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Despite producing a panoply of potential cancer-specific targets, the
proteogenomic characterization of human tumors has yet to demonstrate
value for precision cancer medicine. Integrative multi-omics using a
machine-learning network identified master kinases responsible for
effecting phenotypic hallmarks of functional glioblastoma subtypes. In
subtype-matched patient-derived models, we validated PKC6 and DNA-PK
as master kinases of glycolytic/plurimetabolic and proliferative/progenitor
subtypes, respectively, and qualified the kinases as potent and actionable
glioblastoma subtype-specific therapeutic targets. Glioblastoma subtypes
were associated with clinical and radiomics features, orthogonally validated
by proteomics, phospho-proteomics, metabolomics, lipidomics and
acetylomics analyses, and recapitulated in pediatric glioma, breast and
lung squamous cell carcinoma, including subtype specificity of PKC&

and DNA-PK activity. We developed a probabilistic classification tool that
performs optimally with RNA from frozen and paraffin-embedded tissues,
which canbe used to evaluate the association of therapeutic response

with glioblastoma subtypes and to inform patient selection in prospective

clinical trials.

The classification systems of malignant tumors have evolved in the
past 15 years under the pressure of mounting molecular and genetic
data and remain an active area of cancer research. The need for more
accurate classifiers derives from the urgency of precision oncology
and drug development targeting homogeneous tumor subsets’.
Whereas genomics offers acomprehensive view of the genetic makeup
of individual tumors, the integration of genomics, protein profiling
and post-translational regulation delivers a deeper understanding of

tumor biology and recognizes similarity patterns within individual
tumor types, and possibly across multiple types of tumors that can
fine-tune targeted therapeutics’.

Cancer proteomics consortia have recently provided proteog-
enomic data and the initial framework for analysis of the proteomic
platforms and integration with genomic data®*.

Here, we reconstructed four functional subtypes of glioblas-
toma (GBM)® using proteomics, phospho-proteomics, acetylomics,
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Fig.1|Proteogenomic interpretation of GBM functional subtypes. a, Heat
map showing the 150 highest scoring proteins in the ranked lists of GPM, MTC,
NEU and PPR GBM subtypes (two-sided MWW test). Rows indicate proteins
and columnsindicate tumors (n = 85 GBM samples). Color tracks indicate

GBM subtypes (left and top). b, Grid plot showing NES of the highest active,
non-redundant biological pathways for each GBM subtype (logit(NES) > 0.58,
FDR < 0.005; two-sided MWW-GST). The number of GBM samplesis asina. IFN,
interferon. ¢, Integrative heat map showing CNVs (top) and protein abundance

(bottom) of genes with fCNVP™ gain (amp) or loss (del) (two-sided MWW test).
Gains/amplifications are indicated in red; loss/deletions are in blue. Ineach
panel, tumors are ordered from left to right according to highest to lowest
subtype activity NES (top track); bottom track indicates tumor classification.
The number (n) of GBM samples for each subtype is indicated. For each subtype,
representative genes with the highest frequency of fCNVP™ gain (red squares) or
loss (blue squares) are listed. wt, wild type; NES, normalized enrichment score;
FDR, false discovery rate; GST, gene set test.

metabolomics and lipidomics data using the GBM dataset from the
Clinical Proteomic Tumor Analysis Consortium (CPTAC)®. We devel-
oped a computational approach, Substrate PHosphosite-based
Inference for Network of KinaseS (SPHINKS) to generate unbiased
kinome-phosphosite networks and extract the master kinases
(MKs) driving GBM subtypes. We experimentally validated protein
kinase C6 (PKCS8) and DNA-dependent protein kinase catalytic
subunit (DNA-PKcs) as the MKs that sustain cell growth and tumor
cellidentity of the glycolytic/plurimetabolic (GPM) and proliferative/

progenitor (PPR) functional GBM subtypes, respectively. We confirmed
PKC& and DNA-PKcs as MKs in GPM and PPR tumors from pediatric
glioma (PG), breast carcinoma (BRCA) and lung squamous cell car-
cinoma (LSCC) cohorts classified according to the four functional
classesthat recapitulate metabolic and proliferation tumor cell states.
Finally, we developed a probabilistic classification tool for GBM that
exhibits optimal performance in both frozen and formalin-fixed,
paraffin-embedded (FFPE) tumor tissue for application in cancer
clinical pathology.
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Proteogenomic analysis captures functional
subtypes of GBM

Werecently reported asingle-cell-guided, pathway-based classification
ofisocitrate dehydrogenase (IDH) wild-type GBM that consists of four
subtypes within two functional branches: neurodevelopment (PPRand
neuronal, or NEU) and metabolism (GPM and mitochondrial, or MTC)".
Here, we used the proteogenomic data of 92 IDH wild-type GBM from
the CPTAC cohort that was profiled by genomics, transcriptomics,
proteomics, phospho-proteomics, metabolomics, acetylomics and
lipidomics to explore the biology associated with the multi-omics
taxonomy and uncover therapeutic opportunities (Extended Data
Fig.1a)°. As functional copy-number variations (fCNVs), the CNVs of
genes associated with coherent transcriptomic changesincisand gene
expression were the primary data sources for the pathway-based clas-
sifier of GBM®, we selected validated fCNVs and transcripts as input
features of similarity network fusion (SNF)” and obtained four stable
clusters (Extended Data Fig. 1b). Using 52 GBM classified according to
the highest transcriptomic simplicity score as anchors, we classified 33
of the 40 remaining tumors by the SNF distance matrix (Supplemen-
tary Table1a). Genes differentially expressed by each SNF cluster were
enriched with biological activities previously assigned to GPM, MTC,
PPRand NEU GBM subtypes (Supplementary Table 2a-c)°. Inspection
of proteome revealed that the most differentially abundant proteins
and enriched pathways coincided with activities biologically congruent
with fCNV and gene expression-guided functions and recapitulated
the predominant biology assigned to each subtype by SNF clustering
(Fig.1a,b and Supplementary Table 2d,e).

To ask whether fCNVs impact protein abundance in cis, we inte-
grated genomics, transcriptomics and proteomics data to identify
genes for which gain or loss correspondingly changed messenger
RNA and protein expression (fCNVP™"). Overall, 2,205 genes with
fCNV gain and 2,837 genes with fCNV loss had concordant changes in
protein abundance when compared to copy-number neutral samples
(Supplementary Table 2f). Among them, 553 (25.08%) fCNV*™** gains and
415 (14.63%) fCNVP™* |osses segregated with one subtype (Fig. 1c and
Supplementary Table 2g-j). fCNV** contributed directly to activation/
deactivation of the subtype-specific biological hallmarks (Extended
DataFig.1cand Supplementary Table 2k).

To understand the relationship between pathway-based classifi-
cation (GPM, MTC, PPR and NEU) and previously proposed transcrip-
tional (TCGA: proneural, classical and mesenchymal)® and epigenetic
(MolecularNeuroPathology (MNP): mesenchymal, RTK I, RTK I, RTK
1lI, MID, MYCN and G34)° subtypes of GBM, we selected 199 and 83 IDH
wild-type GBM profiled by both RNA-seq and DNA methylation arrays
from TCGA and CPTAC, respectively. We performed a three-way com-
parison. The GPM subtype exhibited clear association with the mesen-
chymal subtypes of TCGA and MNP classifiers. Conversely, MTC tumors
were mapped to all TCGA and MNP subtypes, with slight preference
for RTK Iland mesenchymal subtype in the TCGA and CPTAC dataset,
respectively (Extended DataFig.1d-fand Supplementary Table1a,b).

PPR and NEU had limited overlap with the TCGA and MNP classes,
with proneural and RTK I contributing to most PPR and NEU tumors
(Extended DataFig.1d,e and Supplementary Table1a,b). Although the
epigenetic RTKIII, MID, MYCN and G34 subtypes were only minimally
represented in TCGA and CPTAC datasets (4.5% and 1.2%, respectively),
six of nine tumors were classified as PPR (Extended Data Fig.1d,e). We
also compared functional subtypes with proneural-like, classical-like
and mesenchymal-like subtypes reported by CPTAC®. GPM tumors
were mainly CPTAC mesenchymal-like; however, the mesenchymal-like
group also included a significant fraction of MTC cases (Extended
DataFig. 1f), indicating that our classification uniquely discriminates
tumors exhibiting alternative metabolic fluxes (MTC and GPM) and
clinical characteristics’. The CPTAC proneural-like subtype included
similar fractions of PPR and NEU, whereas the classical-like subtype
was preferentially enriched with PPR tumors.

The analysis confirmed orthogonal distribution of MTC GBM
andindicated that, with the description of PPR and NEU subtypes, the
pathway-based classifier more accurately captures the neurogenesis
stages than the vague definition of proneural state.

Proteogenomics enables integrative modules of
GBM subtypes

To understand whether each functional subtype of GBM reflects a
unique configuration of elements that compose a distinct functional
module, from genetic drivers to clinical characteristics such as age, sex
and location of the tumor inthe brain or radiological features that are
obtained at diagnosis by magnetic resonance imaging (MRI), we applied
aunivariatelogistic regression that determined the association of muta-
tionsand fCNV° with each subtype. Inanindependent model we asked
whether proteins encoded by GBM driver genes provide orthogonal
validation to the genetic associations (Extended Data Fig. 2). We found
that PPR activity predominantly associated with fCNV amplification/
mutation/high protein abundance of GBM oncogenes (CDK6, EZH2,
MDMA4 and EGFR) and fCNV deletion/mutation/protein depletion of
CDKNZ2A, all connected to PPR hallmarks. GPM activity was associated
with MET fCNV amplification/high protein abundance and NF1fCNV
deletion/mutation/protein depletion (Extended Data Fig. 2a,c). Con-
firming our previous findings'®, the MTC subtype was associated with
FGFR3-TACC3fusion-positive tumors in the cohort of 178 GBM that we
used to validate the probabilistic classifier (see below and Extended
Data Fig.2b)". fCNV deletion of RERE and SLC45A1 genes located inthe
‘metabolic’ region of chromosome 1p36.23 previously identified as a
driver of the MTC subtype® was associated with increased MTC activity.
The positive correlation between low RERE protein abundance inde-
pendently supported the association whereas the SLC45A1 protein was
notdetectedinthe CPTAC proteome (Extended DataFig. 2c). With the
limitation of the small number of CPTAC samples, the overall analysis
indicated that protein abundance was generally a better indicator of
subtype activity than CNV and mutations, afinding that likely reflects
control of oncogenic protein abundance by non-genetic factors.

Fig. 2| Association between demographic, imaging-based features and
functional subtypes. a, Forest plots of age and sex association with GBM
functional subtypes or the aggregated of PPR and NEU in the TCGA dataset
(n=503 GBM samples; univariate logistic regression).log(OR) estimates, 95%
confidenceintervals (CI) and P values are reported (*: P< 0.10; **: P< 0.05). OR,
odds ratio. log(OR) estimates higher/lower than O represent positive/negative
association. b, Forest plots of the association between tumor location and
GBM functional subtypes in the TCGA dataset (n = 88 GBM samples; univariate
logistic regression). log(OR) estimates, 95% Cl and P values are reported. ¢, Bar
plots showing the proportion of necrosis and edema in functional subtypes

of GBM from the TCGA cohort (n = 63 GBM samples) and deep white matter
(WM) invasion from TCGA (n = 40 GBM samples) and REMBRANDT (n = 14 GBM
samples) datasets. d, Forest plots of the association between contrast-enhancing,
non-contrast-enhancing tumor or edemaand GBM functional subtypesin the

TCGA dataset (n = 88 GBM samples; univariate logistic regression). log(OR)
estimates, 95% Cland Pvalues are reported. e, Forest plot of the association
between contrast-enhancing or non-contrast-enhancing tumor and metabolic

or neurodevelopmental GBM subtypes in the TCGA dataset (n = 88 GBM samples;
univariate logistic regression). log(OR) estimates, 95% Cl and Pvalues are
reported. f, Unsupervised clustering on 175 differential quantitative radiomic
features in GBM subtypes (n = 88 GBM samples, left; two-sided MWW test). Top
track shows clusters; bottom track shows tumor classification. Representative
radiomic features for cluster 1 (enriched with PPR tumors) and cluster 4 (enriched
with GPM tumors) are indicated. Association between radiomic clusters and GBM
subtypes (right). Circles are color coded and their size reflects the standardized
residuals (chi-squared test). Orange-to-blue scale indicates positive to negative
enrichment. Asterisks indicates standardized residuals > 1.5.
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Next, we analyzed the correlation between clinical characteristics
and subtype transcriptomic activity. GPM activity showed significant
association with male sex and age between 40 and 65 years. When
aggregated, PPRand NEU activities approached significance in associa-
tionwith female sex (Fig.2a). GPM tumors were more frequently found
inthe frontal and parietal lobes but were excluded from the temporal

region. Conversely, MTC tumors were more frequent in the temporal
lobe and were excluded from the parietal lobe, indicating areciprocal
brain location pattern for the metabolic subtypes (Fig. 2b).
Tointerrogate associations between functional GBM subtypes and
radiomic features, we used MRI data available from The Cancer Imag-
ing Archive (TCIA)>". We categorized the fraction of necrosis, edema
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and deep white matter invasion and correlated tumor core enhancing
and non-enhancing volume and volume of edema with subtype activity
(Supplementary Table 1b,c). We also generated an unbiased clustering
of histogram-based, volumetric and intensity features. The analy-
ses showed that GPM activity was associated with larger edema and
contrast-enhancing volume. PPR activity was associated with greater
necrosis, non-enhancing volumes and lower fraction of deep white
matter invasion, whereas NEU activity was associated with the lowest
volume of necrosis and highest fraction of white matter invasion (Fig.
2c,d). Although the number of samples in each functional subtype was
insufficient to provide statistical power, when GPM-MTC or PPR-NEU
samples were combined the metabolic subtypes had significantly
higher enhancing volume, whereas neurodevelopmental subtypes
exhibited larger non-enhancing volumes (Fig. 2e). This scenario was
supported by the association of four unsupervised clusters of 175
radiomic features with pathway-based subtypes. Cluster 1 had high
non-enhancing and low enhancing volumes as distinctive features
and was mostly populated by PPR tumors. Conversely, cluster 4 was
enriched with GPM tumors and characterized by overrepresentation
of edema and contrast-enhancing volumes but underrepresentation
of non-enhancing features (Fig. 2f).

Multi-omics profiling discriminates functional
GBM subtypes

Weinquired whether the divergent features of GPM and MTC subtypes
might independently emerge from proteomics, metabolomics and
lipidomics platforms. Comparative analysis of GPM and MTC protein
profiles showed significantly higher levels of glycolytic enzymes and
lower levels of mitochondrial enzymes (translocases, tricarboxylic acid
(TCA) cycleand electron transport chain enzymes) in GPM whereas the
reciprocal pattern characterized MTC tumors. GPM GBM was preferen-
tially enriched withintermediates of glycolysis, the pentose phosphate
shunt, fatty acids, sugars and essential amino acids, whereas MTC GBM
contained higher levels of TCA cycle intermediates, antioxidants and
non-essential amino acids (Extended Data Fig. 3a).

The analysis of lipidomic data using L/ION* showed that GPM
samples had the highest abundance of triacylglycerol, involved in
lipid storage and ceramide, which triggers mitochondrial dysfunc-
tion (Extended Data Fig. 3b—d and Supplementary Table 2I,m)"".
Conversely, MTC GBM accumulated acyl-carnitine, an integral com-
ponent of mitochondrial fatty acid oxidation™ and diacylglycerol, a
lipid second messenger required for membrane fusion and fissions.
The different lipid composition of GPM and MTC GBM was highlighted
by the analysis of lipid cellular components and functions showing
enrichment of constituents of lipid droplets in GPM and lipids involved
inmitochondrial biogenesis in MTC (Extended Data Fig. 3¢,d). Within
the neurodevelopmental axis, PPR contained elevated phosphati-
dylcholines, which are required for cell cycle progression”, whereas
NEU tumors were enriched in sphingomyelin, phosphatidylserine,
hexosyl-ceramide and cholesteryl ester, all essential components of

the myelinsheath that surrounds nerve cell axons”*”' and phosphatidic
acid, a central intermediate for the synthesis of neuronal membrane
lipids (Extended Data Fig. 3b-d)*.

