at the time of writing.

To assess the relationship between pathway-based classification 
and transcriptional subtyping in TCGA- and CPTAC-GBM, we analyzed 
304 TCGA-GBM previously classified5. TCGA subtype assignments were 
obtained as described8. Subtyping of CPTAC tumors was described 
previously6.

Multi-omics characterization of GBM functional subtypes
We generated ranked lists of genes, proteins, lipids and metabolites  
differentially expressed/abundant in each subtype compared to the 
others by MWW test. Final subtype-specific signatures including the 150 
top-scoring genes or proteins were used to calculate subtype enrich-
ment in each tumor using single-sample MWW-GST (ssMWW-GST). 
Pathway enrichment analysis was performed as described elsewhere5, 
using non-redundant pathways from a set cover algorithm67. The most 
active pathways in each subtype were obtained using gene or protein 
ranked lists by two-sided MWW-GST (logit(NES) > 0.58, FDR < 0.005).

Enrichment of glycolytic and mitochondrial enzymes (protein 
sets) and metabolic intermediates (metabolite sets) in MTC and GPM 
were generated by MWW-GST (glycolytic enzymes: logit(NES) = 1.27, 
P = 0.017; mitochondrial enzymes: logit(NES) = −1.19, P = 5.93 × 10−13; 
glycolytic intermediates: logit(NES) = 1.76, P = 0.0007; mitochondrial 
intermediates: logit(NES) = −1.65, P = 0.018). The network of metabo-
lites and metabolic proteins was constructed using Ingenuity Pathway 
Analysis (IPA)68.

Lipid signatures included molecules with an MWW score > 0.5. 
Lipids were categorized and used for enrichment of lipid subclasses, 
cellular components and lipid functions in each subtype using  
Fisher’s exact test (FET; log(OR) > 0, P < 0.05) and the lipid ontology 
database LION14.

Proteogenomic integrative analysis of GBM
fCNVprot were obtained by integrating fCNVs, gene expression, and 
protein abundance of genes that exhibited fCNV change in two or more 
tumors according to the following criteria: (1) higher/lower protein 

abundance in tumors with alteration compared to wild-type (|log2 
(FC)| > 0.15, P < 0.10; two-sided MWW test); (2) higher/lower protein 
abundance in one subtype compared to the others (|log2 (FC)| > 0.15, 
P < 0.10; two-sided MWW test); (3) higher subtype-specific transcrip-
tomic activity of tumors harboring the fCNV compared to wild-type 
(effect size > 0.15, P < 0.10; two-sided MWW test). Subtype-associated 
fCNVprot gains/losses were examined for their contribution to activa-
tion/deactivation of biological pathways using FET (P < 0.05).

Univariate logistic regression analysis. Tumors were segregated 
according to fCNV status (altered, wild-type); subtype activity was a 
continuous predictor. Additionally, tumors were segregated according 
to subtypes and protein abundance was used as a continuous predictor. 
The analysis of FGFR3-TACC3 fusion included 178 GBM FFPE RNA-seq 
samples (fusion present, 12 tumors or absent).

Analysis of acetylation of metabolic and nuclear proteins
We used 2,212 genes from the Reactome Metabolism gene set to define 
proteins involved in metabolism. Unsupervised clustering was per-
formed on proteins differentially expressed between GPM and MTC 
(P < 0.05, log2(FC) > 0.3; two-sided MWW test).

Normalized acetyl site abundance (acetylation not explained by 
the corresponding protein abundance) was calculated as residuals 
(εsite) from the linear regression Acsite = β0 + β1 × Prsite + εsite, where Acsite 
is the abundance of a given acetyl site and Prsite is the corresponding 
protein abundance.

We applied BlackSheep’s differential extreme value analysis 
module to define outlier acetylated metabolic proteins (P < 0.05) and 
enrichment of biological pathways using FET (P < 0.0005).

Nuclear proteins were selected by the COMPARTMENTS database69 
(nucleus score of 5). Acetyl sites with the highest variability across 
the dataset by interquartile range (n = 320) were used for unsuper-
vised clustering. Differentially abundant acetyl sites in high- versus 
low-acetylation PPR subgroups were defined by MWW test (P < 0.001, 
log2(FC) > 0.3). Acetyl sites whose abundance was not explained by pro-
tein abundance were selected by comparing global protein and acetyl 
site abundance between high- and low-acetylation PPR subgroups using 
MWW test (log2(FC) > 0.5, P < 0.05). Pathway overrepresentation testing 
was performed using gProfiler tool (FDR < 0.05).

Generation of replication stress/DNA damage response 
phospho-proteomic signature
We manually curated data from five studies reporting mass spectrom-
etry phospho-proteomics70–74 to identify sites whose phosphorylation 
was increased after induction of DNA RS by ATR inhibition or hydroxyu-
rea treatment or DDR by IR exposure. Differential abundance of DDR/
RS-induced-phosphosites was performed comparing PPR subgroup 
versus the others (P < 0.05; MWW test). DDR/RS phospho-signatures 
were used to calculate DDR/RS scores in each tumor (ssMWW-GST). 
Enrichment of GPM, MTC, NEU and PPR tumors in highest/lowest 
distribution of the DDR/RS score (|logit(NES)| > 0) was tested using 
FET. Difference between transcriptome- and global proteome-derived 
subtype activity was calculated and the association with DDR/RS score 
tested using Spearman’s correlation.

Functional classification, analysis and validation of PG, BRCA 
and LSCC
We used RNA-seq expression profiles of 105 CPTAC-PG, 119 CPTAC-BRCA 
and 108 CPTAC-LSCC to compute the enrichment of the functional 
subtype-specific signatures from TCGA-GBM in each tumor and pro-
tein abundance data to compute the enrichment of the 50 highest 
scoring proteins in the ranked list of each CPTAC-GBM subtype in 
each tumor using ssMWW-GST. Tumors were classified according 
to the subtype with the concordant highest NES (logit(NES) > 0.3, 
FDR < 0.05) in both transcriptomic and proteomic data and were 
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defined as ‘anchor tumors’ (51, 54, 64 tumors for PG, BRCA and LSCC, 
respectively). We used anchor tumors to generate ranked lists of genes 
and proteins (MWW test). Tumor type-specific/subtype-specific gene 
and protein signatures included the top 50 scoring genes and proteins. 
Unclassified tumors (54 PG, 96 BRCA and 44 LSCC) were classified by 
integrating gene and protein signatures from the previous step using 
SNF. Final classifications include 48 GPM, 7 MTC, 27 NEU, 22 PPR and 1 
unclassified for PG; 50 GPM, 23 MTC, 5 NEU and 40 PPR for BRCA; and 
51 GPM, 9 MTC, 0 NEU, 46 PPR and 2 unclassified for LSCC samples.  
We used the expression profiles of 1,095 tumors from TCGA-BRCA, 
1,904 tumors from METABRIC-BRCA and 502 tumors from TCGA-LUSC 
to compute the enrichment of functional subtype-specific signa-
tures from TCGA-GBM in each tumor (ssMWW-GST), classifying them  
according to the subtype with the highest NES (logit(NES) > 0.58, 
FDR < 0.05).

Normalized phosphosite abundance (phosphorylation not 
explained by the corresponding protein abundance) was calculated 
as for normalized acetyl site abundance, using the abundance of the 
phosphosite and corresponding protein.

Association between functional classification and tumor grade, 
BRAF status (PG) or CPTAC NMF-derived subtypes (BRCA and LSCC) was 
assessed by chi-squared test. Survival analysis among functional sub-
types in TCGA-BRCA, TCGA-LUSC and METABRIC-BRCA was assessed 
by log-rank test.

DepMap data analysis
Transcriptomic profiles of BRCA and LUSC cell lines from DepMap for 
which both RNA-seq expression and menadione survival ratio from 
PRISM Repurposing Primary Screen were available (BRCA, n = 26; 
LUSC, n = 71)52 were used to derive subtype activities and classification 
according to the highest NES (ssMWW-GST). Difference in menadione 
survival ratio between MTC cell lines versus the others was assessed 
using two-sided t-test, unequal variance.

SPHINKS algorithm
We implemented SPHINKS, a machine-learning method that  
generalizes unseen data from observed data using semi-supervised 
approaches applied in gene regulatory networks reconstruction75. 
SPHINKS creates an unbiased context-specific kinome network, lev-
eraging kinases abundance from proteomics, substrate abundance 
from phospho-proteomics and experimentally validated kinase–sub-
strate interactions available from PhosphoSitePlus30. The classifier, 
as a binary model, was trained to recognize relationships between 
abundance profiles of kinase–phosphosite pairs. A positive training 
set was defined as the set of known substrates of a specific kinase. 
This represented the typical setting where a learner has access only 
to positive and unlabeled data (positive unlabeled)75, with high imbal-
ance between positive and unlabeled examples. We combined easy-
ensamble76 and bootstrap aggregating machine-learning ensemble 
meta-algorithm (bagging)77 to integrate several SVM classifiers trained 
on different instances of the negative set (Extended Data Fig. 4a). 
An SVM classifier was trained on the validated interactions (positive 
training set) and a subset of randomly selected unknown interactions 
(negative set). Each training example represents an interaction and a 
training matrix is formed juxtaposing kinase’s protein and substrate’s 
phospho-protein abundance on a set of corresponding cases, with 
examples along the rows. Using the matrix of all possible kinase–sub-
strate pairs we obtained a score (between 0 and 1), representing the 
probability for each phosphosite to be a kinase substrate according 
to the classifier. As the randomly derived negative set may contain 
potential substrates, to improve the accuracy of the prediction, we 
applied the bagging, repeating the training/prediction steps 100 times 
using random sampling of the negative set (keeping the positive fixed). 
SPHINKS scores were derived as the average SVM score from all itera-
tions. To create a set of predicted substrates (SOPS) for each kinase  

(a list of predicted kinase–substrate interactions), we selected inter
actions whose SPHINKS score was above the value for which at least  
50% of the known interactions were retained and the Spearman’s  
correlation between kinase and phospho-substrate was positive.

Identification of subtype-specific master kinases
We applied the method described previously10 with modifications. The 
activity of an MK was defined as the quantification of the activation 
of its substrate program in each sample Xi (i = 1,…,85). We binned all 
substrates into 25 bins according to their average abundance across 
all samples. For each MK, we defined {s1,…,sK} the substrates in the 
SOPS of MK. We randomly extracted a set of n = 100 control substrates 
for each sk from the corresponding bin, {c1,…,c100K}. Thus, the control 
substrate set has a distribution of abundance levels comparable to 
that of SOPS, while being 100-fold larger. The activity of the MK in the 
sample Xi was computed as:

Act (Xi,MK) =
∑K

k=1 ωsk × tisk
∑K

k=1 ωsk

−
∑100K

j=1 ωcj × ticj
∑100K

j=1 ωcj

,

where ωsk and ωcj are the SPHINKS scores of the kth substrate or jth 
control substrate of the MK, respectively; tisk and ticj are the abundances 
of sk or cj in the ith sample, respectively. If Act (Xi, MK) > 0, the MK  
is activated in the ith sample, if Act (Xi, MK) < 0, the MK is inversely 
activated and if Act (Xi, MK) ≈ 0, it is deactivated.