Aslysine acetylation hasemerged as a post-translational modifica-
tion for the regulation of cytoplasmic proteins with crucial metabolic
activities and deregulated acetylation of metabolic enzymes candrive
metabolic reprogramming of cancer cells”*, we inquired whether lysine
acetylation might differentially regulate metabolismin GPMand MTC
subtypes. Unsupervised clustering of metabolism-related proteins
differentially expressed between MTC and GPM tumors revealed two
clusters, one enriched with GPM tumors and characterized by accu-
mulation of proteinsinvolved inglucose, amino acid and lipid metabo-
lism, and the other enriched with MTC samples and characterized by
accumulation of proteins associated with mitochondrial metabolism
(Extended Data Fig. 3e and Supplementary Table 3a,b). By applying
the outlier enrichment analysis (BlackSheep)* to acetylated proteins,
we found that in contrast to global protein abundance, the highest
acetylated metabolic proteins in GPM samples included mitochon-
drial enzymes, whereas MTC samples exhibited hyperacetylation of
enzymesimplicated in glycolysis and the pentose phosphate pathway
aswellasaminoacid biosynthesis and adipogenesis (Extended Data Fig.
3fand Supplementary Table 3¢c). As acetylation has been viewed as an
inhibitory post-translational modification for the activity of metabolic
enzymes?, these results present additional levels of coordination of
the alternative reprogramming in the metabolic axis of GBM subtypes.

We then examined the pattern of nuclear protein acetylation
across GBM subtypes. Unsupervised clustering of the most variable
nuclear protein acetylation sites uncovered three clusters (Fig. 3a).
Cluster 1 was acetylation cold and enriched in GPM and NEU tumors.
Cluster 2included tumors with the highest acetylation and was almost
exclusively composed of PPR samples. Cluster 3 was an intermediate/
low-acetylation cluster thatincluded 46% of PPR samples (16 tumors)
intermixed with GPM, NEU and MTC tumors (Fig. 3b). Thus, the PPR
subtype seems to be divided into two subgroups, exhibiting high and
low nuclear protein acetylation, respectively (Fig. 3c and Supplemen-
tary Table 3d). Tumorsin the high-acetylation PPR subcluster had the
highest proteomics but not transcriptomics proliferation/stemness
scores, thus highlighting the specific role of the post-translation acetyl
modificationin this subtype (Fig.3d,e). Differential acetylation of PPR
GBM among high-acetylation and low-acetylation subclustersinvolved
specificacetylation sites of histone and non-histone acetyltransferases
(lysine acetyltransferases, KATs) whose enzymatic activity is acti-
vated by auto-acetylation**”. Such activation was clearly manifested
in high-acetylation PPR by the elevated level of acetyl-lysines in the
HAT domain of p300 (K1554, K1555, K1558 and K1560) and function-
ally similar residues in the HAT domain of other KATs such as mem-
bers of the MYST complexes (MEAF6, ING4,JADE2,JADE3 and MYST3;
Fig. 3f and Supplementary Table 3e). The latter introduce acetylated
marks upon histones H2, H3 and H4 (ref. *®), which were recovered as
hyperacetylated (H2AX, H2AFV and HIST2H4B) in high-acetylation

Fig.3|Protein acetylation defines distinct PPR subpopulations. a, Heat

map showing unsupervised clustering of GBM tumors using the most variable
nuclear protein acetyl sites (n = 320 acetyl sites). The number (n) of GBM samples
foreach clusteris indicated. b, Association between acetylation clusters and
functional subtypes of GBM. Circles are color coded and their size reflects

the standardized residuals (chi-squared test). Orange-to-blue scale indicates
positive to negative enrichment. Asterisks indicate standardized residuals > 2.
The number (n) of GBM samples is as in a. ¢, Heat map showing unsupervised
clustering of differential acetylated nuclear proteins in PPR tumors with high
(n=11PPR GBM samplesin cluster 2 of a) and low (n =16 PPR GBM samples in
cluster 3 of a) acetylation of nuclear proteins (log,(FC) > 0.3, P < 0.001; two-sided
MWW test). d, Box plots of PPR activity calculated from the transcriptome

(left) or global proteome (right) in PPR GBM with low and high acetylation
(two-sided MWW test). Box plots span the first to third quartiles and whiskers

show L.5x interquartile range. The number (n) of PPR GBM samples with low and
highacetylationis indicated. e, Box plots of stemness activity calculated from
transcriptome (left) or global proteome (right) in PPR GBM with low and high
acetylation (two-sided MWW test). Box plots span the first to third quartiles and
whiskers show 1.5x interquartile range. The number (n) of PPR GBM samples
withlow and high acetylationis indicated. f, Starburst plot integrating global
protein and acetyl site abundance of high- (n =11 PPR GBM samples) versus
low-acetylated PPR GBM (n =16 PPR GBM samples; two-sided MWW test). The

x axis indicates protein log,(FC) multiplied by -log,,(P). The y axis indicates
acetylsite log,(FC) multiplied by —log,(P). The horizontal and vertical lines
denote the cutoff of log,(FC) = 0.5 multiplied by —log,,(P= 0.05). g, Gene
Ontology overrepresentation analysis of acetylated proteins in fusing gProfiler
(FDR < 0.05). The number (n) of PPR GBM samples with low and high acetylation
isasinf. FC, fold change.
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PPR. Besides KATs and histones, chromatin-modifying enzymes and
enzymesinvolvedin DNA damage response (DDR) and DNA replication
stress (RS) were hyperacetylated in high-acetylation PPR, suggesting
thatacetylation contributes to the activation of these biological func-
tionsin PPR GBM (Fig.3g).

Sustained RS and DDR signaling characterizes
PPRGBM

The proteomic profiling of PPR GBM combined molecular marks of
proliferation with activation of DDR (Fig. 1b). Moreover, PPR tumors

exhibited overrepresentation of DNA replication/replication fork
and DNA double-strand break repair (DDSB) proteins, suggesting
that enhanced RS may promote DDR signaling (Fig. 4a). To test this
hypothesis, we performed datamining and ontology integration from
mass-spectrometry datasets to identify phosphosites increased in
cells treated with irradiation, which causes DDSB lesions, ATR inhibi-
tors or hydroxyurea thatinduce RS (Methods). We selected 15 and 16
experimentally validated phosphosites specific for cells undergoing
DDSB and RS, respectively and 3 phosphosites common to DDSB and
RS. Compared to other tumor subtypes, PPR contained elevated levels
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Fig.4 | GBM of the PPR subtype exhibits phospho-programs of DDR activity
and replication stress and distinct sensitivity to DDR inhibition. a, DDR
signaling network including the most enriched pathways and the highest
abundant proteins in PPR GBM (MWW score >1.5) compared to the other
subtypes (logit(NES) > 1, P< 0.001, two-sided MWW-GST, n = 85 GBM samples).
FA, Fanconi anemia. b, Heat map showing the phospho-protein abundance of
biologically validated phosphorylation sites upregulated by irradiation-induced
DDR and aphidicolin-induced DNA RS. The number (n) of GBM samples for
each subtypeisindicated. ¢, DDR (left) and RS-induced (right) signature score
of GBM classified according to four functional subtypes. Top track, left to right
represents tumors ranked by the highest to the lowest DDR or RS score. Heat

map showing tumor subtype assignment (Fisher’s exact test) (top). Each row
represents a functional subtype. Heat map showing for each tumor the difference
between subtype-specific proteomic and transcriptomic activity (Spearman’s
correlation) (bottom). Each row represents a subtype-specific activity. White
tored, GPM; green, MTC; blue, NEU; cyan, PPR. Subtype-specific color scale
indicates lowest to highest A enrichment score for each subtype. The number
(n) of GBM samplesis asinb. d, Immunoblot of GPM PDOs (n =4 PDOs, each
derived from anindependent patient) and PPR PDOs (n = 6 PDOs, each derived
fromanindependent patient) analyzed using the indicated antibodies. Vinculin
and B-actin are shown as loading control. *indicates nonspecific band. The
experiment was repeated twice with similar results. NS, not significant.
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Fig. 5| Protein phosphorylation-kinase networks by SPHINKS reveal
subtype-specific master kinases and signaling. a, Heat map depicting the

70 highest significant outlier phosphorylated proteins in each functional

GBM subtype (P < 0.005; BlackSheep). Unsupervised clustering and biological
pathways significantly enriched are presented on the left (P < 0.01; Fisher’s

exact test). The number (n) of GBM samples for each subtypeisindicated.

b, Global kinase-substrate phosphosite interactome inferred by SPHINKS. Nodes
represent kinases and substrate phosphosites and lines their interactions. Kinase
families and phosphorylated amino acid residues are indicated by different
colors. Node size of the kinases is proportional to the number of interacting
phosphosites. Yellow interactions indicate substrate phosphosites reported in
the PhosphoSitePlus database; gray interactions are inferred new interactions.
The number (n) of GBM samplesis as in a. ¢, Circular plot depicting the most
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active kinases in each GBM subtype compared to all other subtypes (effect size
>0.3,P<0.01; two-sided MWW test) with the outermost circle representing

the color scale of kinase activity. The five predicted kinase-regulated
phosphorylation sites with the highest SPHINKS score are indicated by black
dots with SPHINKS score within the dashed line, > 0.95; SPHINKS score between
dashed and continuous line, 0.95-0.90; and SPHINKS score inside the continuous
line,<0.90. The number (n) of GBM samplesisasina. d, Heat maps showing
kinase activity (NES), MWW protein abundance score and MWW gene expression
score of SPHINKS MKs specific for each CPTAC-GBM subtype (two-sided MWW
test, n=85GBM samples). Heat maps depicting MWW gene expression score

of the same kinases in single GBM cells (n =17,367 single glioma cells) and PDOs
(n=79 PDOs) signify the cancer cell intrinsic expression of the top-scoring
kinasesidentified by SPHINKS. Only values of logit(NES) > 0.58 are shown.
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of 11(73.3%) and 10 (62.5%) of DDR and RS signature phosphosites,
respectively (Fig. 4b and Supplementary Table 4). Using DDR and RS
phospho-proteomic signatures, we computed DDR and RS enrich-
mentscores for each tumor and found higher scoresin PPR than other
subtypes, with the NEU group characterized by the lowest scores
(Fig.4c, top). The highest PPR scores were retained even when tumors
were classified according to the difference between proteomic and
transcriptomic subtype activity (Fig. 4c, bottom), thus reinforcing
thesignificance of the proteome for the association between DDR/RS
and PPR subtype. Western blot using CHK1-ser-317 phosphorylation
as a basal DDR biomarker of ATR-activated CHK1 (ref. ) showed that
GBM patient-derived organoids (PDOs) classified as PPR® exhibited
higher levels of basal DDR/RS than GPM PDOs (Fig. 4d).

Master kinase analysis uncovers GBM
subtype-specific kinases and actionable
dependencies

To begin exploring the phospho-proteomics landscape of GBM sub-
types and their organization, we cataloged phosphosites specific for
each GBM subtype and applied the outlier enrichment analysis. We
obtained four phosphosite modules of overrepresented pathways
that summarized previously assigned subtype hallmarks (Fig. 5a
and Supplementary Table 5a-c). We then sought to link phosphosite
enrichment to the activity of GBM subtype-specific protein kinases.
To this aim, we developed SPHINKS, which integrates proteomics
and phospho-proteomics profiles to build an interactome of kinase-
phospho-substrate pairs that are scored according to the strength
of their interaction across all samples (Fig. 5b). The GBM-specific
kinase-phosphosite interaction network was generated using a
semi-supervised support vector machine (SVM) algorithm trained
onexperimentally validated kinase-substrate phosphosite pairs from
the PhosphoSitePlus database®®. SPHINKS produced a GBM kinase-
phosphosite interactome comprising 13,866 predicted interactions
between 154 kinases and 3,186 phospho-substrates (Extended Data
Fig. 4a(i-iv)). To benchmark SPHINKS, we assessed the impact of
missing data in the kinase-phosphosite interactome by comparing
networks reconstructed from the CPTAC-GBM un-imputed matrix
of phosphosites lacking missing values (gold standard, 7,302 phos-
phosites) and controlled simulations of imputed matrices composed
of different ratios of phosphosite missing values (Methods). Receiver
operating characteristics (ROC) analysis showed that regardless
of the different thresholds of missing values, the area under the
curve (AUC) was consistently close to 1, indicating that the output
of SPHINKS was not affected by missing values (Extended Data
Fig. 4b). To evaluate the accuracy of SPHINKS to correctly predict
kinase-phospho-substrates, we performed a tenfold cross-validation

by randomly dividing validated interactions into ten subsets for train-
ing and testing. AUC values of all iterations between 0.86-0.89 indi-
cated high prediction accuracy (Extended Data Fig. 4c). As some of
the selected phosphosites in the negative test set might be true sub-
strates, AUC values are likely to be underestimated. To test the stability
of SPHINKS kinase activity estimates, we generated 100 independent
networks for each kinase and perturbed them by replacing a prede-
termined percentage of phospho-substrates with random phospho-
sites. Average A activity scores (difference between unperturbed and
perturbed networks) indicated a remarkable stability of the kinase
activity estimate inferred by SPHINKS (median A activity = 3%, for per-
turbations <20% interactionsin both analyses; median A activity = 4%
inboth analyses, maximum of 10% in kinase analysis, for perturbations
of 50%; Extended Data Fig. 4d).

To uncover MKs associated with distinct GBM subtypes, we
implemented single-sample MK analysis by computing the weighted
strengths of connectivity betweenkinase and predicted substrate phos-
phosites against random phosphosites for each tumor and testing the
contribution of each MK in each subtype by Mann-Whitney-Wilcoxon
(MWW) test' (Extended Data Fig. 4a(v) and Supplementary Table 5d).
GPM, PPR and NEU GBM exhibited rich and interconnected kinase-sub-
strate networks as opposed to the MTC subtype that was sustained by a
more limited network (Fig. 5c and Extended Data Fig. 4e). Mapping the
predicted subtype-specific MKs onto the human kinome tree showed
arandom distribution across kinase families (Extended Data Fig. 4f).
We validated subtype-specific MKs in bulk GBM, single-cell RNA-seq
(scRNA-seq) data from 17,367 GBM cells and 79 GBM PDOs’. mRNA
and protein of the kinases identified by SPHINKS-MK were generally
upregulated in bulk tumors and cells of the corresponding subtype
(Fig. 5d and Supplementary Table 5e). We compared SPHINKS-MK with
kinase-substrate enrichment analysis (KSEA)*' and kinase enrichment
analysis 3 (KEA3)*, Unlike SPHINKS that reconstructs context-specific
kinase-phospho-substrate networks and detects potentially new
kinase-substrate interactions, KSEA and KEA3 derive kinase activity
from networks of experimentally validated phospho-substrates. For
KSEA, we obtained kinase activities from validated interactions from
PhosphoSitePlus (KSEA PhosphoSitePlus) or predicted relationship
from NetworKIN (KSEA PhosphoSitePlus + NetworKIN). For KEA3,
we applied MeanRank and TopRank for ranking the integrated kinase
activity from 11 protein-protein and kinase-substrate interaction
libraries. We used a dataset reporting changes in the abundance of
phospho-proteins after perturbation of upstream kinases®* (103
kinase perturbation for 30 kinases and 61,181 phosphosites, the ‘gold
standard’) and the metric defined as ‘top-k-hit’, which focuses on the
top kinase predictions®*. SPHINKS produced higher activity scores than
other methods and was superior in correctly identifying the perturbed

Fig. 6 | Validation of dependency of GBM cells on specialized proteinkinases.
a, Viability curves of PDOs, each derived from an independent patient. Each
curve represents one independent PDO assayed for the indicated compound
orIR.Datain each curve are mean + s.d. of n =3 or 6 technical replicates for
compound treatment (Source Data Fig. 6) and n = 8 technical replicates for IR.
Experiments were performed twice with similar results. b, Viability curves of
GPMPDOs (n =14 PDOs, each derived from an independent patient) treated with
BJE6-106. Datain each curve are mean + s.d. of n = 6 or 18 technical replicates
foreach PDO (Source DataFig. 6). The experiment was repeated three times
with similar results. ¢, Colony-forming assay using GPM PDO cells treated with
BJE6-106. Data are the mean of n = 3 technical replicates from one representative
experiment. Experiment was repeated twice with similar results. CTRL, control.
d, Western blot of GPM PDO cells treated with 50 M of BJE6-106. Experiment was
repeated twice with similar results. e, Western blot of GPM PDO cells transduced
with lentivirus expressing two independent shRNAs targeting PRKCD or non-
targeting ShRNA (NT). Experiment was repeated three times with similar results.
f,g, Growth curves of two independent GPM PDOs, PDO 019 (f) and PDO 008 (g)
transduced asin e. Dataare mean of n =5 (f) and n = 6 (g) technical replicates
from one representative experiment. Experiments were repeated twice with

similar results. h, Quantification of sphere-forming assay for GPM PDO cells (PDO
008) transduced as in e. Dataare mean + s.d. of n =3 independent infections/
biological replicates. i, Rate of glucose uptake in GPM PDO cells (PDO 019)
transduced asin e. Dataare mean + s.d. of n = 6 for shARNA NT, n = 3 for shPRKCD
1and n =4 for shPRKCD 2 technical replicates from two independent infections/
biological replicates. j, Concentration of triacylglycerol in GPM PDO cells (PDO
019) transduced asin e. Data are mean + s.d. of n =4 for shRNANT, n=3 for
shPRKCD 1and n = 6 for shPRKCD 2 technical replicates from two independent
infections/biological replicates. k, Cell viability after IR minus or plus nedisertib
of PPRPDOs (n =8 PDOs, each derived from anindependent patient) and GPM
PDOs (n=8PDOs, each derived from anindependent patient). Datain each curve
are mean of n =4 technical replicates. Experiment was repeated twice with similar
results. I, Western blot of PPRPDO cells treated with IR (4 Gy) or IR plus nedisertib
(556 nM). Experiment was repeated twice with similar results. m, Quantification
of y-H2AX foci per nucleus in PPRPDO cells (PDO 044) after treatmentasin|; the
number (n) of nucleiisindicated (Source DataFig. 6). Data are mean + s.e.m. In
each quantitative experiment, significance was established by two-tailed ¢-test,
unequal variance or the Mann-Whitney test for experimentin m. In western
blots, vinculin and -actin are shown as loading controls.
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kinases (Extended Data Fig. 5a). We also calculated the difference
between the activity rank inferred by SPHINKS and each of the other
methods (A rank score) of 129 kinases common to all five methods for
each GBM subtype using CPTAC-GBM proteomic/phospho-proteomic
data. For all comparisons, most of the kinases exhibited a negative A
rankscore, indicating that SPHINKS has a consistently higher predictive
power than other approaches (Extended Data Fig. 5b).