We selected MKs that showed a significant difference in activity 
in one subtype compared to the others using MWW test (effect size > 
0.3 and P < 0.01). For GBM, subtype-specific MKs were mapped on a 
kinome tree using KinMap78.

Benchmarking of SPHINKS
Impact of missing values and imputation algorithm. To establish 
how the SPHINKS prediction of kinase–phospho-substrate interac-
tions degrades as the level of imputation increases, we performed a 
set of simulations in a controlled setting where we could have a gold 
standard. From the CPTAC-GBM un-imputed phospho-proteomic 
data, we selected sites with no missing values (n = 7,302) as input for 
SPHINKS and generated a kinase–phosphosite interactome to be used 
as a gold standard. To simulate missing values, we generated new 
phospho-proteomic datasets by randomly replacing predefined ratios 
of phosphosites with missing values (r = 10%, 25% and 50%) and then 
imputed using DreamAI. We applied SPHINKS to predict the networks 
on the imputed matrices and compared them with the one recon-
structed from the un-imputed matrix. The AUC from the ROC curve 
was computed as a measure of accuracy.

Validation of the predictions of kinase–phospho-substrate interac-
tion. To evaluate SPHINKS performance in the prediction of kinase–
substrate interactions, we performed a tenfold cross-validation 
analysis by randomly dividing the validated interactions from  
PhosphoSitePlus into ten subsets for training and testing. The workflow 
for each fold is as follows:

	1.	 We trained the SVM using the training subsets (positive  
training set) plus a random selection of unknown interactions 
(negative training set).

	2.	 As test set, we used the test subset and a randomly selection of 
unknown interactions, completely independent from the nega-
tive training set and derived the scores using the SVM classifier 
from step 1.

	3.	 We derived the SPHINKS scores by applying the bagging  
approach as described before, repeating step 1 and 2 100 times.

	4.	 We compared the SPHINKS scores with the test set and derived 
the AUC.
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Validation of the kinase activity estimate. To evaluate how much  
different levels of interaction misclassifications affect the SPHINKS 
kinase activity, we randomly perturbed the SPHINKS network,  
as follows:

	1.	 From the predicted kinase–substrate interactome, we gen-
erated a set of perturbations of interactions by replacing a 
predetermined percentage of phospho-substrates correspond-
ing to P(percentage) = bottom 5%, 10%, 15%, 20% and 50% of the 
SPHINKS scores with random phosphosites.

	2.	 For each percentage, we randomly generated n = 100 runs of 
perturbed networks.

	3.	 For each percentage and run, we derived the SPHINKS kinase 
activity for 154 kinases in 85 CPTAC-GBM samples.

	4.	 For each percentage and run, we derived the MK Δ-activity as 
the difference (in percentage) between the kinase activity in-
ferred using the original network (Act(MK)u) and the perturbed 
networks (Act(MK)P):

ΔAct (MK) = abs (Act (MK)u − Act (MK)p

Act (MK)u
) .

Average ΔAct (MK) for each kinase across all runs or for each run 
across all kinases were shown at each ratio of perturbation.

Comparison of the kinase activity inferred by SPHINKS and other 
methods. We considered two recently reported approaches, KSEA31 
and KEA3 (ref. 32).

We used a dataset reporting the downstream changes in 
phospho-protein abundance after perturbations of upstream kinase 
by stimulators or inhibitors33,34, bringing together 24 studies encom-
passing 103 kinase-perturbation annotations (gold standard) for 30 
kinases and 61,181 phosphosites. We employed a metric defined as 
‘top-k-hit’ (Phit(k)), which focuses on the top k kinase predictions, as 
described34, with k = 10. To compare the kinase activity estimate among 
methods, for SPHINKS we considered only the validated interactions.

Additionally, we evaluated whether other approaches could iden-
tify the GBM subtype-specific kinases uncovered by SPHINKS. We 
applied each method on the CPTAC-GBM dataset and for each sub-
type derived the ranking of 129 kinases included in all five methods:  
(1) for SPHINKS, kinases were ranked according to the MWW score;  
(2) for KSEA PhosphoSitePlus and KSEA PhosphoSitePlus + NetworKIN,  
kinases were ranked based on the KSEA-derived z score31 for each sub-
type compared to the others; and (3) for KEA3, kinases were ranked 
based on the MeanRank or TopRank32 for each subtype (considering the 
highest 300 differentially phosphorylated proteins). For each kinase, 
we derived the Δ-rank as the difference in ranks between SPHINKS and 
any other approach (Δ-rank < 0, the rank of SPHINKS is lower, indicating 
higher kinase activity; Δ-rank > 0 indicates the opposite).

Processing and library preparation of the in-house GBM IDH 
wild-type cohort
The cohort is composed of 178 FFPE IDH wild-type GBM samples, 45 
of which had matched frozen specimens. RNA was extracted using 
the Maxwell Rapid Sample Concentrator Instrument (Promega) and 
Maxwell RSC simplyRNA Tissue Kit (Promega, AS1340) for frozen 
samples or Maxwell RSC RNA FFPE kit (Promega, AS1440) for FFPE 
specimens. RNA extracted from both tissues was analyzed using the 
same workflow. Complementary DNA libraries were prepared with 
QuantSeq 3′ mRNA-Seq Library Prep kit FWD (Lexogen, 015). In brief, 
libraries were prepared with oligo-dT priming, with no previous poly(A) 
enrichment or ribosomal RNA depletion required. After first-strand 
synthesis, second-strand synthesis was initiated by random priming 
and Illumina-specific linker sequences were introduced. The result-
ing double-stranded cDNA was purified with magnetic beads and the 

library was then amplified, introducing the sequences required for 
cluster generation. Illumina libraries were multiplexed compatibly with 
single-end sequencing and sequenced on the Illumina HiSeq platform 
(100-bp single end). Sequencing data quality and pre-processing was 
as described5.