PKC6 and DNA-PKcs are subtype-specific
actionable MKs in GPM and PPR

The application of SPHINKS-MK uncovered PKCS as the top-scoring MK
ofthe GPM subtype (Fig. 5¢). PKCS controls crucial steps of glucose and
lipid metabolismin multiple tissues®. In cancer, PKCS is a central sign-
aling node of the insulin-IGF-AKT-mTOR pathway that orchestrates
metabolic reprogramming toward aerobic glycolysis and increased
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uptake of nutrients***, PKCS8 also mediates resistance to antitumor
therapies possibly by upregulating glucose uptake in cancer cells®.
As the metabolic functions controlled by PKC& are hallmarks of GPM
GBM’, we tested the role of PKC8 in the plurimetabolic phenotype and
viability of this subtype. Exposure of GBM PDOs classified as GPM to
eight compounds targeting different glycolytic enzymes orirradiation
confirmed that each treatment was ineffective in these cells (Fig. 6a).
Next, we asked whether activation of PKCS in GPM GBM segregated
with insulin-IGF-AKT signaling. By the comparative analysis of pro-
tein and phospho-protein abundance of pathway-specific signaling
molecules in GPM versus all other subtypes, we found that crucial
components of the insulin-IGF-AKT pathway were activated in GPM
tumors by elevation of protein abundance and/or phosphorylation, and
co-segregated with PKCS abundance and activation (Extended Data
Fig. 6a). AKT1/2 and STAT3, central nodes in insulin-IGF-PKC& signal-
ing, wereactivated in GPM GBM. Additionally, activation of the mTOR
kinase (RAPTOR-ser-863) and substrates (p70S6K and 4E-BP-ser-37/
thr-46 phosphorylation) was consistent with the relevance of
this pathway for the metabolic reprogramming of GPM tumors
(Extended Data Fig. 6a). Stimulation of GPM PDOs by IGF1/2 and
insulininduced phosphorylation of PKC6 on tyr-311, a phosphosite
crucial for its activity*’, concurrently with AKT-thr-308 and ser-473
phosphorylation (Extended Data Fig. 6b,c). To test the essentiality of
PKC& for fitness and the plurimetabolic state of GPM cells, we treated
GPM PDOs with BJE6-106 (ref. *'), a third-generation inhibitor of
PKCG6 and found that most of the tested models exhibited marked
sensitivity to PKCS inhibition (Fig. 6b). BJE6-106 also caused dose-
dependentinhibition of colony formation (Fig. 6¢) and time-dependent
decrease of AKT-ser-473 and STAT3-tyr-705 phosphorylation (Fig. 6d).
Genetic knockdown of the PRKCD gene (Fig. 6e) corroborated the
requirement of PKC& for growth and viability of GPM PDOs (Fig. 6f-h)
as well as glucose uptake and lipid accumulation (Fig. 6i,j).

The catalytic subunit of DNA-dependent protein kinase
(DNA-PKcs) was among the most active MK in the PPR subtype of GBM
(Fig. 5¢,d). DNA-PKcs is one of the three members of PIKKs with prin-
cipalrolesinthe activation of DDR. DNA-PKcs is activated by multiple
types of genotoxicstress, including DDSB and RS***, Given the specific
activationof DDRand RS in PPR GBM (Figs. 1b, 3g and 4), we postulated
that active DNA-PKcs may counter the increased rates of DNA replica-
tionand DDRin PPR cells. Consequently, we asked whether inhibition
of DNA-PKcs with M3814 (nedisertib), a DNA-PKcs inhibitor currently
in clinical studies**, promotes vulnerability of PPR GBM when used
in combination with ionizing radiation (IR), the key element in
the standard of care for patients with GBM. Treatment of PPR GBM
PDOs with anedisertib-IR combination markedly reduced tumor cell

viability compared to eachindividual treatment, with aradiation dose
enhancement factor (DEF) > 2 for six PPRPDOs. Conversely, nedisertib—
IR combination wasineffective in GPM PDOs (Fig. 6k and Extended Data
Fig. 6d). We confirmed these results using the clonogenic assay as a
quantitative method of radiosensitivity (Extended Data Fig. 6e). Expo-
sure of PPRPDOs to IR rapidly induced phosphorylation of DNA-PKcs
ser-2056, the key autophosphorylation site marking kinase activa-
tion®. As expected, nedisertib inhibited ser-2056 phosphorylation in
irradiated cells (Fig. 61). Combinatorial treatment caused persistent
DNA damage as shown by sustained phosphorylation of ser-343 of
NBSI1 and ser-824 of KAP1, indicators of active DDSB, as opposed
to rapid de-phosphorylation in PDOs exposed to IR alone (Fig. 61).
Consistently, the number of y-H2AX foci, which regressed to basal
levels in PPR cells treated with irradiation alone, remained elevated
throughout the course of the experimentin the presence of DNA-PKcs
inhibition (Fig. 6m).

Functionally conserved pediatric and adult
cancer subtypes share MKs

Inan effort to ascertain whether the key biological functions discrim-
inating the GBM subtypes coalesce into grouping patterns sharing
the same kinase-driven dependencies, we first determined whether
afunctional classification could be obtained in PG, BRCA and LSCC
for which genomics, proteomics and phospho-proteomics datasets
are available***,

For PG, weintegrated protein and gene expression dataof 103 sam-
ples classified as high-grade (PG-HGG) or low-grade (PG-LGG) gliomas
using SNF (Supplementary Tables 1d and 6a). We identified four subtypes
of PG, recapitulating the functional classifier of GBM for proteomic,
phospho-proteomic and gene expression data (GPM, MTC, PPR and
NEU; Fig. 7aand Supplementary Table 6b-g). PG-HGG mostly clustered
withinthe PPR subtype, whereas PG-LGG was distributed across the four
subgroups (Fig. 7a,b). When PG-HGG and PG-LGG were analyzed indepen-
dently for differential protein abundance, high- and low-grade tumors
clusteredinto three and four groups, respectively, withthe MTC subtype
excluded from PG-HGG (Extended Data Fig. 7a,b and Supplementary
Table 6h-k). BRAF KIAA1549-BRAF fusions and BRAF-V60OF mutation are
commoninPG-LGG*. Glioma harboring BRAF-V600OE were mostly classi-
fied as MTC, whereas PG-LGG harboring KIAA1549-BRAF fusion or BRAF
wild-type were enriched with GPM and NEU tumors, respectively (Fig.
7a,c).Kaplan-Meier and log-rank test demonstrated significantly worse
survival for the PPR subtype, afinding compatible with the predominant
contribution of high-grade tumorsto this group (Extended Data Fig. 7c).

We also classified 118 BRCA samples into four subtypes having
coherent gene expression, protein and phospho-protein abundance

Fig. 7| Functional activities of GBM subgroups classify different cancer types
and inform survival and master kinases. a, Heat map showing the 150 highest
scoring proteins (top) and phosphosites (bottom) of four functional subtypes of
CPTAC-PG; rows show proteins/phosphosites and columns show tumors (n =104
PG samples; two-sided MWW test). Left and top tracks indicate the functional
subtypes; middle track indicates tumor grade; and bottom track indicates

BRAF status. Unsupervised clustering of protein/phosphosite signatures and
pathways significantly enriched are reported on the left (P < 0.05; Fisher’s exact
test). b, Association of tumor grade with functional PG subtypes. Bars indicate
standardized residuals (chi-squared test). The number (n) of PG samples is as
ina. ¢, Association of BRAF status with functional subtypes of PG-LGG (n = 82
PG-LGG samples). Bars indicate standardized residuals (chi-squared test). d,
Heat map showing the 150 highest scoring proteins (top) and phosphosites
(bottom) of functional subtypes in CPTAC-BRCA (two-sided MWW test). Rows
are proteins/phosphosites and columns are tumors (n = 118 BRCA samples). Left
and top tracks indicate functional subtypes; middle track indicates NMF multi-
omics classification of CPTAC-BRCA (I, inclusive); and bottom track indicates
tumor grade. Unsupervised clustering of protein/phosphosites signatures and
pathways significantly enriched are reported on the left (P < 0.05; Fisher’s exact
test). e, Association of NMF-based BRCA with functional subtypes. Circles are

color coded and their size reflects the standardized residuals (chi-squared test).
Orange-to-blue scale indicates positive to negative enrichment. The number (n)
of BRCA samplesisasind. f, Heat map showing the 150 highest scoring proteins
(top) and phosphosites (bottom) of functional subtypes in CPTAC-LSCC (two-
sided MWW test). Rows are proteins/phosphosites and columns are tumors
(n=106 LSCC samples). Left and top tracks indicate functional subtypes; middle
track indicates the NMF multi-omics classification of CPTAC-LSCC; bottom
track indicates tumor grade. Unsupervised clustering of protein/phosphosites
signature and pathways significantly enriched are reported on the left (P < 0.05;
Fisher’s exact test). g, Association of NMF-based LSCC with functional subtypes.
Circles are color coded and their size reflects the standardized residuals (chi-
squared test). Orange-to-blue scale indicates positive to negative enrichment.
The number (n) of LSCC samplesisasinf. h, Grid plot showing top-scoring

MKs common to each functional GBM, PG, BRCA and LSCC subtype (GBM,
n=_85samples; PG, n =104 samples; BRCA, n =118 samples; LSCC,n =106
samples). Dots are colored according to kinase activity and their size reflect

the significance of the differential activity in each group (effect size > 0.3 and
P<0.01; two-sided MWW test). All asterisks in e,g indicate standardized residuals
higherthan1.5.
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signatures. The three major groups represented 95% of the samples
(GPM, PPRand MTC), whereas the NEU group included only five tumors
(Fig. 7d and Supplementary Tables 1e and 7a-g). We found a striking
association of the HER2-1 (I, inclusive as defined by integrative CPTAC

analysis) subgroup with the GPM subtype, Basal-lwith PPR, LumA-Iwith
MTC and LumB-I with NEU (Fig. 7e). Enrichment of HER2-1 in the GPM
subtype is consistent with hyperactivation of mTOR and a metabolic
shift from aerobic respiration to glycolysis in this BRCA subtype™.
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The stability of the functional classification of BRCA was verified using
TCGA and METABRIC gene expression data, thus authenticating the bio-
logical activities as general features for BRCA categorization (Extended
DataFig. 8a,b and Supplementary Tables 1f,g and 7h-k). The positive
association between PPR and Basal-Isubtype was further supported by
thestrong enrichment of DNA replication and proliferation-associated
pathwaysin the Basal-Isubtype (Fig.7d). Consistent with the prolonged
survival of LumA-I, the MTC-BRCA subtype had a significantly better
prognosis (Extended Data Fig. 8c).

Finally, we used the functional classifier to segregate 106 LSCC
tumors and tested the association with the five known LSCC-specific
molecular NMF-based subtypes described by CPTAC (Fig. 7f,g and
Supplementary Tables 1h and 7I-r). LSCC tumors were classified
into two major subtypes (GPM and PPR) and a much smaller MTC
subgroup. In this limited dataset we did not identify NEU tumors.
We found a positive correlation of the MTC subtype with the Basal-I
subgroup. EMT and inflamed secretory LSCC subtypes as two
independent groups were functionally unified by the activation of
immune, epithelial-to-mesenchymal transition (EMT) and angio-
genesis functions of the GPM subtype. The PPR subtype included
proliferative-primitive and classical subtypes, both sustained by
proliferative-related pathways (Fig. 7f,g)***.. The robustness of the
functional subtyping was validated in the TCGA-LUSC (lung squamous
carcinoma) dataset (Extended Data Fig. 8d and Supplementary Tables
liand 7s,t). In this larger cohort, 12 tumors exhibited activation of
synaptic functions, a hallmark of the NEU subtype. MTC-LUSC tumors
exhibited more favorable clinical outcomes, suggesting that alsoin this
tumor type OXPHOS activation produces aless aggressive biology and/
orincreasessensitivity to therapy (Extended Data Fig. 8e)°. Dependency
of BRCA and LUSC MTC cells on mitochondrial activity was supported
by the association between MTC activity of BRCA and LUSC celllinesin
the DepMap dataset™ and sensitivity to menadione, a cytotoxin that
specifically targets mitochondria (Extended Data Fig. 8f).

Next, we applied SPHINKS to generate tumor-specific kinase-
phosphosite interactomes for PG, BRCA and LSCC, including 669,
1,399 and 1,985 kinase-phosphosite relationships from 76,198 and 103
kinases and 210, 1,899 and 699 phosphosites for PG, BRCA and LSCC,
respectively and identified subtype-specific MKs (Supplementary
Tables 8-10 and Extended Data Fig. 9) that we validated by global
protein abundance and mRNA expression (Supplementary Tables
8-10). Most subtype-specific MKs were activated only in one tumor
type (Extended Data Fig. 9). Among top-ranking tumor-specific MKs,
FYN was MK of the GPM subtype in BRCA. FYNis amember of the SRC
family of kinases driver of EMT in breast cancer™**, VRK1was among the
top-ranking PPRMKsin BRCA. VRK1is a chromatin-associated kinase
that regulates cell cycle events and DDR previously proposed as thera-
peutic target in combination with DNA damage inducing therapy*>*°.
Nine protein kinases emerged as top-ranking subtype-specific MKs

common to GBM, PG, BRCA and LSCC. Among them, PKC8 scored as
pan-GPM and DNA-PKcs as pan-PPR MKs (Fig. 7h).

Development of a probabilistic functional
classifier of GBM

We designed an algorithm for the probabilistic classification of indi-
vidual tumors into GBM functional subtypes. When compared to RNA
derived fromfresh frozensamples, FFPE-extracted RNA is characterized
by lower quality, typically affecting different mRNA speciesto variable
extent”. Thus, we tested two classifiers, one informed by RNA-seq data
from frozen tumor samples (‘frozen model’) and the other by RNA-seq
datafrom FFPE tumors (‘FFPE model’). For the frozen model, we trained
the classifier using the multinomial regression model with lasso penalty
on the TCGA IDH wild-type GBM dataset profiled by Agilent expres-
sion array, which we had classified in previous work (Extended Data
Fig.10a and Supplementary Table 11a)°. As a feature set, we selected
the 50 highest ranking genes for each functional subtype (a total of
200 gene features)’. To extract a reduced number of features that
maximize the distinctiveness of the phenotypes, we applied a
cross-validation approach and selected the model exhibiting the lowest
misclassification error (17.19% cross-validation error and 6.32% error on
thetrainingset), obtaining 103 gene features with positive or negative
coefficients (Supplementary Table 11b). We classified atumor sample
when the fitted probability was the highest and the simplicity score
was above a predefined threshold (Methods). We tested the predic-
tion ability of the ‘frozen classifier’ using 127 GBM from TCGA and 85
GBM from CPTAC profiled by RNA-seq. We classified 80% and 79% of
the TCGA and CPTAC-GBM, respectively. The diagnostic ability of the
classifier was confirmed by the AUROC of each subtype above 0.85in
each validation dataset (Fig. 8a). We determined the accuracy of the
assignment of each tumor to the correct subtype’®. Misclassification
error was < 18%, sensitivity approached 85%, specificity was close to
100% and precision > 80%, indicating a robust performance of the
classifier (Fig. 8b and Supplementary Table11c). The frozen model was
validated on an independent cohort of 45 frozen samples for which
matched FFPE samples were available (see below), obtaining similar
results (Extended Data Fig.10b).

For the FFPE model, to account for the lower quality of
FFPE-extracted RNA, we sequenced the transcriptome of 45 frozen and
FFPE matched samples and selected 4,668 genes that exhibited consist-
ent expression profiles in both sample types (genes supposedly unaf-
fected by FFPE treatment, Spearman correlation, p > 22; Supplementary
Table 12). With the classification of frozen samples as the gold standard,
we generated subtype-specific signatures using expression profiles
ofthe corresponding FFPE samples. We then trained the multinomial
regression model using FFPE-specific signature genes from TCGA-GBM
Agilent cohort (66 gene features, 19.76% cross-validation error and
11.07% error on the training set). The performance of the classifier

Fig. 8 | Probabilistic classifier for the identification of functional tumor
subtypes of IDH wild-type GBM and schematic multi-omics and clinical
modules of functional subtypes of GBM. a, GBM subtype-specific ROC

curves for the multinomial regression model using RNA-seq data from frozen
samples. Validation includes RNA-seq data from TCGA (left) or CPTAC (right)
GBM samples. The number (n) of GBM samples for each datasetisindicated. b,
Comparison bar plot of sensitivity, specificity and precision in each GBM subtype
of the multinomial regression model asin a. Dashed lines and corresponding
valuesindicate the average of each performance measure (blue, sensitivity;
orange, specificity; purple, precision) in each GBM subgroup. The number (n) of
GBM samples for each dataset isindicated. c, GBM subtype-specific ROC curves
for the multinomial regression model using RNA-seq data from FFPE samples.
Validationincludes RNA-seq obtained from FFPE tumor samples. The number
of GBM samples for each dataset (n) is indicated. d, Comparison bar plot of
sensitivity, specificity and precision in each GBM subtype of the multinomial
regression model as in c. Dashed lines and corresponding values indicate the
average of each performance measure (blue, sensitivity; orange, specificity;

purple, precision) ineach GBM subgroup. The number (n) of GBM samples

for each dataset isindicated. e, Functional activities, genetic alterations, MKs,
clinical characteristics, radiomic features and therapeutic vulnerability compose
modules that distinguish each functional subtype. GBM driver genes in each
module recapitulate the functional hallmark of each subtype (for example, CDK6
amplification/CDKN2A deletion for the PPR proliferation/stemness features;
MET amplification/NF1deletion for glycolysis/RAS pathway activationin GPM
GBM; FGFR3-TACC3 fusion for mitochondrial activation in MTC tumors). GPM s
the only subtype that significantly associates with a specific sex (male) and age
group (45-65 years). GPM and MTC subtypes exhibit positive correlation with
frontal/parietal and temporal tumor location, respectively. GPM, PPR and NEU
arelinked with radiologic features that are compatible with the biological traits
ofthese subgroups (CET, NET and DWM invasion, respectively). In agreement
with the enhanced OXPHOS and MK activity of PKC8 and DNA-PKcs in MTC, GPM
and PPR, respectively, these subtypes are distinctly sensitive to mitochondrial,
PKC6 and DNA-PKcs inhibitors. CET, contrast-enhancing tumor; NET, non-
contrast-enhancing tumor; DWM, deep white matter).
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was assessed on an independent cohort of 133 FFPE samples profiled
by RNA-seq, classifying 73% of the samples. To assess the stability
and accuracy of the FFPE model, we unbiasedly assigned FFPE samples
to a subtype by unsupervised consensus clustering of 178 samples
(133 FFPE plus 45 FFPE with matched frozen specimens; Extended Data
Fig.10c). Using the classification of the 45 frozen samples as ‘anchors’,
we assigned each cluster to a functional GBM subtype and compared
theresulting unbiased label assignment with the subtype classification
from the FFPE model for the 133 unmatched FFPE samples only. The

classifier performance indexes were similar to those calculated for
the frozen model (misclassification error of 15%; AUROCS, sensitivity,
specificity and precision > 0.84; Fig. 8c,d and Supplementary Table
11b,c). The FFPE model was also validated on 45 FFPE samples using
the classification of the matched frozen specimens as ground truth,
obtaining comparable results (Extended Data Fig.10d).

We have implemented a Shiny app of the frozen and FFPE classi-
fication tools for general research use at https://lucgar88.shinyapps.
io/GBMclassifier.
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Discussion

Here, we sought to establish a link between multi-omic features
that regulate the biology of GBM subtypes and protein kinases that
could directly enable subtype-specific phenotypes. We built and
applied SPHINKS-MK, an algorithm that integrates proteomics and
phospho-proteomics datasets into a single network for the unbiased
extraction of subtype-specific MKs. By informing pharmacologic and
genetic experiments in subtype-matched GBM organoids, SPHINKS-MK
delivered PKCS and DNA-PKcs as experimentally validated MKs for the
aggressive GPM and PPR subtypes of GBM. The four subtypes and the
underlying phenotypes were also recovered across different tumor
types, highlighting the fundamental biological traits that are extracted
by the functional classification. Inthe multi-cancer context, PKC6 and
DNA-PKcs have emerged as broadly actionable MKs of GPM and PPR
subtypes. Inspired by the subtype-specific therapeutic opportunities,
we present a probabilistic classifier that enables rapid translation of
precision therapeutics for subgroups of patients with GBM.

The four GBM subtypes initially inferred from a pathway-based
scRNA-seq analysis are supported by orthogonal analyses from pro-
teomics, phospho-proteomics, metabolomics, lipidomics and acety-
lomics platforms. The divergent metabolism of the GPM and MTC
subtypeswasindependently captured by the analysis of acetylomics, a
post-translational modification previously associated with theinactiva-
tion of metabolic proteins®. Acetylation also emerged as major determi-
nant factorinstructing the identity of the proliferation-, stemness- and
DDR-related biology thatisactivated in PPR cells. Stratification of PPR
GBMbased on acetylation of nuclear proteins uncovered a hyperacety-
lated PPR group of tumors with outlier activation of these activities.
This finding underscores the crucial role of acetylation of nuclear
proteins for activation of transcription and chromatin-remodeling
factors and enzymes involved in the DDR¥. The significance of the
pathway-based classification of GBM is further emphasized by the
association of the individual subtypes with clinical variables such as age
and tumor location within the central nervous system and frequency of
recurrent alterations of driver genes. The interrogation of MRI features
associated with each subtype showed that the metabolic subtypes, and
particularly the GPM subgroup, are characterized by higher contrast
enhancement, potentially reflecting more prominent perivascular
invasion of tumor cells with consequent disruption of the endothelial
tightjunctions of the blood-brainbarrier. Conversely, tumors classified
alongthe neurodevelopmental axis are associated with non-enhancing
features. Among them, the unique correlation between NEU tumors
and deep white matter invasionis consistent with the proposed ability
of neuronally differentiated GBM cells to engage healthy brain cells at
the tumor periphery for neomorphic synaptic connections that guide
invasion through white matter tracks® (Fig. 8e).

Although prediction of active protein kinases in cancer has been
sofar of limited impact for cancer therapy, there is tremendous appeal
of kinases as both drivers and drug targets. SPHINKS-MK interro-
gated the full scope of tumor-specific kinomes and phosphorylomes
reconstructed into an integrated functional network and identifies
high-activity kinases specific for tumor subtypes. The benchmarking
of SPHINKS showed that the algorithm is stable and exhibits a predic-
tion power higher than other inference methods. PKC& emerged as the
top-scoring kinase of the GPM subtype. Genetic and pharmacologic
inhibition of PKC defined its role in oncometabolic processes at the
intersection of insulin, IGF and lipid metabolism and validated PKCS
as crucial therapeutic target of the GPM subtype of GBM. DNA-PKcs
was experimentally validated as essential MK of the PPR subtype. The
synergistic and lethal effect of inhibition of DNA-PKcs and IR in PPR
butnot GPM cells provided the mechanistic interpretation of therapy
resistancein this GBM subtype. As DNA-PKcs inhibitors have beenintro-
duced into clinical trials***°, our findings indicate that preselection of
patients with PPRtumorsis likely to enhance therapeutic success. The
GBM classifier was validated as a stratifying method for pediatric and

adult tumors, revealing consistent patterns across different tumor
types (forexample, favorable survival associated withMTC tumors) and
context-dependent features (BRAF mutations and fusions associated
with divergent metabolic subtypes in PG). The identification of PKCS
and DNA-PKcs as subtype-specific MKs from SPHINKS-inferred PG,
BRCA and LSCC kinase-phosphosite interactomes delivers targeted
therapeutic directions for GPM and PPR subtypes across multiple
tumor types.

The probabilistic classification tool will facilitate the yet unfulfilled
stratification of patients with GBM for the accrual to clinical trials using
FFPE specimens and advance precision therapies targeting individual
subtypes of this aggressive tumor.

Methods

Ethics statement

PDOs have been described previously’. PDOs were obtained using
excess material collected for clinical purposes from specimens
de-identified at the source. This work was designated Institutional
Review Board exempt under paragraph 4 and covered under Insti-
tutional Review Board and Onconeurotek tumor bank certification
(NF S96 900) and authorization from an ethics committee (CPP lle
de France VI, ref. A39Il) and the French Ministry for Research (AC
2013-1962).

Patient datasets and profiling platforms
For each cancer type®**¢~*%61"63 ‘multi-omics data availability, tumors
analyzed, clinical and survival data arelisted in Supplementary Table 1.

Data processing

Gene expression. Data from CPTAC were downloaded as fpkm.
Non-protein-coding and low-expressed genes were removed. Data were
quantile and log, normalized. Data from METABRIC (Illumina HT-12v.3)
were downloaded as median normalized. RNA-seq datafrom TCGA were
downloaded using TCGAbiolinks. Upper quantile within-normalization
with GC content correction and between-normalization were applied.

DNA methylation. Data from CPTAC (EPIC array) were downloaded as
B-values, pre-processed with functional normalization with minfi®*,
quality checked, with common single-nucleotide polymorphism filter-
ing and probe annotation. Values missing in <20% across all sample
wereimputed using the average of the corresponding probe. Data from
TCGA were pre-processed with functional normalization and probes
targeting sex chromosomes or not associated with gene promoters®
were removed. Processed -values and classification of the MNP cohort
were downloaded from the Gene Expression Omnibus (GSE90496,
MNP reference set) and supplementary tables published previously’.

Copy number. Thresholded CNVs were assessed using GISTIC.
Protein-codinggenes were retained. fCNVs were obtained as described’.

Global proteome and phospho-proteome. Values missing in <50%
across all samples were imputed with DreamAI°® and were quantile
and log, normalized.

Lipidome and metabolome. Datawere downloaded aslog,-tranformed
and median normalized. Values missing in fewer than five or ten
tumors for lipids or metabolites, respectively, were imputed using
average abundance of the corresponding molecule. Data were quantile
normalized.

Acetylome. Datawere imputed with DreamAl and log,-transformed.
Functional classification of CPTAC IDH wild-type GBM

We used Agilent expression profiles of 304 TCGA-GBM IDH wild-type
previously classified’ as training set of a k-nearest neighbors (k-NN)
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classifier (k= 3) to classify CPTAC tumors. To account for differencesin
gene expressionbetween TCGA and CPTAC, we generated ranked lists
of genes differentially expressed in each CPTAC subtype compared to
the others using the MWW test and defined as subtype-specific sig-
natures the 50 highest scoring genes. For each tumor, we derived the
intensity of each subtype as the average expression of genes in each
subtype-specific signature. A simplicity score was obtained as the
difference between the two highest subtypes intensities, and tumors
with simplicity score > 0.6 were retained (17 GPM, 6 MTC, 16 NEU and
13 PPR core samples).

To assign membership to 40 unclassified tumors, we integrated
fCNV and gene expression using SNF for 89 tumors. The features set
of the classifier (subtype-specific fCNV gains/losses from TCGA and
subtype-specific gene signatures from CPTAC core samples) were
aggregated by SNFtool to generate afused tumor network and atumor
similarity matrix (K=20, a = 0.5 and t =20). Spectral clustering was
performed on the similarity matrix. The distance matrix (1 - similarity)
was used to establish membership of 38 unclassified GBM according
to the closeness to core tumors with k-NN (k = 3). Five tumors with
conditional probability < 0.6 remained unclassified.

Cross-classification analysis

We classified TCGA- and CPTAC-GBM samples according to MNP DNA
methylation classification’ using MNP-GBM and assignment as training
set of k-NN. The top 10,000 variable probes shared by MNP and TCGA
or CPTAC samples were selected. We extracted the top 30 principal
components by principal-component analysis and assigned an MNP
classification to TCGA or CPTAC samples using k-NN (k =9)°. While
an official MNP classifier exists online (https://www.molecularneuro-
pathology.org/mnp), we were not able to access it as the site did not
approve our registration at the time of writing.

To assess the relationship between pathway-based classification
and transcriptional subtyping in TCGA-and CPTAC-GBM, we analyzed
304 TCGA-GBM previously classified®. TCGA subtype assignments were
obtained as described®. Subtyping of CPTAC tumors was described
previously®.

Multi-omics characterization of GBM functional subtypes

We generated ranked lists of genes, proteins, lipids and metabolites
differentially expressed/abundant in each subtype compared to the
othersby MWW test. Final subtype-specific signaturesincluding the 150
top-scoring genes or proteins were used to calculate subtype enrich-
ment in each tumor using single-sample MWW-GST (ssMWW-GST).
Pathway enrichment analysis was performed as described elsewhere’,
using non-redundant pathways fromaset cover algorithm®. The most
active pathways in each subtype were obtained using gene or protein
ranked lists by two-sided MWW-GST (logit(NES) > 0.58, FDR < 0.005).

Enrichment of glycolytic and mitochondrial enzymes (protein
sets) and metabolic intermediates (metabolite sets) in MTC and GPM
were generated by MWW-GST (glycolytic enzymes: logit(NES) =1.27,
P=0.017; mitochondrial enzymes: logit(NES) = -1.19, P=5.93 x1073;
glycolyticintermediates: logit(NES) =1.76, P= 0.0007; mitochondrial
intermediates: logit(NES) =-1.65, P= 0.018). The network of metabo-
litesand metabolic proteins was constructed using Ingenuity Pathway
Analysis (IPA)®,

Lipid signatures included molecules with an MWW score > 0.5.
Lipids were categorized and used for enrichment of lipid subclasses,
cellular components and lipid functions in each subtype using
Fisher’s exact test (FET; log(OR) > 0, P< 0.05) and the lipid ontology
database LION™.

Proteogenomic integrative analysis of GBM

SfCNVP were obtained by integrating fCNVs, gene expression, and
proteinabundance of genes that exhibited fCNV change in two or more
tumors according to the following criteria: (1) higher/lower protein

abundance in tumors with alteration compared to wild-type (|log,
(FO)| > 0.15, P<0.10; two-sided MWW test); (2) higher/lower protein
abundance in one subtype compared to the others (|log, (FC)| > 0.15,
P<0.10; two-sided MWW test); (3) higher subtype-specific transcrip-
tomic activity of tumors harboring the fCNV compared to wild-type
(effect size >0.15, P < 0.10; two-sided MWW test). Subtype-associated
SCNVP™ gains/losses were examined for their contribution to activa-
tion/deactivation of biological pathways using FET (P < 0.05).

Univariate logistic regression analysis. Tumors were segregated
according to fCNV status (altered, wild-type); subtype activity was a
continuous predictor. Additionally, tumors were segregated according
tosubtypes and protein abundance was used as a continuous predictor.
The analysis of FGFR3-TACC3 fusion included 178 GBM FFPE RNA-seq
samples (fusion present, 12 tumors or absent).

Analysis of acetylation of metabolic and nuclear proteins

We used 2,212 genes from the Reactome Metabolism gene set to define
proteins involved in metabolism. Unsupervised clustering was per-
formed on proteins differentially expressed between GPM and MTC
(P<0.05,log,(FC) > 0.3; two-sided MWW test).