Development of the probabilistic classification tool for IDH 
wild-type GBM
We used 506 tumors from the TCGA-GBM profiled by Agilent as training 
set as these tumors were assigned to each functional subtypes based 
on orthogonal validation across multiple platforms including fCNVs, 
somatic mutations, DNA methylation and miRNA gene signatures5. 
The standardized expression of all genes from the subtype-specific 
signatures was used to train a multinomial regression model with 
lasso penalty using glmnet (α = 1, family = ‘multinomial’)79. We applied 
a tenfold cross-validation to select the best model with the lowest 
cross-validation error based on the misclassification error as loss meas-
ure. As a test set (ground truth), we considered two GBM IDH wild-type 
RNA-seq datasets:

	a.	 TCGA-GBM cohort (n = 127) classified according to the subtyp-
ing of the matched Agilent expression tumors (ground truth);

	b.	 CPTAC-GBM cohort (n = 85) classified in functional subtypes 
(ground truth) as described in this manuscript and orthogo-
nally validated by multi-omics analyses (global proteom-
ics, phospho-proteomics, lipidomics, metabolomics and 
acetylomics).

We classified the test samples if the fitted probability of a par-
ticular subtype was the highest and the sample showed a simplicity 
score above 0.35. The simplicity score was computed as the difference 
between the highest fitted probability (dominant subtype) and the 
mean of the other subtypes (non-dominant). We classified 80% of the 
TCGA and 79% of the CPTAC cohorts.

For the FFPE model, we used a similar approach with some modi-
fications. We generated RNA-seq data from FFPE of 178 IDH wild-type 
GBM, 45 of which were also independently sequenced from matched 
frozen specimens (Supplementary Table 12). To identify genes whose 
expression in FFPE is consistent with the corresponding frozen speci-
mens, we calculated correlation of expression between the 45 matched 
frozen and FFPE samples and retained only genes with Spearman’s 
correlation > 0.22 (4,668 genes). Independently, we classified the  
45 fresh frozen samples’ extracted RNA to each subtype on the  
basis of the highest NES (ssMWW-GST) using the functional sub-
types signatures5. Using the classification of the frozen samples as a  
‘gold standard’, we derived FFPE-specific subtype-specific signatures 
on the FFPE expression matrix (50 highest genes from each ranked  
list, MWW test). As described for the frozen model, we trained a 
multinomial regression model on TCGA Agilent cohort using the 
FFPE-specific gene signatures and applied cross-validation to select the 
best model. The remaining 133 samples that lacked RNA-seq data from 
frozen specimens and had not been used to define the FFPE-specific sig-
natures were classified if the fitted probability of a particular subtype 
was the highest and the simplicity score was above 0.25. We classified 
73% of these tumors.

We performed an independent analysis to obtain an unbiased 
subtype assignment of the FFPE samples. FFPE-specific gene signatures 
were used to inform consensus clustering on the Euclidean distance 
matrix of all 178 FFPE-derived RNA-seq (10,000 random samplings, 70% 
of samples, Ward linkage, k = 4 clusters). We then labeled all samples by 
assigning each individual cluster to each subtype using the classifica-
tion of the 45 matched frozen samples as ‘anchors’. We found 91% con-
cordance in the classification of the matched frozen and FFPE-derived 
RNA-seq (41 out of 45). Finally, the unbiased label assignments of 133 
unmatched FFPE samples were used to evaluate the prediction abili-
ties of the classifier.
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Association of GBM functional subtypes with clinical and 
radiomic features
Clinical data for TCGA-GBM patients were downloaded using TCGA-
biolinks. Demographic characteristics were available for 503 GBM 
classified according to pathway-based classification. Patients were 
segregated in three age groups: 10–40, 40–65 and > 65 years. Quanti-
fication of radiomic features were available for 88 preoperative mul-
timodal MRIs of TCGA-GBM from TCIA. For tumor location, patients 
were segregated in high or low group if more/less than 50% of the tumor 
was detected in the specific location, respectively. Univariate logistic 
regression analysis was performed to assess the association between 
demographic or radiomic features and functional subtypes/axis. 
Radiologist-made assessments (proportion of necrosis and edema) 
from TCGA (n = 63 GBM with available pathway-based assignment) 
were retrieved from elsewhere12. The proportion of DWM invasion 
available through TCIA was obtained by the integration of data pub-
lished previously13 and REMBRANDT (n = 54). Quantitative radiomic 
features (n = 175) from 88 GBM were selected from TCIA as described80. 
We performed differential analysis of radiomic data in each subtype 
compared to the others (FC > 0.3, P < 0.05; two-sided MWW test). Asso-
ciation between functional subtypes and radiomic subgroups from 
unsupervised clustering was assessed by chi-squared test.