Normalized acetyl site abundance (acetylation not explained by
the corresponding protein abundance) was calculated as residuals
(&4e) from the linear regression Acg. = o + B1 X Prgie + Eicer Where Acge
is the abundance of a given acetyl site and Pr;. is the corresponding
proteinabundance.

We applied BlackSheep’s differential extreme value analysis
moduleto define outlier acetylated metabolic proteins (P < 0.05) and
enrichment of biological pathways using FET (P < 0.0005).

Nuclear proteins were selected by the COMPARTMENTS database®
(nucleus score of 5). Acetyl sites with the highest variability across
the dataset by interquartile range (n =320) were used for unsuper-
vised clustering. Differentially abundant acetyl sites in high- versus
low-acetylation PPR subgroups were defined by MWW test (P < 0.001,
log,(FC) > 0.3). Acetyl sites whose abundance was not explained by pro-
tein abundance were selected by comparing global proteinand acetyl
siteabundance between high- and low-acetylation PPR subgroups using
MWW test (log,(FC) > 0.5, P< 0.05). Pathway overrepresentation testing
was performed using gProfiler tool (FDR < 0.05).

Generation of replication stress/DNA damage response
phospho-proteomicsignature

We manually curated data from five studies reporting mass spectrom-
etry phospho-proteomics’ 7 to identify sites whose phosphorylation
wasincreased afterinduction of DNA RS by ATR inhibition or hydroxyu-
reatreatment or DDR by IR exposure. Differential abundance of DDR/
RS-induced-phosphosites was performed comparing PPR subgroup
versus the others (P < 0.05; MWW test). DDR/RS phospho-signatures
were used to calculate DDR/RS scores in each tumor (ssMWW-GST).
Enrichment of GPM, MTC, NEU and PPR tumors in highest/lowest
distribution of the DDR/RS score (|logit(NES)| > 0) was tested using
FET. Difference between transcriptome- and global proteome-derived
subtypeactivity was calculated and the association with DDR/RS score
tested using Spearman’s correlation.

Functional classification, analysis and validation of PG, BRCA
and LSCC

We used RNA-seq expression profiles of 105 CPTAC-PG, 119 CPTAC-BRCA
and 108 CPTAC-LSCC to compute the enrichment of the functional
subtype-specific signatures from TCGA-GBM in each tumor and pro-
tein abundance data to compute the enrichment of the 50 highest
scoring proteins in the ranked list of each CPTAC-GBM subtype in
each tumor using ssSMWW-GST. Tumors were classified according
to the subtype with the concordant highest NES (logit(NES) > 0.3,
FDR < 0.05) in both transcriptomic and proteomic data and were
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defined as ‘anchor tumors’ (51, 54, 64 tumors for PG, BRCA and LSCC,
respectively). We used anchor tumors to generate ranked lists of genes
and proteins (MWW test). Tumor type-specific/subtype-specific gene
and proteinsignaturesincluded thetop 50 scoring genes and proteins.
Unclassified tumors (54 PG, 96 BRCA and 44 LSCC) were classified by
integrating gene and protein signatures from the previous step using
SNF. Final classifications include 48 GPM, 7MTC, 27 NEU, 22 PPRand 1
unclassified for PG; 50 GPM, 23 MTC, 5NEU and 40 PPR for BRCA; and
51 GPM, 9 MTC, O NEU, 46 PPR and 2 unclassified for LSCC samples.
We used the expression profiles of 1,095 tumors from TCGA-BRCA,
1,904 tumors from METABRIC-BRCA and 502 tumors from TCGA-LUSC
to compute the enrichment of functional subtype-specific signa-
tures from TCGA-GBM in each tumor (ssMWW-GST), classifying them
according to the subtype with the highest NES (logit(NES) > 0.58,
FDR < 0.05).

Normalized phosphosite abundance (phosphorylation not
explained by the corresponding protein abundance) was calculated
as for normalized acetyl site abundance, using the abundance of the
phosphosite and corresponding protein.

Association between functional classification and tumor grade,
BRAF status (PG) or CPTAC NMF-derived subtypes (BRCA and LSCC) was
assessed by chi-squared test. Survival analysis among functional sub-
typesin TCGA-BRCA, TCGA-LUSC and METABRIC-BRCA was assessed
by log-rank test.

DepMap data analysis

Transcriptomic profiles of BRCA and LUSC cell lines from DepMap for
which both RNA-seq expression and menadione survival ratio from
PRISM Repurposing Primary Screen were available (BRCA, n =26;
LUSC, n=71)"were used to derive subtype activities and classification
accordingto the highest NES (ssMWW-GST). Difference in menadione
survival ratio between MTC cell lines versus the others was assessed
using two-sided t-test, unequal variance.

SPHINKS algorithm

We implemented SPHINKS, a machine-learning method that
generalizes unseen data from observed data using semi-supervised
approaches applied in gene regulatory networks reconstruction’.
SPHINKS creates an unbiased context-specific kinome network, lev-
eraging kinases abundance from proteomics, substrate abundance
from phospho-proteomics and experimentally validated kinase-sub-
strate interactions available from PhosphoSitePlus®. The classifier,
as a binary model, was trained to recognize relationships between
abundance profiles of kinase-phosphosite pairs. A positive training
set was defined as the set of known substrates of a specific kinase.
This represented the typical setting where a learner has access only
to positive and unlabeled data (positive unlabeled)”, with high imbal-
ance between positive and unlabeled examples. We combined easy-
ensamble’ and bootstrap aggregating machine-learning ensemble
meta-algorithm (bagging)” to integrate several SVM classifiers trained
on different instances of the negative set (Extended Data Fig. 4a).
An SVM classifier was trained on the validated interactions (positive
training set) and asubset of randomly selected unknowninteractions
(negative set). Each training example represents an interaction and a
training matrix is formed juxtaposing kinase’s protein and substrate’s
phospho-protein abundance on a set of corresponding cases, with
examples along the rows. Using the matrix of all possible kinase-sub-
strate pairs we obtained a score (between 0 and 1), representing the
probability for each phosphosite to be a kinase substrate according
to the classifier. As the randomly derived negative set may contain
potential substrates, to improve the accuracy of the prediction, we
applied thebagging, repeating the training/prediction steps 100 times
usingrandom sampling of the negative set (keeping the positive fixed).
SPHINKS scores were derived as the average SVM score from all itera-
tions. To create a set of predicted substrates (SOPS) for each kinase

(alist of predicted kinase-substrate interactions), we selected inter-
actions whose SPHINKS score was above the value for which at least
50% of the known interactions were retained and the Spearman’s
correlation between kinase and phospho-substrate was positive.

Identification of subtype-specific master kinases
We applied the method described previously' with modifications. The
activity of an MK was defined as the quantification of the activation
of its substrate program in each sample X; (i=1,...,85). We binned all
substrates into 25 bins according to their average abundance across
all samples. For each MK, we defined {s,,...,5,} the substrates in the
SOPS of MK. We randomly extracted a set of n =100 control substrates
for each s, from the corresponding bin, {c,,...,c;o0i}. Thus, the control
substrate set has a distribution of abundance levels comparable to
that of SOPS, while being100-fold larger. The activity of the MK in the
sample X;was computed as:

; 100K i

Act (X;, MK) = Zf:‘,(w‘k L E’:IIOZZC’ X,
Zk:l wSk

Zj:l wC/

where wy and w; are the SPHINKS scores of the kth substrate or jth
control substrate of the MK, respectively; ¢ and tgare theabundances
of s, or ¢;in the ith sample, respectively. If Act (X;, MK) > 0, the MK
is activated in the ith sample, if Act (X;, MK) <0, the MK is inversely
activated and if Act (X;, MK) = 0, it is deactivated.

We selected MKs that showed a significant difference in activity
in one subtype compared to the others using MWW test (effect size >
0.3 and P<0.01). For GBM, subtype-specific MKs were mapped on a
kinome tree using KinMap’®.

Benchmarking of SPHINKS

Impact of missing values and imputation algorithm. To establish
how the SPHINKS prediction of kinase-phospho-substrate interac-
tions degrades as the level of imputation increases, we performed a
set of simulations in a controlled setting where we could have a gold
standard. From the CPTAC-GBM un-imputed phospho-proteomic
data, we selected sites with no missing values (n =7,302) as input for
SPHINKS and generated akinase-phosphositeinteractome tobe used
as a gold standard. To simulate missing values, we generated new
phospho-proteomic datasets by randomly replacing predefined ratios
of phosphosites with missing values (r=10%, 25% and 50%) and then
imputed using DreamAl. We applied SPHINKS to predict the networks
on the imputed matrices and compared them with the one recon-
structed from the un-imputed matrix. The AUC from the ROC curve
was computed as a measure of accuracy.

Validation of the predictions of kinase-phospho-substrate interac-
tion. To evaluate SPHINKS performance in the prediction of kinase-
substrate interactions, we performed a tenfold cross-validation
analysis by randomly dividing the validated interactions from
PhosphoSitePlusinto ten subsets for training and testing. The workflow
for eachfoldis as follows:

1. Wetrained the SVM using the training subsets (positive
training set) plus arandom selection of unknown interactions
(negative training set).

2. Astestset, we used the test subset and a randomly selection of
unknown interactions, completely independent from the nega-
tive training set and derived the scores using the SVM classifier
fromstep 1.

3. Wederived the SPHINKS scores by applying the bagging
approach as described before, repeating step 1 and 2100 times.

4. Wecompared the SPHINKS scores with the test set and derived
the AUC.
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Validation of the kinase activity estimate. To evaluate how much
different levels of interaction misclassifications affect the SPHINKS
kinase activity, we randomly perturbed the SPHINKS network,
as follows:

1. Fromthe predicted kinase-substrate interactome, we gen-
erated a set of perturbations of interactions by replacing a
predetermined percentage of phospho-substrates correspond-
ing to P(percentage) = bottom 5%,10%, 15%, 20% and 50% of the
SPHINKS scores with random phosphosites.

2. Foreach percentage, we randomly generated n =100 runs of
perturbed networks.

3. Foreach percentage and run, we derived the SPHINKS kinase
activity for 154 kinases in 85 CPTAC-GBM samples.

4. Foreach percentage and run, we derived the MK A-activity as
the difference (in percentage) between the kinase activity in-
ferred using the original network (Act(MK)“) and the perturbed
networks (Act(MK)"):

“ p
AMct (MK) = abS<A“ (MK)" — Act (MK) )

Act (MK)"

Average AAct (MK) for each kinase across all runs or for each run
across all kinases were shown at each ratio of perturbation.

Comparison of the kinase activity inferred by SPHINKS and other
methods. We considered two recently reported approaches, KSEA*
and KEA3 (ref.*?).

We used a dataset reporting the downstream changes in
phospho-protein abundance after perturbations of upstream kinase
by stimulators or inhibitors*?**, bringing together 24 studies encom-
passing 103 kinase-perturbation annotations (gold standard) for 30
kinases and 61,181 phosphosites. We employed a metric defined as
‘top-k-hit’ (P,;.(k)), which focuses on the top & kinase predictions, as
described**, with k=10. To compare the kinase activity estimate among
methods, for SPHINKS we considered only the validated interactions.

Additionally, we evaluated whether other approaches could iden-
tify the GBM subtype-specific kinases uncovered by SPHINKS. We
applied each method on the CPTAC-GBM dataset and for each sub-
type derived the ranking of 129 kinases included in all five methods:
(1) for SPHINKS, kinases were ranked according to the MWW score;
(2) for KSEA PhosphoSitePlus and KSEA PhosphoSitePlus + NetworKIN,
kinases were ranked based on the KSEA-derived zscore® for each sub-
type compared to the others; and (3) for KEA3, kinases were ranked
based on the MeanRank or TopRank* for each subtype (considering the
highest 300 differentially phosphorylated proteins). For each kinase,
we derived the A-rank as the difference in ranks between SPHINKS and
any other approach (A-rank < O, the rank of SPHINKS is lower, indicating
higher kinase activity; A-rank > O indicates the opposite).

Processing and library preparation of the in-house GBM IDH
wild-type cohort

The cohort is composed of 178 FFPE IDH wild-type GBM samples, 45
of which had matched frozen specimens. RNA was extracted using
the Maxwell Rapid Sample Concentrator Instrument (Promega) and
Maxwell RSC simplyRNA Tissue Kit (Promega, AS1340) for frozen
samples or Maxwell RSC RNA FFPE kit (Promega, AS1440) for FFPE
specimens. RNA extracted from both tissues was analyzed using the
same workflow. Complementary DNA libraries were prepared with
QuantSeq 3’ mRNA-Seq Library Prep kit FWD (Lexogen, 015). In brief,
libraries were prepared with oligo-dT priming, with no previous poly(A)
enrichment or ribosomal RNA depletion required. After first-strand
synthesis, second-strand synthesis was initiated by random priming
and Illlumina-specific linker sequences were introduced. The result-
ing double-stranded cDNA was purified with magnetic beads and the

library was then amplified, introducing the sequences required for
cluster generation. Illluminalibraries were multiplexed compatibly with
single-end sequencing and sequenced on the lllumina HiSeq platform
(100-bp single end). Sequencing data quality and pre-processing was
asdescribed”.

Development of the probabilistic classification tool for IDH
wild-type GBM

We used 506 tumors from the TCGA-GBM profiled by Agilent as training
set as these tumors were assigned to each functional subtypes based
on orthogonal validation across multiple platforms including fCNVs,
somatic mutations, DNA methylation and miRNA gene signatures®.
The standardized expression of all genes from the subtype-specific
signatures was used to train a multinomial regression model with
lasso penalty using glmnet (& =1, family = ‘multinomial’)”®. We applied
a tenfold cross-validation to select the best model with the lowest
cross-validationerror based on the misclassification error asloss meas-
ure.Asatestset (ground truth), we considered two GBM IDH wild-type
RNA-seq datasets:

a. TCGA-GBM cohort (n=127) classified according to the subtyp-
ing of the matched Agilent expression tumors (ground truth);
b. CPTAC-GBM cohort (n = 85) classified in functional subtypes
(ground truth) as described in this manuscript and orthogo-
nally validated by multi-omics analyses (global proteom-
ics, phospho-proteomics, lipidomics, metabolomics and
acetylomics).

We classified the test samples if the fitted probability of a par-
ticular subtype was the highest and the sample showed a simplicity
score above 0.35. The simplicity score was computed as the difference
between the highest fitted probability (dominant subtype) and the
mean of the other subtypes (non-dominant). We classified 80% of the
TCGA and 79% of the CPTAC cohorts.

For the FFPE model, we used a similar approach with some modi-
fications. We generated RNA-seq data from FFPE of 178 IDH wild-type
GBM, 45 of which were also independently sequenced from matched
frozen specimens (Supplementary Table 12). To identify genes whose
expressionin FFPE is consistent with the corresponding frozen speci-
mens, we calculated correlation of expression between the 45 matched
frozen and FFPE samples and retained only genes with Spearman’s
correlation > 0.22 (4,668 genes). Independently, we classified the
45 fresh frozen samples’ extracted RNA to each subtype on the
basis of the highest NES (ssMWW-GST) using the functional sub-
types signatures®. Using the classification of the frozen samples as a
‘gold standard’, we derived FFPE-specific subtype-specific signatures
on the FFPE expression matrix (50 highest genes from each ranked
list, MWW test). As described for the frozen model, we trained a
multinomial regression model on TCGA Agilent cohort using the
FFPE-specific gene signatures and applied cross-validation to select the
best model. The remaining 133 samples that lacked RNA-seq datafrom
frozenspecimens and had not beenused to define the FFPE-specific sig-
natures were classified if the fitted probability of a particular subtype
was the highest and the simplicity score was above 0.25. We classified
73% of these tumors.

We performed an independent analysis to obtain an unbiased
subtype assignment of the FFPE samples. FFPE-specific gene signatures
were used to inform consensus clustering on the Euclidean distance
matrix of all178 FFPE-derived RNA-seq (10,000 random samplings, 70%
of samples, Ward linkage, k = 4 clusters). We then labeled all samples by
assigning each individual cluster to each subtype using the classifica-
tion of the 45 matched frozen samples as ‘anchors’. We found 91% con-
cordanceinthe classification of the matched frozen and FFPE-derived
RNA-seq (41 out of 45). Finally, the unbiased label assignments of 133
unmatched FFPE samples were used to evaluate the prediction abili-
ties of the classifier.
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Association of GBM functional subtypes with clinical and
radiomic features

Clinical data for TCGA-GBM patients were downloaded using TCGA-
biolinks. Demographic characteristics were available for 503 GBM
classified according to pathway-based classification. Patients were
segregated in three age groups: 10-40,40-65 and > 65 years. Quanti-
fication of radiomic features were available for 88 preoperative mul-
timodal MRIs of TCGA-GBM from TCIA. For tumor location, patients
were segregated in high or low group if more/less than 50% of the tumor
was detected in the specific location, respectively. Univariate logistic
regression analysis was performed to assess the association between
demographic or radiomic features and functional subtypes/axis.
Radiologist-made assessments (proportion of necrosis and edema)
from TCGA (n =63 GBM with available pathway-based assignment)
were retrieved from elsewhere'. The proportion of DWM invasion
available through TCIA was obtained by the integration of data pub-
lished previously” and REMBRANDT (n = 54). Quantitative radiomic
features (n =175) from 88 GBM were selected from TCIA as described®.
We performed differential analysis of radiomic data in each subtype
compared to the others (FC > 0.3, P < 0.05; two-sided MWW test). Asso-
ciation between functional subtypes and radiomic subgroups from
unsupervised clustering was assessed by chi-squared test.

Cell culture
PDOs were cultured and tested as described’. Human cell lines were
HEK293T (ATCC CRL-11268). Cells were cultured in DMEM supple-
mented with 10% FBS (Sigma). Cells were transfected using Lipo-
fectamine 2000 (Invitrogen) or the calcium phosphate method.
Lentiviral infection was performed as described'. Short hairpin RNA
(shRNA) sequences (Sigma) for PKCS are:

PRKCD shRNA 1 (TRCN0O000010193): GGCCGCTTTGAACTC
TACCGT;

PRKCDshRNA2(TRCN0000379731): CATTACTTGAATGTAGTTATC;

Cell growth and clonogenic assay. Time course analysis of the
cellular growth of sShPRKCD or empty vector-transduced PDOs was
performed by plating 4,500 cells per well in 96-well plates. Viability
was determined using CellTiterGlo assay reagent (Promega, G7570)
and the GloMax-Multi+ Microplate Multimode Reader (Promega). For
clonogenicassay of PDOs treated with BJE6-106,1,500 cells were plated
in six-well plates. Cells were fixed in methanol and stained with crystal
violetafter2weeks. Colonies with more than 50 cellswerescored. Dataare
mean *s.d. (n=3biological replicates). Experiments were repeated twice.

Intracellular glucose uptake and triacylglyceride accumulation.
Measurement of the rate of glucose uptake and triacylglyceride
accumulation in shPRKCD and control infected GPM PDO cells were
performed as described elsewhere’.

Compound treatment. Cells were plated in 130 pl in opaque white
96-well plates. At 24 h later, cells were treated with serial dilutions
of compounds as indicated for 72 h. Viability was determined as
described’. For IR-drug combination treatment, PDOs were plated
in 96-well plates. Cells were treated 24 h later with serial dilutions of
M3814 and exposed 2 hlater toIR (2,4, 8 Gyat 0.7 Gy min™*) froma'¥Cs
source (GammacCell40irradiator, Teratronics). Mock-treated cells were
cultured in parallel. Viability was determined 96 h later as described
above. Clonogenic assays for the evaluation of IR-drug combination
were performed in three independent 96-well plates for treatment
group. The number of wells containing PDO spheres was scored and
normalized to untreated cells.

Immunofluorescence analysis of yH2AX foci
Cells were fixed with 4% paraformaldehyde, permeabilized with cold
methanol for90 sat4 °Cand blocked with 5% BSA, 0.05% Triton X-100in

PBS for 30 min. Cells were exposed to primary antibody phospho-H2AX
1:500 dilution (Ser139, CST, 2577) for1 hat room temperature followed
by Cy3-conjugated anti-rabbit (Invitrogen, A10520) for 1 h at room
temperature. Nuclei were stained with 4,6-diamidino-2-phenylindole
(DAPI) (Sigma).Images were acquired using a Nikon Ti Eclipse inverted
microscope for spinning-disk confocal microscopy equipped with a
Plan Apochromat x60 0il/1.4 NA DIC objective. yH2AX fociinindividual
nuclei were scored by ImageJ (NIH) with in-built find Maxima > Promi-
nence > Point Selection plug-in. Nucleifrom at least ten randomimages
were included in the analysis of each treatment group.

Westernblot

Cells were lysed in RIPA buffer (50 mM Tris-HCI, pH 7.5,150 mM NacCl,
1mM EDTA, 1% NP40, 0.5% sodium dexoycholate, 0.1% sodium dode-
cyl sulfate, 1.5 mM Na,;VO,, 50 mM sodium fluoride, 10 mM sodium
pyrophosphate, 10 mM B-glycerol phosphate and EDTA-free protease
inhibitor cocktail; Roche). Lysates were briefly sonicated, cleared by
centrifugation, separated by SDS-PAGE and transferred to polyvi-
nylidene difluoride membrane. Membranes were probed with primary
antibodies overnight at4 °C: p-DNA-PK (Ser-2056, CST, 68716), DNA-PK
(CST, 38168), p-NBS1 (Ser-343, CST, 3001), NBS1 (CST, 14956), p-KAP1
(Ser-824, Abcam, ab133440), KAP1(Abcam, ab109287), p-CHK1 (Ser317,
CST, 12302), CHK1 (CST, 2360), p-PKCS (Tyr-311, CST, 2055), PKCS
(Abcam, ab182126), PKCS (CST, 9616), p-STAT3 (Tyr705, CST, 9145),
STAT3 (CST, 4904), p-AKT (Ser-473, CST, 4060), p-AKT (Thr308, CST,
13038), AKT (CST, 4691), p-ERK1/2 (Thr202/Tyr204, CST, 4370), ERK1/2
(CST, 9102), GAPDH (Abcam, ab9484), Vinculin (Sigma, V9131) and
B-actin (Sigma, A5441). Secondary horseradish peroxidase-conjugated
antibodies, anti-mouse (Invitrogen, 31438) or anti-rabbit (Invitro-
gen, 31458) were used, and either Enhanced ChemiLuminescence
(Amersham, RPN2209) or Super Signal West Femto (Thermo Scientific,
34095) was used for detection. Dilution of all primary antibodies was
1:1,000 except GAPDH, vinculin and B-actin (1:10,000). Dilution of
secondary antibodies was 1:10,000.

Statistics and reproducibility

Ingeneral, atleast two independent experiments were performed with
similar results. Experimentsincluded aminimum of threereplicates as
specifiedinfigurelegends. No statistical methods were used to prede-
termine sample size. Data distribution was assumed to be normal but
thiswas not formally tested. No data were excluded from the analyses;
the experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.
Comparisons between two groups were analyzed by two-tailed t-test,
unequal variance or the MWW test. Resultsin graphs are expressed as
mean +s.d. or mean +s.e.m. as indicated in figure legends. Box plots
span the first to third quartiles and whiskers show 1.5x interquartile
range. All statistical analyses were performed using GraphPad Prism
software v.8.0 to obtain Pvalues.

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

RNA-seq expression data of the 178 FFPE-derived and 45 frozen GBM
IDH wild-type are available at Synapse (http://synapse.org; acces-
sion no. syn27042663). Previously published multi-omics data from
CPTAC that werere-analyzed here are available from elswhere®**~*%. The
human GBM transcriptomic, genomic, methylation and clinical data,
BRCA and LUSC transcriptomic and clinical data were derived from
the TCGA Research Network (http://cancergenome.nih.gov/) using
TCGAbiolinks. BRCA transcriptomic data from METABRIC has been
derived from elsewhere®’. MNP-GBM methylation data were derived
fromthe Gene Expression Omnibus (accessionno. GSE90496).Source
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datahavebeen provided as Source Datafiles. All other datasupporting
the findings of this study are available from the corresponding author
onreasonable request.

Code availability

The source code used for SPHINKS and the GBM-specific kinome phos-
phorylome network are available at GitHub at https://github.com/mic-
cec/MAKINA. The Shiny app of the frozen and FFPE classification tools
isavailable at https://lucgar88.shinyapps.io/GBMclassifier.
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Extended Data Fig. 1| Definition of functional subtypes of GBM by SNF and
relationship to prior GBM classifiers. a, Circular plotindicating the annotation
of dataavailable for each platform and individual tumors of CPTAC-GBM cohort
(n=93 GBM samples). The number (n) of GBM samples for each platform
isindicated. b, Integrative clustering of GBM tumors by SNF (n = 89 GBM
samples). Heat map of patient-to-patient similarity coefficients generated by the
integration of subtype-specific gene expression of the highest 50 genesin the
ranked lists of the functional subtypes of 52 GBM samples classified as anchors
and fCNVs associated with the four GBM subtypes from TCGA. Yellow-to-orange
scale represents low to high similarity coefficient. ¢, Dot plot showing the genes

harboring fCNVP™ gain or loss and relative pathway enrichment for each GBM
subtype (n = 85 GBM samples). Dot size indicates significance of the pathway
enrichment (P < 0.05, Fisher’s exact test) and color the log,(FC) of the protein
abundance in tumors harboring the fCNVP™ alteration compared to wild-type
tumors (blue to red scale indicate fCNVP* gain, red scale; fCNVP™ loss, blue
scale; two-sided MWW test). d-e, Chord diagram of GBM subtype assignment
oftheindicated classifiers in each individual tumor from TCGA (n =199 GBM
samples) (d) and CPTAC (n = 83 GBM samples) (e) datasets. f, Chord diagram of
GBM subtype assignment according to the indicated classifiers in each individual
tumor from the CPTAC dataset (n = 85 GBM samples).
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Extended Data Fig. 2| Association between fCNV status of GBM driver performed using a cohort of GBM profiled by FFPE tissue RNA-Seq (n =170 GBM
genes and pathway-based subtypes. a, Forest plots showing the association samples; univariate logistic regression). log(OR) estimates, 95% Cl and P values
between fCNV amplification/mutation status of GBM driver oncogenes and arereported. ¢, Forest plots showing the association between fCNV deletion/
subtype transcriptomic activity (magenta) or abundance of protein of the mutation status in GBM tumor suppressor genes and subtype transcriptomic
corresponding gene (light blue) in the CPTAC-GBM cohort (n = 84 GBM samples; activity (blue) or protein abundance of the corresponding gene (light blue; n = 84
univariate logistic regression). log(odd ratio) estimates (OR), 95% confidence GBM samples; univariate logistic regression). log(OR) estimates, 95% Cland P
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represent positive/negative association. b, FGFR3-TACC3 fusion analysis was were multiplied by -1 for visualization purposes.
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Extended Data Fig. 3| See next page for caption.
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Extended Data Fig. 3 | Multiplatform validation of the metabolic axis of the
GBM subtypes. a, Comparative analysis of the interactome network including
intermediate metabolites and enzymes of the indicated metabolic activities in
GPM versus MTC tumors (GPM GBM samples: n=16; MTC GBM samples: n =10 for
metabolites; GPM GBM samples: n = 22; MTC GBM samples: n =12 for proteins;
two-sided MWW test). Orange to green scale indicates metabolite/protein
increase to decrease in GPM versus MTC samples; [glycolytic intermediates:
logit(NES) =1.76, P=0.0007, mitochondrial intermediates: logit(NES) = -1.65,
P=0.018; glycolytic proteins: logit(NES) = 1.27, P= 0.017, mitochondrial
proteins: logit(NES) = -1.19, P = 5.93e-13; two-sided MWW-GST]. b-d, Enrichment
analysis of b, lipid subclasses and ¢, LION terms, grouped according to cellular
components andd, lipid functions. Lipid subclasses and LION terms significantly
enriched in atleast one GBM subtype are reported (n = 64 GBM samples; log

oddsratio >0, P<0.05; Fisher’s exact test). Circles are color-coded and their
size reflect the log odds ratio. Asterisks: * P < 0.05, ** P< 0.005, *** P< 0.001. e,
Heat map showing unsupervised clustering of metabolic proteins differentially
expressed between MTC and GPM samples [log,(FC) > 0.3, P< 0.05; two-sided
MWW test]. Biological pathways significantly enriched in metabolic proteins are
reported on theright (log odds ratio > 0, P < 0.05; Fisher’s exact test). n, number
of GBM samplesin GPM and MTC subtypes. f, Heat map depicting the outlier
fraction of acetylated metabolic protein in GPM and MTC tumors (P < 0.05;
BlackSheep). Representative outlier acetylated proteins are listed on the left
according to decreasing Pvalue. Biological pathways significantly enriched in
outlier acetylated proteins are reported on the right (P < 0.0005; Fisher’s exact
test). n, number of GBM samplesin GPM and MTC subtypes.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Computational strategy for the identification of MKs
infunctional GBM subtypes and benchmarking of SPHINKS approach. a, The
reconstruction of an unbiased kinome network combines SVM classifiers trained
ondifferent instances of the negative set as follows: (step i) train SVM classifier
onvalidated kinase-substrate interactions (green arrows, positive training set)
and asubset of randomly selected unknown interactions (red dotted arrow,
negative set) using kinase abundance from proteomics and substrate abundance
from phosho-proteomics; (step ii) compute a score for all the interactions in the
network according to the SVM classifier; (stepiiii) perform bagging and obtain
the average SVM scores; (step iv) retain only interactions whose average score
was above the average SVM score threshold (50% of the known interactions) and
whose Spearman’s correlation was positive; (step v) calculate MKs activity as

the difference of two terms, the weighted average of the predicted substrate’s
abundances using the SPHINKS score as weight (left), and the weighted average
of randomly selected control substrate-set (right). b, ROC curves of the
predictions of theinteractions by SPHINKS derived from simulated phospho-
proteomic matrix with different rates of missing values. The top-left side of

plot was magnified for accurate visualization. ¢, ROC curves of the interactions
by SPHINKS for each of the 10 cross-validation iterations of experimentally

validated interactions. d, Box plots of the average kinase A-activity (percentage)
fromunperturbed versus 100 networks perturbed with random phosphosites
interactions for each kinase replacing trueinteractions in the network (p = 5%,
10%,15%,20%,50%). In the upper plot, each dot represents the average A-activity
for each kinase across all runs at each perturbation percentage; in the lower plot,
each dot represents the average A-activity for each run across all kinases at each
ratio of perturbation. Box plots span the first to third quartiles and whiskers
show the 1.5 x interquartile range. e, Kinase-substrate interactome from SPHINKS
highlighting MKs for each functional subtype indicated by colors: red, green,
blue and cyan, MKs in GPM, MTC, NEU, and PPR, respectively (effect size > 0.3,
P<0.01; two-sided MWW test; n = 85 GBM samples). Nodes represent kinases
and substrates, and lines their interactions. Gray nodes are subtype non-specific
kinases; purple nodes are kinase-targeted phosphosites substrates. Orange

lines indicate kinase-phosphosite interactions from PhosphoSitePlus; cyan lines
represent novel kinase-substrate interactions inferred by the SPHINKS.

f, MKs significantly active in each functional GBM subtype were mapped onto
the human kinome tree. Red, green, blue and cyan, MKs in GPM, MTC, NEU, and
PPR, respectively. The size of the circles is proportional to the kinase activity.
The number of GBM samplesisasine.
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Extended Data Fig. 5| Benchmarking of SPHINKS against previously SPHINKS and the indicated inference methods for the kinases significantly

published kinase-substrate inference methods. a, Bar plot showing the activein each GBM subtype by SPHINKS and common to the networks of all five
probability of correctly identifying upregulated or downregulated kinasesby the ~ approaches (n =85 GBM samples). Kinases are ordered according to the rank of
analysis of the ‘top-10-hit’ using the indicated inference methods (n =103 kinase activity by SPHINKS.

perturbations). b, Bar plot of the differential rank (A-rank) of activity between
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Global and phospho-proteomics events in insulin
receptor/IGF-PKCS pathway in GPM GBM and enrichment of DDR and RS
phospho-proteins as a specific feature of PPR GBM. a, Signaling network
highlighting the molecules and proteins involved in IGF-I/insulin signaling of
GPM GBM tumors. Orange or red scale indicates the MWW score derived from
the proteomic or phosphosite ranked list of GPM tumors when compared to the
others, respectively (two-sided MWW test, n = 85 GBM samples). Molecules in
white are proteins not profiled or whose abundance was not significantly higher
in GPM when compared to the other subtypes. b-c, Western blot analysis of
GPMPDO cellsincubated with b, IGF-1 (10 ng/ml), IGF-11 (10 ng/ml) and c, insulin
(100 ng/ml) for the indicated times using the indicated antibodies. GAPDH is
shownas aloading control. Each experiment was repeated independently 2 times

with similar results. d, Viability curves of n = 8 PPRPDOs each derived from an
independent patientand n =8 GPM PDOs, each derived from anindependent
patient treated with increasing concentration of Nedisertib. Data are mean +s.d.
of n=4technical replicates for each PDO from one representative experiment.
Experiments were repeated 2 times with similar results. e, Quantification

of clonogenic assay of 2 PPRPDOs (PDO 015 and PDO 044, top panels) each
derived from anindependent patient and 2 GPM PDOs (PDO 021 and PDO 062,
bottom panels) each derived from anindependent patient treated with IR or IR
plus Nedisertib (1667nM). Data are mean of n = 3 technical replicates from one
representative experiment. Experiments were repeated 2 times with similar
results.
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Extended Data Fig. 7 | Proteomics characterization and clinical outcome each subtype-specific protein signature. For each subtype, biological pathways
of PG stratified according to functional subtypes. a-b, Heat map showing significantly enriched by each gene subcluster are reported on the left (P < 0.05,
the median abundance of the 150 highest scoring proteins of the ranked lists Fisher’s exact test). ¢, Kaplan-Meier curves of PG (n = 94 patients) stratified by
(two-sided MWW test) of the four functional subtypesina, PG-LGGand b, SNF combining gene and protein signatures obtained from the functional GBM
PG-HGG (two-sided MWW test). Rows are proteins and columns are functional subtypes. Patients in the PPR subgroup exhibit significantly worse survival (log-
subtypes (n =82 PG-LGG samples; n = 22 PG-HGG samples). Left and top color rank test).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Functional classification of BRCA and LSCC and
prognosticimplications. a-b, Heat map showing the 150 highest scoring
genes of the ranked lists of the four functional subtypes obtained from tumors
classified ina, TCGA- (n = 810 BRCA samples) and b, METABRIC-BRCA (n=1,088
BRCA samples) datasets (two-sided MWW test). Rows are genes and columns are
tumors. Horizontal top and left tracks indicate functional subtypes; horizontal
middle track indicates PAM50 classification of BRCA by TCGA; horizontal lower
track indicates tumor grade. Unsupervised clustering was performed for each
subtype-specific gene signature. Biological pathways significantly enriched

by each gene subcluster are reported on the left (P < 0.05; Fisher’s exact test).