Cell culture
PDOs were cultured and tested as described5. Human cell lines were 
HEK293T (ATCC CRL-11268). Cells were cultured in DMEM supple-
mented with 10% FBS (Sigma). Cells were transfected using Lipo-
fectamine 2000 (Invitrogen) or the calcium phosphate method. 
Lentiviral infection was performed as described10. Short hairpin RNA 
(shRNA) sequences (Sigma) for PKCδ are:

PRKCD shRNA 1 (TRCN0000010193): GGCCGCTTTGAACTC 
TACCGT;

PRKCD shRNA 2 (TRCN0000379731): CATTACTTGAATGTAGTTATC;

Cell growth and clonogenic assay. Time course analysis of the  
cellular growth of shPRKCD or empty vector-transduced PDOs was  
performed by plating 4,500 cells per well in 96-well plates. Viability  
was determined using CellTiterGlo assay reagent (Promega, G7570) 
and the GloMax-Multi+ Microplate Multimode Reader (Promega). For 
clonogenic assay of PDOs treated with BJE6-106, 1,500 cells were plated 
in six-well plates. Cells were fixed in methanol and stained with crystal 
violet after 2 weeks. Colonies with more than 50 cells were scored. Data are 
mean ± s.d. (n = 3 biological replicates). Experiments were repeated twice.

Intracellular glucose uptake and triacylglyceride accumulation.  
Measurement of the rate of glucose uptake and triacylglyceride  
accumulation in shPRKCD and control infected GPM PDO cells were 
performed as described elsewhere5.

Compound treatment. Cells were plated in 130 μl in opaque white 
96-well plates. At 24 h later, cells were treated with serial dilutions 
of compounds as indicated for 72 h. Viability was determined as 
described5. For IR–drug combination treatment, PDOs were plated 
in 96-well plates. Cells were treated 24 h later with serial dilutions of 
M3814 and exposed 2 h later to IR (2, 4, 8 Gy at 0.7 Gy min−1) from a 137Cs 
source (GammaCell 40 irradiator, Teratronics). Mock-treated cells were 
cultured in parallel. Viability was determined 96 h later as described 
above. Clonogenic assays for the evaluation of IR–drug combination 
were performed in three independent 96-well plates for treatment 
group. The number of wells containing PDO spheres was scored and 
normalized to untreated cells.

Immunofluorescence analysis of γH2AX foci
Cells were fixed with 4% paraformaldehyde, permeabilized with cold 
methanol for 90 s at 4 °C and blocked with 5% BSA, 0.05% Triton X-100 in 

PBS for 30 min. Cells were exposed to primary antibody phospho-H2AX 
1:500 dilution (Ser139, CST, 2577) for 1 h at room temperature followed 
by Cy3-conjugated anti-rabbit (Invitrogen, A10520) for 1 h at room 
temperature. Nuclei were stained with 4,6-diamidino-2-phenylindole 
(DAPI) (Sigma). Images were acquired using a Nikon Ti Eclipse inverted 
microscope for spinning-disk confocal microscopy equipped with a 
Plan Apochromat ×60 oil/1.4 NA DIC objective. γH2AX foci in individual 
nuclei were scored by ImageJ (NIH) with in-built find Maxima > Promi-
nence > Point Selection plug-in. Nuclei from at least ten random images 
were included in the analysis of each treatment group.

Western blot
Cells were lysed in RIPA buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 
1 mM EDTA, 1% NP40, 0.5% sodium dexoycholate, 0.1% sodium dode-
cyl sulfate, 1.5 mM Na3VO4, 50 mM sodium fluoride, 10 mM sodium 
pyrophosphate, 10 mM β-glycerol phosphate and EDTA-free protease 
inhibitor cocktail; Roche). Lysates were briefly sonicated, cleared by 
centrifugation, separated by SDS–PAGE and transferred to polyvi-
nylidene difluoride membrane. Membranes were probed with primary 
antibodies overnight at 4 °C: p-DNA-PK (Ser-2056, CST, 68716), DNA-PK 
(CST, 38168), p-NBS1 (Ser-343, CST, 3001), NBS1 (CST, 14956), p-KAP1 
(Ser-824, Abcam, ab133440), KAP1 (Abcam, ab109287), p-CHK1 (Ser317, 
CST, 12302), CHK1 (CST, 2360), p-PKCδ (Tyr-311, CST, 2055), PKCδ 
(Abcam, ab182126), PKCδ (CST, 9616), p-STAT3 (Tyr705, CST, 9145), 
STAT3 (CST, 4904), p-AKT (Ser-473, CST, 4060), p-AKT (Thr308, CST, 
13038), AKT (CST, 4691), p-ERK1/2 (Thr202/Tyr204, CST, 4370), ERK1/2 
(CST, 9102), GAPDH (Abcam, ab9484), Vinculin (Sigma, V9131) and 
β-actin (Sigma, A5441). Secondary horseradish peroxidase-conjugated 
antibodies, anti-mouse (Invitrogen, 31438) or anti-rabbit (Invitro-
gen, 31458) were used, and either Enhanced ChemiLuminescence 
(Amersham, RPN2209) or Super Signal West Femto (Thermo Scientific, 
34095) was used for detection. Dilution of all primary antibodies was 
1:1,000 except GAPDH, vinculin and β-actin (1:10,000). Dilution of 
secondary antibodies was 1:10,000.

Statistics and reproducibility
In general, at least two independent experiments were performed with 
similar results. Experiments included a minimum of three replicates as 
specified in figure legends. No statistical methods were used to prede-
termine sample size. Data distribution was assumed to be normal but 
this was not formally tested. No data were excluded from the analyses; 
the experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment. 
Comparisons between two groups were analyzed by two-tailed t-test, 
unequal variance or the MWW test. Results in graphs are expressed as 
mean ± s.d. or mean ± s.e.m. as indicated in figure legends. Box plots 
span the first to third quartiles and whiskers show 1.5× interquartile 
range. All statistical analyses were performed using GraphPad Prism 
software v.8.0 to obtain P values.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
RNA-seq expression data of the 178 FFPE-derived and 45 frozen GBM 
IDH wild-type are available at Synapse (http://synapse.org; acces-
sion no. syn27042663). Previously published multi-omics data from 
CPTAC that were re-analyzed here are available from elswhere6,46–48. The 
human GBM transcriptomic, genomic, methylation and clinical data, 
BRCA and LUSC transcriptomic and clinical data were derived from 
the TCGA Research Network (http://cancergenome.nih.gov/) using 
TCGAbiolinks. BRCA transcriptomic data from METABRIC has been 
derived from elsewhere63. MNP-GBM methylation data were derived 
from the Gene Expression Omnibus (accession no. GSE90496). Source 
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data have been provided as Source Data files. All other data supporting 
the findings of this study are available from the corresponding author 
on reasonable request.

Code availability
The source code used for SPHINKS and the GBM-specific kinome phos-
phorylome network are available at GitHub at https://github.com/mic-
cec/MAKINA. The Shiny app of the frozen and FFPE classification tools 
is available at https://lucgar88.shinyapps.io/GBMclassifier.
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Extended Data Fig. 1 | Definition of functional subtypes of GBM by SNF and 
relationship to prior GBM classifiers. a, Circular plot indicating the annotation 
of data available for each platform and individual tumors of CPTAC-GBM cohort 
(n = 93 GBM samples). The number (n) of GBM samples for each platform 
is indicated. b, Integrative clustering of GBM tumors by SNF (n = 89 GBM 
samples). Heat map of patient-to-patient similarity coefficients generated by the 
integration of subtype-specific gene expression of the highest 50 genes in the 
ranked lists of the functional subtypes of 52 GBM samples classified as anchors 
and fCNVs associated with the four GBM subtypes from TCGA. Yellow-to-orange 
scale represents low to high similarity coefficient. c, Dot plot showing the genes 

harboring fCNVprot gain or loss and relative pathway enrichment for each GBM 
subtype (n = 85 GBM samples). Dot size indicates significance of the pathway 
enrichment (P < 0.05, Fisher’s exact test) and color the log2(FC) of the protein 
abundance in tumors harboring the fCNVprot alteration compared to wild-type 
tumors (blue to red scale indicate fCNVprot gain, red scale; fCNVprot loss, blue 
scale; two-sided MWW test). d-e, Chord diagram of GBM subtype assignment 
of the indicated classifiers in each individual tumor from TCGA (n = 199 GBM 
samples) (d) and CPTAC (n = 83 GBM samples) (e) datasets. f, Chord diagram of 
GBM subtype assignment according to the indicated classifiers in each individual 
tumor from the CPTAC dataset (n = 85 GBM samples).
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Extended Data Fig. 2 | Association between fCNV status of GBM driver 
genes and pathway-based subtypes. a, Forest plots showing the association 
between fCNV amplification/mutation status of GBM driver oncogenes and 
subtype transcriptomic activity (magenta) or abundance of protein of the 
corresponding gene (light blue) in the CPTAC-GBM cohort (n = 84 GBM samples; 
univariate logistic regression). log(odd ratio) estimates (OR), 95% confidence 
intervals (CI) and P values are reported. log(OR) estimates higher/lower than 0 
represent positive/negative association. b, FGFR3-TACC3 fusion analysis was 

performed using a cohort of GBM profiled by FFPE tissue RNA-Seq (n = 170 GBM 
samples; univariate logistic regression). log(OR) estimates, 95% CI and P values 
are reported. c, Forest plots showing the association between fCNV deletion/
mutation status in GBM tumor suppressor genes and subtype transcriptomic 
activity (blue) or protein abundance of the corresponding gene (light blue; n = 84 
GBM samples; univariate logistic regression). log(OR) estimates, 95% CI and P 
values are reported. For tumor suppressor genes, subtype activity values (NES) 
were multiplied by −1 for visualization purposes.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Multiplatform validation of the metabolic axis of the 
GBM subtypes. a, Comparative analysis of the interactome network including 
intermediate metabolites and enzymes of the indicated metabolic activities in 
GPM versus MTC tumors (GPM GBM samples: n = 16; MTC GBM samples: n = 10 for 
metabolites; GPM GBM samples: n = 22; MTC GBM samples: n = 12 for proteins; 
two-sided MWW test). Orange to green scale indicates metabolite/protein 
increase to decrease in GPM versus MTC samples; [glycolytic intermediates: 
logit(NES) = 1.76, P = 0.0007, mitochondrial intermediates: logit(NES) = −1.65, 
P = 0.018; glycolytic proteins: logit(NES) = 1.27, P = 0.017, mitochondrial 
proteins: logit(NES) = −1.19, P = 5.93e-13; two-sided MWW-GST]. b-d, Enrichment 
analysis of b, lipid subclasses and c, LION terms, grouped according to cellular 
components and d, lipid functions. Lipid subclasses and LION terms significantly 
enriched in at least one GBM subtype are reported (n = 64 GBM samples; log 