¢, Kaplan-Meier curves and log-rank test analysis 0f 1,897 BRCA patients from
the combined TCGA (n = 809 patients) and METABRIC datasets (n=1,088
patients), stratified according to the four functional subclasses (log-rank test).
d, Heat map showing the 150 highest scoring genes of the ranked lists of the

four functional subtypes in LUSC from TCGA database (n =360 LUSC samples;
two-sided MWW test). Rows are genes and columns are tumors. Horizontal top
and left tracks indicate functional subtypes; horizontal lower track indicates
tumor grade. Unsupervised clustering was performed for each subtype-specific
gene signature. For each subtype, biological pathways significantly enriched

by each gene subcluster are reported on the left (P < 0.05; Fisher’s exact test). e,
Kaplan-Meier curves of 356 patients with LUSC from the TCGA dataset stratified
according to the four functional subclasses. f, Mitochondrial activity (NES) and
menadione survival ratio (log,) for 26 BRCA (upper plot) and 71LUSC (lower plot)
celllines from DepMap. Upper track, functional classification; middle track,
mitochondrial activity; lower track, menadione survival ratio. Survival ratio:
difference between mitochondrial cell lines versus the others; log,(FC) = -1.31,
p=0.008for BRCA; log,(FC) =-0.63, p = 0.076 for LUSC; two-sided ¢-test,
unequal variance.
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n=118 samples; LSCC: n=106 samples).
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Extended Data Fig. 10 | Clinical-grade probabilistic tool for the classification subtype of the multinomial regression model using RNA-Seq data from 45
of frozen and FFPE IDH wild-type GBM. a, Schematics of the approach for matched frozen samples. ¢, Consensus clustering generated from the 178 FFPE
calculating the probability of a GBM sample of belonging to one of the four GBM samples using the expression of the 200 genes from the FFPE-specific gene
defined functional subtypes. The Agilent expression data of 506 samples from signatures. Columns and rows represent FFPE samples. Color bar on the top
the TCGA cohort of GBM were classified into one of the four functional subtypes defines four subgroups according consensus clustering. Track at bottom
(top left). The standardized expression of all the genes from the subtype-specific indicates the functional classification of the corresponding 45 matched frozen
gene signatures (bottom left) was used to train a multinomial regression model samples. The number (n) of samples in each cluster and subtype is indicated.
with lasso penalty using glmnet (middle part). Each sample (input) was used to Yellow-to-blue scale indicates low to high similarity. d, Comparison bar plot of
build a multi-class logistic regression model that returns four probabilities P;,, sensitivity, specificity, and precision in each GBM subtype of the multinomial
one for each functional GBM subtype. We classified a tumor into one subtype if regression model using RNA-Seq data from 45 matched FFPE samples. Dashed
the fitted probability of the particular subtype was the highest (P 4;g) and the lines and corresponding values indicate the average of each performance
sample showed a simplicity score (SS) above a defined threshold (). Tumors measure (blue: sensitivity; orange: specificity; purple: precision) ineach GBM
that did not comply with the defined thresholds remained unclassified. subgroup.

b, Comparison bar plot of sensitivity, specificity, and precisionin each GBM
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- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

RNA-Seq expression data of the 178 FFPE-derived and 45 frozen GBM IDH-wt tumors have been submitted to Synapse (http://synapse.org, accession no.
syn27042663). Previously published multi-omics data from CPTAC that were re-analysed here are available from Ref 6, 46-48. The human GBM transcriptomic,
genomic, methylation and clinical data, BRCA and LUSC transcriptomic and clinical data were derived from the TCGA Research Network: http://
cancergenome.nih.gov/ using TCGAbiolinks. BRCA transcriptomic data from METABRIC has been derived from Ref 63. MolecularNeuroPathology (MNP) GBM
methylation data were derived from GEO (accession no. GSE90496). Source data have been provided as Source Data files. All other data supporting the findings of
this study are available from the corresponding author on reasonable request.
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Extended Data Figure 6 b, c, d, e.
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adenocarcinoma. Age and diagnosis is reported in sSupplementary Table 1.

178 FFPE-derived and 45 frozen GBM IDH-wt tumors are from Onconeurotek tumor bank certification (NF S96 900) and

authorization from Ethics committee (CPP Ile de France VI, ref A39l1), and the French Ministry for research (AC 2013-1962)
and were de-identified before reaching the research lab. Age and gender is reported in Supplementary Table 12.

Recruitment Study does not involve recruitment procedures; this is exempt research.
Ethics oversight Work with these materials was designated as IRB exempt under paragraph 4 and it is covered under IRB protocol and

Onconeurotek tumor bank certification (NF S96 900) and authorization from Ethics committee (CPP lle de France VI, ref
A39l1), and the French Ministry for research (AC 2013-1962).
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Sample size Sample sizes were chosen based on data availability and on previous studies that showed robust statistical power. All available samples
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Data exclusions  No data were excluded.

Replication At least three technical replicates were performed and experiments were repeated at least two times with similar results. All attempts at
replication were successful.

Randomization  Our work does not include clinical or biospecimen-based studies and therefore there was no requirement for randomization in any of the
experiments performed. For in-vitro experiments, randomization of cell lines was not possible. all cell lines were treated in same manner and

when shRNA experiments were performed, all comparisons were between shRNA-PKCdelta and shRNA-NT to control the covariates.
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Blinding molecular features during experiments and outcome assessments. For all in-vitro experiments, blinding is impossible as the same researcher
need to treat the cells and run the analysis. However, quantification was automatically measured by plate reader. For IF pictures were coded
prior to the data analysis.
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Antibodies

Antibodies used Anti- Akt (pan) (Cell Signaling Technology, #4691, C67E7, rabbit monoclonal, 1:1,000)
Anti- phospho-Akt (Cell Signaling Technology, #4060, Ser-473, D9E, rabbit monoclonal, 1:1,000)
Anti- phospho-Akt (Cell Signaling Technology, #13038, Thr-308, D25E6, rabbit monoclonal 1:1,000)
Anti- Stat3 (Cell Signaling Technology, #4904, 79D7, rabbit monoclonal 1:1,000)
Anti- phospho-Stat3 (Cell Signaling Technology, #9145, Tyr-705, D3A7, rabbit monoclonal, 1:1,000)
Anti- phospho-PKC Delta (Cell Signaling Technology, #2055, Tyr-311, rabbit polyclonal, 1:1,000)
Anti- PKC Delta (Abcam, #ab182126, EPR17075, rabbit monoclonal, 1:1,000)
Anti- PKC Delta (Cell Signaling Technology, #9616, D10E2, rabbit monoclonal, 1:1,000)
Anti- p44/42 MAPK (Erk1/2) (Cell Signaling Technology, #9102, rabbit polyclonal, 1:1,000)
Anti- phospho-p44/42 MAPK (Erk1/2) (Cell Signaling Technology, #4370, Thr202/Tyr204, D13.14.4E, rabbit monoclonal, 1:1,000)
Anti- phospho-DNA-PKcs (Cell Signaling Technology, #68716, Ser-2056, E9J4G, rabbit monoclonal, 1:1,000)
Anti- DNA-PKcs (Cell Signaling Technology, #38168, E6U3A, rabbit monoclonal, 1:1,000)
Anti- phospho-p95/NBS1 (Cell Signaling Technology, #3001, Ser-343, rabbit polyclonal, 1:1,000)
Anti- p95/NBS1 (Cell Signaling Technology, #14956, D6J5I, rabbit monoclonal, 1:1,000)
Anti- phospho-Histone H2A.X (Cell Signaling Technology, #2577, Ser-139, rabbit polyclonal, 1:1,000)
Anti- phospho-KAP1 (Abcam, #ab133440, Ser-824, EPR5248, rabbit monoclonal, 1:1,000)
Anti- KAP1 (Abcam, #ab109287, EPR5216, rabbit monoclonal, 1:1,000)
Anti- Chk1 (Cell Signaling Technology, #2360, 2G1D5, mouse monoclonal, 1:1,000)
Anti- phospho-Chk1 (Cell Signaling Technology, #12302, Ser-317, D12H3, rabbit monoclonal, 1:1,000)
Anti- B-actin (Sigma-Aldrich, #A5441, clone AC-15, mouse monoclonal, 1:10,000)
Anti- vinculin (Sigma-Aldrich, #V9131, clone hVIN-1, mouse monoclonal, 1:10,000)
Anti- GAPDH (Abcam, #ab9484, mAbcam 9484, mouse monoclonal, 1:10,000)
Anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, HRP (Invitrogen, #31438, 1:10,000)
Anti-Rabbit 1gG (H+L) Cross-Adsorbed Secondary Antibody, HRP (Invitrogen, #31458, 1:10,000)
Anti-Rabbit 1gG (H+L) Cross-Adsorbed Secondary Antibody, Cyanine3 (Invitrogen, #A10520, 1:500)

Validation Anti-Akt (pan) (Cell Signaling Technology, #4691, C67E7)
Reactivity: H/M/R/Mk/Dm, Sensitivity: endogenous, MW (kDa): 60, Source: rabbit monoclonal, Application-dilution: Western
Blot-1:1,000/Immunoprecipitation- 1:50/Immunohistochemistry-1:150-1:600/Immunofluorescence-1:200-1:800/Flow
Cytometry-1:100-1:400, Citation (PMID): 35415308, Akt (pan) (C67E7) Rabbit mAb detects endogenous levels of total Akt protein.
This antibody does not cross-react with other related proteins. Monoclonal antibody is produced by immunizing animals with a
synthetic peptide corresponding to residues in the carboxy-terminal sequence of mouse Akt. (https://www.cellsignal.com/products/
primary-antibodies/akt-pan-c67e7-rabbit-mab/4691)
Anti-phospho-Akt (Cell Signaling Technology, #4060, Ser-473, D9E)
Reactivity: H/M/R/Hm/Mk/Dm/Z/B, Sensitivity: endogenous, MW (kDa): 60, Source: rabbit monoclonal, Application-dilution: Western
Blot-1:2,000/Immunoprecipitation- 1:50/Immunohistochemistry-1:50-1:200/Immunofluorescence-1:400-1:800/Flow
Cytometry-1:100-1:400, Citation (PMID): 35855640, Akt (pan) (C67E7) Rabbit mAb detects endogenous levels of total Akt protein.
This antibody does not cross-react with other related proteins. Monoclonal antibody is produced by immunizing animals with a
synthetic peptide corresponding to residues in the carboxy-terminal sequence of mouse Akt. (https://www.cellsignal.com/products/
primary-antibodies/akt-pan-c67e7-rabbit-mab/4691)
Anti-Phospho-Akt (Cell Signaling Technology, #13038, Thr-308, D25E6)
Reactivity: H/M/R/MKk, Sensitivity: endogenous, MW (kDa): 60, Source: rabbit, Application-dilution: Western Blot-1:1,000/
Immunoprecipitation- 1:50/Immunofluorescence-1:800 — 1:1600/Flow Cytometry-1:1600 — 1:6400, Citation (PMID): 36207295,
Phospho-Akt (Thr308) (D25E6) XP® Rabbit mAb recognizes endogenous levels of Akt1 protein only when phosphorylated at Thr308.
This antibody also recognizes endogenous levels of Akt2 protein when phosphorylated at Thr309 or Akt3 protein when
phosphorylated at Thr305. Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to
residues surrounding Thr308 of human Akt1 protein. (https://www.cellsignal.com/products/primary-antibodies/phospho-akt-thr308-
d25e6-xp-rabbit-mab/13038).
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Anti-Stat3 (Cell Signaling Technology, #4904, 79D7)

Reactivity: H/M/R/Mk, Sensitivity: endogenous, MW (kDa): 79/86, Source: rabbit monoclonal, Application-dilution: Western
Blot-1:1,000/Immunoprcipitation-1:100/Chomatin IP: 1:50, Citation (PMID): 36289850, Stat3 (79D7) Rabbit mAb detects endogenous
levels of total Stat3 protein. Monoclonal antibody is produced by immunizing animals with a Stat3 fusion protein corresponding to
the carboxy-terminal sequence of mouse Stat3 protein. (https://www.cellsignal.com/products/primary-antibodies/stat3-79d7-rabbit-
mab/4904).

Anti-Phospho-Stat3 (Cell Signaling Technology, #9145, Tyr-705, D3A7)

Reactivity: H/M/R/MKk, Sensitivity: endogenous, MW (kDa): 78/86, Source: rabbit, Application-dilution: Western Blot-1:1,000/
Immunoprecipitation- 1:100/IHC-Leica BOND- 1:100 — 1:400/Immuohistochemistry- 1:100 — 1:400/Immunofluorescence-1:100 —
1:200/ Flow Cytometry-1:100 — 1:400/Chromatin IP- 1:100/Chromatin IP-seq- 1:100, Citation (PMID): 35896788, Phospho-Stat3
(Tyr705) (D3A7) XP® Rabbit mAb detects endogenous levels of Stat3 only when phosphorylated at tyrosine 705. This antibody does
not cross-react with phospho-EGFR or the corresponding phospho-tyrosines of other Stat proteins. Monoclonal antibody is produced
by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Tyr705 of mouse Stat3. (https://
www.cellsignal.com/products/primary-antibodies/phospho-stat3-tyr705-d3a7-xp-rabbit-mab/9145).

Anti-phospho-PKCS (Cell Signaling Technology, #2055, Tyr-311)

Reactivity: H/M/R, Sensitivity: endogenous, MW (kDa): 80, Source: rabbit, Application-dilution: Western Blot-1:1,000, Citation
(PMID): 35166238, Phospho-PKCdelta (Tyr311) Antibody detects endogenous levels of PKCdelta only when phosphorylated at
tyrosine 311. This antibody does not cross-react with other phosphorylated PKC isoforms. Polyclonal antibodies are produced by
immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Tyr313 of human PKCdelta (which is
equivalent to Tyr311 in mouse and rat). Antibodies are purified by protein A and peptide affinity chromatography. (https://
www.cellsignal.com/products/primary-antibodies/phospho-pkcdelta-tyr311-antibody/2055).

Anti-PKC Delta (Abcam, #ab182126, EPR17075)

Reactivity: Mouse/Rat/Human, MW (kDa): 78, Source: rabbit monoclonal, Application-dilution: Flow Cyt-1:250/IHC-P-1:2,000/
WAB-1:5,000/ICC/IF-5 ug/ml, Citation (PMID): 33688230, Recombinant fragment. This information is proprietary to Abcam and/or its
suppliers. (https://www.abcam.com/pkc-delta-antibody-epr17075-ab182126.html).