odds ratio > 0, P < 0.05; Fisher’s exact test). Circles are color-coded and their 
size reflect the log odds ratio. Asterisks: * P < 0.05, ** P < 0.005, *** P < 0.001. e, 
Heat map showing unsupervised clustering of metabolic proteins differentially 
expressed between MTC and GPM samples [log2(FC) > 0.3, P < 0.05; two-sided 
MWW test]. Biological pathways significantly enriched in metabolic proteins are 
reported on the right (log odds ratio > 0, P < 0.05; Fisher’s exact test). n, number 
of GBM samples in GPM and MTC subtypes. f, Heat map depicting the outlier 
fraction of acetylated metabolic protein in GPM and MTC tumors (P < 0.05; 
BlackSheep). Representative outlier acetylated proteins are listed on the left 
according to decreasing P value. Biological pathways significantly enriched in 
outlier acetylated proteins are reported on the right (P < 0.0005; Fisher’s exact 
test). n, number of GBM samples in GPM and MTC subtypes.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Computational strategy for the identification of MKs 
in functional GBM subtypes and benchmarking of SPHINKS approach. a, The 
reconstruction of an unbiased kinome network combines SVM classifiers trained 
on different instances of the negative set as follows: (step i) train SVM classifier 
on validated kinase-substrate interactions (green arrows, positive training set) 
and a subset of randomly selected unknown interactions (red dotted arrow, 
negative set) using kinase abundance from proteomics and substrate abundance 
from phosho-proteomics; (step ii) compute a score for all the interactions in the 
network according to the SVM classifier; (step iii) perform bagging and obtain 
the average SVM scores; (step iv) retain only interactions whose average score 
was above the average SVM score threshold (50% of the known interactions) and 
whose Spearman’s correlation was positive; (step v) calculate MKs activity as 
the difference of two terms, the weighted average of the predicted substrate’s 
abundances using the SPHINKS score as weight (left), and the weighted average 
of randomly selected control substrate-set (right). b, ROC curves of the 
predictions of the interactions by SPHINKS derived from simulated phospho-
proteomic matrix with different rates of missing values. The top-left side of 
plot was magnified for accurate visualization. c, ROC curves of the interactions 
by SPHINKS for each of the 10 cross-validation iterations of experimentally 

validated interactions. d, Box plots of the average kinase Δ-activity (percentage) 
from unperturbed versus 100 networks perturbed with random phosphosites 
interactions for each kinase replacing true interactions in the network (p = 5%, 
10%, 15%, 20%, 50%). In the upper plot, each dot represents the average Δ-activity 
for each kinase across all runs at each perturbation percentage; in the lower plot, 
each dot represents the average Δ-activity for each run across all kinases at each 
ratio of perturbation. Box plots span the first to third quartiles and whiskers 
show the 1.5 × interquartile range. e, Kinase-substrate interactome from SPHINKS 
highlighting MKs for each functional subtype indicated by colors: red, green, 
blue and cyan, MKs in GPM, MTC, NEU, and PPR, respectively (effect size > 0.3, 
P < 0.01; two-sided MWW test; n = 85 GBM samples). Nodes represent kinases 
and substrates, and lines their interactions. Gray nodes are subtype non-specific 
kinases; purple nodes are kinase-targeted phosphosites substrates. Orange 
lines indicate kinase-phosphosite interactions from PhosphoSitePlus; cyan lines 
represent novel kinase-substrate interactions inferred by the SPHINKS.  
f, MKs significantly active in each functional GBM subtype were mapped onto  
the human kinome tree. Red, green, blue and cyan, MKs in GPM, MTC, NEU, and 
PPR, respectively. The size of the circles is proportional to the kinase activity.  
The number of GBM samples is as in e.
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Extended Data Fig. 5 | Benchmarking of SPHINKS against previously 
published kinase-substrate inference methods. a, Bar plot showing the 
probability of correctly identifying upregulated or downregulated kinases by the 
analysis of the ‘top-10-hit’ using the indicated inference methods (n = 103 kinase 
perturbations). b, Bar plot of the differential rank (Δ-rank) of activity between 

SPHINKS and the indicated inference methods for the kinases significantly 
active in each GBM subtype by SPHINKS and common to the networks of all five 
approaches (n = 85 GBM samples). Kinases are ordered according to the rank of 
activity by SPHINKS.

http://www.nature.com/natcancer


Nature Cancer

Article https://doi.org/10.1038/s43018-022-00510-x

Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Global and phospho-proteomics events in insulin 
receptor/IGF-PKCδ pathway in GPM GBM and enrichment of DDR and RS 
phospho-proteins as a specific feature of PPR GBM. a, Signaling network 
highlighting the molecules and proteins involved in IGF-I/insulin signaling of 
GPM GBM tumors. Orange or red scale indicates the MWW score derived from 
the proteomic or phosphosite ranked list of GPM tumors when compared to the 
others, respectively (two-sided MWW test, n = 85 GBM samples). Molecules in 
white are proteins not profiled or whose abundance was not significantly higher 
in GPM when compared to the other subtypes. b-c, Western blot analysis of 
GPM PDO cells incubated with b, IGF-I (10 ng/ml), IGF-II (10 ng/ml) and c, insulin 
(100 ng/ml) for the indicated times using the indicated antibodies. GAPDH is 
shown as a loading control. Each experiment was repeated independently 2 times 

with similar results. d, Viability curves of n = 8 PPR PDOs each derived from an 
independent patient and n = 8 GPM PDOs, each derived from an independent 
patient treated with increasing concentration of Nedisertib. Data are mean ± s.d. 
of n = 4 technical replicates for each PDO from one representative experiment. 
Experiments were repeated 2 times with similar results. e, Quantification 
of clonogenic assay of 2 PPR PDOs (PDO 015 and PDO 044, top panels) each 
derived from an independent patient and 2 GPM PDOs (PDO 021 and PDO 062, 
bottom panels) each derived from an independent patient treated with IR or IR 
plus Nedisertib (1667nM). Data are mean of n = 3 technical replicates from one 
representative experiment. Experiments were repeated 2 times with similar 
results.
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Extended Data Fig. 7 | Proteomics characterization and clinical outcome 
of PG stratified according to functional subtypes. a-b, Heat map showing 
the median abundance of the 150 highest scoring proteins of the ranked lists 
(two-sided MWW test) of the four functional subtypes in a, PG-LGG and b, 
PG-HGG (two-sided MWW test). Rows are proteins and columns are functional 
subtypes (n = 82 PG-LGG samples; n = 22 PG-HGG samples). Left and top color 
tracks indicate functional subtypes. Unsupervised clustering was performed for 

each subtype-specific protein signature. For each subtype, biological pathways 
significantly enriched by each gene subcluster are reported on the left (P < 0.05, 
Fisher’s exact test). c, Kaplan–Meier curves of PG (n = 94 patients) stratified by 
SNF combining gene and protein signatures obtained from the functional GBM 
subtypes. Patients in the PPR subgroup exhibit significantly worse survival (log-
rank test).

http://www.nature.com/natcancer


Nature Cancer

Article https://doi.org/10.1038/s43018-022-00510-x

Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Functional classification of BRCA and LSCC and 
prognostic implications. a-b, Heat map showing the 150 highest scoring 
genes of the ranked lists of the four functional subtypes obtained from tumors 
classified in a, TCGA- (n = 810 BRCA samples) and b, METABRIC-BRCA (n = 1,088 
BRCA samples) datasets (two-sided MWW test). Rows are genes and columns are 
tumors. Horizontal top and left tracks indicate functional subtypes; horizontal 
middle track indicates PAM50 classification of BRCA by TCGA; horizontal lower 
track indicates tumor grade. Unsupervised clustering was performed for each 
subtype-specific gene signature. Biological pathways significantly enriched 
by each gene subcluster are reported on the left (P < 0.05; Fisher’s exact test). 
c, Kaplan–Meier curves and log-rank test analysis of 1,897 BRCA patients from 
the combined TCGA (n = 809 patients) and METABRIC datasets (n = 1,088 
patients), stratified according to the four functional subclasses (log-rank test). 
d, Heat map showing the 150 highest scoring genes of the ranked lists of the 

four functional subtypes in LUSC from TCGA database (n = 360 LUSC samples; 
two-sided MWW test). Rows are genes and columns are tumors. Horizontal top 
and left tracks indicate functional subtypes; horizontal lower track indicates 
tumor grade. Unsupervised clustering was performed for each subtype-specific 
gene signature. For each subtype, biological pathways significantly enriched 
by each gene subcluster are reported on the left (P < 0.05; Fisher’s exact test). e, 
Kaplan–Meier curves of 356 patients with LUSC from the TCGA dataset stratified 
according to the four functional subclasses. f, Mitochondrial activity (NES) and 
menadione survival ratio (log2) for 26 BRCA (upper plot) and 71 LUSC (lower plot) 
cell lines from DepMap. Upper track, functional classification; middle track, 
mitochondrial activity; lower track, menadione survival ratio. Survival ratio: 
difference between mitochondrial cell lines versus the others; log2(FC) = −1.31, 
p = 0.008 for BRCA; log2(FC) = −0.63, p = 0.076 for LUSC; two-sided t-test, 
unequal variance.
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Extended Data Fig. 9 | Common and specific Master Kinases across CPTAC-GBM, -PG, -BRCA, and -LSCC. Venn diagrams reporting the common and specific 
master kinases of each functional subtype resulted significantly activated in CPTAC-GBM, -PG, -BRCA, and -LSCC (GBM: n = 85 samples; PG: n = 104 samples; BRCA: 
n = 118 samples; LSCC: n = 106 samples).
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Extended Data Fig. 10 | Clinical-grade probabilistic tool for the classification 
of frozen and FFPE IDH wild-type GBM. a, Schematics of the approach for 
calculating the probability of a GBM sample of belonging to one of the four 
defined functional subtypes. The Agilent expression data of 506 samples from 
the TCGA cohort of GBM were classified into one of the four functional subtypes 
(top left). The standardized expression of all the genes from the subtype-specific 
gene signatures (bottom left) was used to train a multinomial regression model 
with lasso penalty using glmnet (middle part). Each sample (input) was used to 
build a multi-class logistic regression model that returns four probabilities Pi,k, 
one for each functional GBM subtype. We classified a tumor into one subtype if 
the fitted probability of the particular subtype was the highest (Pkhigh) and the 
sample showed a simplicity score (SS) above a defined threshold (δ). Tumors  
that did not comply with the defined thresholds remained unclassified.  
b, Comparison bar plot of sensitivity, specificity, and precision in each GBM 

subtype of the multinomial regression model using RNA-Seq data from 45 
matched frozen samples. c, Consensus clustering generated from the 178 FFPE 
GBM samples using the expression of the 200 genes from the FFPE-specific gene 
signatures. Columns and rows represent FFPE samples. Color bar on the top 
defines four subgroups according consensus clustering. Track at bottom 
indicates the functional classification of the corresponding 45 matched frozen 
samples. The number (n) of samples in each cluster and subtype is indicated. 
Yellow-to-blue scale indicates low to high similarity. d, Comparison bar plot of 
sensitivity, specificity, and precision in each GBM subtype of the multinomial 
regression model using RNA-Seq data from 45 matched FFPE samples. Dashed 
lines and corresponding values indicate the average of each performance 
measure (blue: sensitivity; orange: specificity; purple: precision) in each GBM 
subgroup.
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