Anti-PKC Delta (Cell Signaling Technology, #9616, D10E2)

Reactivity: H/M/R/Mk Sensitivity: endogenous, MW (kDa): 78, Source: rabbit monoclonal, Application-dilution: Western Blot-1:1,000/
Immunoprecipitation-1:50, Citation (PMID): 30979895, PKCS (D10E2) Rabbit mAb recognizes endogenous levels of total PKCS
protein. This antibody does not cross-react with other PKC isoforms. Monoclonal antibody is produced by immunizing animals with a
synthetic peptide corresponding to residues surrounding Arg216 of human PKCS protein. (https://www.cellsignal.com/products/
primary-antibodies/pkcd-d10e2-rabbit-mab/9616).

Anti-p44/42 MAPK (Erk1/2) (Cell Signaling Technology, #9102)

Reactivity: H/M/R/Mk/Mi/Z/B/Pg/Sc Sensitivity: endogenous, MW (kDa): 42/44, Source: rabbit, Application-dilution: Western
Blot-1:1,000/Immunoprecipitation-1:50/Immunohistochemistry- 1:50 — 1:200, Citation (PMID): 36336784, p44/42 MAPK (Erk1/2)
Antibody detects endogenous levels of total p44/42 MAP kinase (Erk1/Erk2) protein. In some cell types, this antibody recognizes p44
MAPK more readily than p42 MAPK. The antibody does not recognize either JNK/SAPK or p38 MAP kinase. Polyclonal antibodies are
produced by immunizing animals with a synthetic peptide corresponding to a sequence in the C-terminus of rat p44 MAP Kinase.
Antibodies are purified by protein A and peptide affinity chromatography. (https://www.cellsignal.com/products/primary-antibodies/
p44-42-mapk-erk1-2-antibody/9102).

Anti-phospho-p44/42 MAPK (Erk1/2) (Cell Signaling Technology, #4370, Thr202/Tyr204, D13.14.4E)

Reactivity: H/M/R/Mk/Mi/Dm/Z/B/Dg/Pg/Sc, Sensitivity: endogenous, MW (kDa): 42/44, Source: rabbit monoclonal, Application-
dilution: Western Blot-1:2,000/Immunoprecipitation- 1:50/Immunohistochemistry - 1:200 — 1:400/Immunofluorescence-1:200 —
1:400/Flow Cytometry-1:800 — 1:1600, Citation (PMID): 36376983, Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP®
Rabbit mAb detects endogenous levels of p44 and p42 MAP Kinase (Erk1 and Erk2) when dually phosphorylated at Thr202 and
Tyr204 of Erk1 (Thr185 and Tyr187 of Erk2), and singly phosphorylated at Thr202. This antibody does not cross-react with the
corresponding phosphorylated residues of either JNK/SAPK or p38 MAP kinases. Monoclonal antibody is produced by immunizing
animals with a synthetic phosphopeptide corresponding to residues surrounding Thr202/Tyr204 of human p44 MAP kinase. (https://
www.cellsignal.com/products/primary-antibodies/phospho-p44-42-mapk-erk1-2-thr202-tyr204-d13-14-4e-xp-rabbit-mab/4370).
Anti-phospho-DNA-PKcs (Cell Signaling Technology, #68716, Ser2056, E9J4G)

Reactivity: H, Sensitivity: endogenous, MW (kDa): 450, Source: rabbit monoclonal, Application-dilution: Western Blot-1:1,000,
Citation (PMID): 34644577, Phospho-DNA-PKcs (Ser2056) (E9J4G) Rabbit mAb recognizes endogenous levels of DNA-PKcs protein
only when phosphorylated at Ser2056. Monoclonal antibody is produced by immunizing animals with a synthetic peptide
corresponding to residues surrounding Ser2056 of human DNA-PKcs protein. (https://www.cellsignal.com/products/primary-
antibodies/phospho-dna-pkcs-ser2056-e9j4g-rabbit-mab/68716)

Anti-DNA-PKcs (Cell Signaling Technology, #38168, E6GU3A)

Reactivity: H, Sensitivity: endogenous, MW (kDa): 450, Source: rabbit monoclonal, Application-dilution: Western Blot-1:1,000/
Immunohistochemistry-1:800/Immunofluorescence-1:100/Flow Cytometry-1:100, Citation (PMID): 35173610, DNA-PKcs (E6U3A)
Rabbit mAb recognizes endogenous levels of total DNA-PKcs protein. Monoclonal antibody is produced by immunizing animals with a
synthetic peptide corresponding to residues surrounding Pro608 of human DNA-PKcs protein. (https://www.cellsignal.com/products/
primary-antibodies/dna-pkcs-e6u3a-rabbit-mab/38168)

Anti-phospho-p95/NBS1 (Cell Signaling Technology, #3001, Ser-343)

Reactivity: H, Sensitivity: endogenous, MW (kDa): 95, Source: rabbit, Application-dilution: Western Blot-1:1,000, Citation (PMID):
36242003, Phospho-p95/NBS1 (Ser343) Antibody detects endogenous levels of p95/NBS1 only when phosphorylated at serine 343.
Polyclonal antibodies are produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding
Ser343 of human p95/NBS1. Antibodies are purified by protein A and peptide affinity chromatography. (https://www.cellsignal.com/
products/primary-antibodies/phospho-p95-nbs1-ser343-antibody/3001)

Anti-p95/NBS1 (Cell Signaling Technology, #14956, D6J5I)

Reactivity: H/M/R, Sensitivity: endogenous, MW (kDa): 95, Source: rabbit monoclonal, Application-dilution: Western Blot-1:1,000/
Immunoprcipitation-1:100/Immunofluorescence-1:100, Citation (PMID): 35551189, p95/NBS1 (D6J5I) Rabbit mAb recognizes
endogenous levels of total p95/NBS1 protein. This antibody also cross-reacts with an unidentified protein of 180 kDa in some cell
lines. Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding
Ala740 of human p95/NBS1 protein. (https://www.cellsignal.com/products/primary-antibodies/p95-nbs1-d6j5i-rabbit-mab/14956)
Anti-phospho-Histone H2A.X (Cell Signaling Technology, #2577, Ser-139)

Reactivity: H/M/R/Mk, Sensitivity: endogenous, MW (kDa): 15, Source: rabbit, Application-dilution: Western Blot-1:1,000/
Immunofluorescence-1:400 — 1:1600/Flow Cytometry-1:200, Citation (PMID): 36092604, Phospho-H2A.X (Ser139) Antibody detects
endogenous levels of H2A.X only when phosphorylated at Ser139. Antibodies are produced by immunizing animals with a synthetic
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phosphopeptide corresponding to residues surrounding Ser139 of human H2AX. (https://www.cellsignal.com/products/primary-
antibodies/phospho-histone-h2a-x-ser139-antibody/2577)

Anti-phospho-KAP1 (Abcam, #ab133440, Ser-824, EPR5248)

Reactivity: Mouse/Human, MW (kDa): 88, Source: rabbit monoclonal, Application-dilution: WB-1:1,000/IP-1:10-1:100, Citation
(PMID): 34108527, Synthetic peptide. This information is proprietary to Abcam and/or its suppliers. (https://www.abcam.com/kap1-
phospho-s824-antibody-epr5248-ab133440.html).

Anti-KAP1 (Abcam, #ab109287, EPR5216)

Reactivity: Mouse/Human, MW (kDa): 89, Source: rabbit monoclonal, Application-dilution: WB-1:10,000-1:50,000/IHC-
P-1:250-1:500/ICC/IF-1:100-1:250, Citation (PMID): 36198274, Synthetic peptide. This information is proprietary to Abcam and/or its
suppliers. (https://www.abcam.com/kap1l-antibody-epr5216-ab109287.html).

Anti-Chk1 (Cell Signaling Technology, #2360, 2G1D5)

Reactivity: H/M/R/Mk Sensitivity: endogenous, MW (kDa): 56, Source: mouse monoclonal, Application-dilution: Western
Blot-1:1,000, Citation (PMID): 36266721, Chk1 (2G1D5) Mouse mAb recognizes endogenous levels of total Chk1 protein. Monoclonal
antibody is produced by immunizing animals with purified recombinant Chk1 protein. (https://www.cellsignal.com/products/primary-
antibodies/chk1-2g1d5-mouse-mab/2360)

Anti-phospho-Chk1(Cell Signaling Technology, #12302, Ser-317, D12H3)

Reactivity: H/M/Mk Sensitivity: endogenous, MW (kDa): 56, Source: rabbit monoclonal, Application-dilution: Western Blot-1:1,000/
Immunoprcipitation-1:50/Immunofluorescence-1:800- 1:1600, Citation (PMID): 36123339, Phospho-Chk1 (Ser317) (D12H3) XP®
Rabbit mAb recognizes endogenous levels of Chk1 protein only when phosphorylated at Ser317. This antibody also detects an 80 kDa
protein of unknown origin in some cell lines. Monoclonal antibody is produced by immunizing animals with a synthetic
phosphopeptide corresponding to residues surrounding Ser317 of human Chk1 protein. (https://www.cellsignal.com/products/
primary-antibodies/phospho-chk1-ser317-d12h3-xp-rabbit-mab/12302)

Anti-B-actin (Sigma-Aldrich, #A5441, clone AC-15)

Reactivity: human/bovine/sheep/pig/rabbit/cat/dog/mouse/rat/guinea pig/chicken/carp/leech tissues, MW (kDa): 42, Source:
mouse, Application-dilution: Immunoblotting-1:5,000/Indirect immunofluorescence-1:1,000, Citation (PMID): 8436588, Monoclonal
Anti-b-Actin (mouse 1gG1 isotype) is derived from the AC-15 hybridoma produced by the fusion of mouse myeloma cells and
splenocytes from an immunized mouse. A slightly modified synthetic b-cytoplasmic actin N-terminal peptide Ac-Asp-Asp-Asp-lle-Ala-
Ala-Leu-Val-lle-Asp-Asn-Gly-Ser-Gly-Lys conjugated to KLH was used as the immunogen. The isotype is determined by a double
diffusion immunoassay using Mouse Monoclonal Antibody Isotyping Reagents, Catalog Number ISO2. (https://
www.sigmaaldrich.com/US/en/product/sigma/a5441)

Anti-vinculin (Sigma-Aldrich, #V9131, clone hVIN-1)

Reactivity: human/bovine/chicken/dog/rat/mouse/turkey/xenopus,/smooth muscle metavinculin, MW (kDa): 116, Source: mouse,
Application-dilution: A minimum antibody titer of 1:400 is determined by indirect immunofluorescent labeling of cultured human
fibroblasts. In order to obtain best results in various techniques and preparations, it is recommended that each individual user
determines their optimum working dilution by titration, Citation (PMID): 2116004, Monoclonal Anti-Vinculin (mouse IgG1 isotype) is
derived from the hVIN-1 hybridoma produced by the fusion of mouse myeloma cells and splenocytes from immunized BALB/c mice.
Vinculin, purified from human uterus, was used as the immunogen. The isotype is determined using Sigma ImmunoTypeTM Kit
(Product Code ISO-1) and by a double diffusion immunoassay using Mouse Monoclonal Antibody Isotyping Reagents (Product Code
1ISO-2). (https://www.sigmaaldrich.com/US/en/product/sigma/v9131)

Anti-GAPDH (Abcam, #ab9484, mAbcam 9484)

Reactivity: Mouse/Rat/Chicken/Cow/Human/Pig/Xenopus laevis/Chinese hamster, MW (kDa): 36, Source: mouse, Application-
dilution: WB- 0.1 - 1 ug/ml/IHC-P- 5 pg/ml, Citation (PMID): 33264494, Full length native protein (purified). This information is
proprietary to Abcam and/or its suppliers. (https://www.abcam.com/gapdh-antibody-mabcam-9484-loading-control-ab9484.html).
Anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, HRP (Invitrogen, #31438)

Reactivity: This antibody reacts with the heavy chains on mouse IgG and with the light chains common to most mouse
immunoglobulins. No antibody was detected against non-immunoglobulin serum proteins. The antibody has been tested by ELISA
and/or solid-phase adsorbed to ensure minimal cross-reaction with human, bovine and horse serum proteins. However, this antibody
may cross-react with immunoglobulins from other species., Application-dilution: Western Blot-1:10,000-1:200,000/
Immunohistochemistry-1:500-1:5,000/Immunocytochemistry-1:500-1:5,000, Citation (PMID): 35991835, This antibody has been
isolated from antisera by combination of pepsin digestion and immunoaffinity chromatography, using antigen coupled to agarose
beads. Fc fragments and whole IgG molecules have been removed. (https://www.thermofisher.com/antibody/product/Goat-anti-
Mouse-lgG-H-L-Cross-Adsorbed-Secondary-Antibody-Polyclonal/31438)

Anti-Rabbit 1gG (H+L) Cross-Adsorbed Secondary Antibody, HRP (Invitrogen, #31458)

Reactivity: This antibody reacts with the heavy chains of rabbit IgG and with the light chains common to most rabbit
immunoglobulins. No antibody was detected against non-immunoglobulin serum proteins. The antibody has been tested by ELISA
and/or solid-phase adsorbed to ensure minimal cross-reaction with bovine, chicken, goat, guinea pig, hamster, horse, human, mouse,
rat and sheep serum proteins. However, this antibody may cross-react with immunoglobulins from other species., Application-
dilution: Western Blot-1:10,000-1:200,000/Immunohistochemistry-1:500-1:5,000/Immunocytochemistry-1:500-1:5,000, Citation
(PMID): 36244455. (https://www.thermofisher.com/antibody/product/Donkey-anti-Rabbit-IgG-H-L-Cross-Adsorbed-Secondary-
Antibody-Polyclonal/31458)

Anti-Rabbit 1gG (H+L) Cross-Adsorbed Secondary Antibody, Cyanine3 (Invitrogen, #A10520)

Application-dilution: Western Blot-1:10,000/Immunocytochemistry-1-10 ug/mL, Citation (PMID): 36424632, Immunogen: Gamma
Immunoglobins Heavy and Light chains. (https://www.thermofisher.com/antibody/product/Goat-anti-Rabbit-lgG-H-L-Cross-
AdsorbedSecondary-Antibody-Polyclonal/A10520)

The following are the Research Resource Identifiers (RRIDs) from the Resource Identification Portal, supporting guidelines for Rigor
and Transparency in scientific publications.
Anti- Akt (pan), RRID:AB_915783

Anti- phospho-Akt, RRID:AB_331170

Anti- phospho-Akt, RRID:AB_2629447

Anti- Stat3, RRID:AB_331269

Anti- phospho-Stat3, RRID:AB_2491009

Anti- phospho-PKC Delta, RRID:AB_330876
Anti- PKC Delta, RRID:AB_2892154

Anti- PKC Delta, RRID:AB_10949973

Anti- p44/42 MAPK (Erk1/2), RRID:AB_330744
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Anti- phospho-p44/42 MAPK (Erk1/2), RRID:AB_2315112

Anti- DNA-PKcs, RRID:AB_2799128

Anti- phospho-p95/NBS1, RRID:AB_10829154

Anti- p95/NBS1, RRID:AB_2798660

Anti- phospho-Histone H2A.X, RRID:AB_2118010

Anti- KAP1, RRID:AB_10858772

Anti- Chk1, RRID:AB_2080320

Anti- phospho-Chk1, RRID:AB_2783865

Anti- B-actin, RRID:AB_476744

Anti- Vinculin, RRID:AB_477629

Anti- GAPDH, RRID:AB_307274

Anti-Mouse 1gG (H+L) Cross-Adsorbed Secondary Antibody, RRID:AB_228217

Anti-Rabbit 1gG (H+L) Cross-Adsorbed Secondary Antibody, RRID:AB_228213

Anti-Rabbit 1gG (H+L) Cross-Adsorbed Secondary Antibody, Cyanine3, RRID:AB_2534029

Anti-phospho-DNA-PKcs (https://www.cellsignal.com/products/primary-antibodies/phospho-dna-pkcs-ser2056-e9j4g-rabbit-
mab/68716) and Anti-phospho-KAP1 (https://www.abcam.com/kapl-phospho-s824-antibody-epr5248-ab133440.html) were
validated by published studies (Anti-phospho-DNA-PKcs, PMID: 34644577; Anti-phospho-KAP1: PMID: 34108527).
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Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) HEK293T (ATCC CRL-11268).

Patient-derived organoids (PDOs) were obtained using excess material collected for clinical purposes from de-identified brain
tumor specimens. Donors (patients diagnosed with glioblastoma) were anonymous. Progressive numbers were used to label
specimens coded in order to preserve the confidentiality of the subjects. Work with these materials was designated as IRB
exempt under paragraph 4 and it is covered under IRB protocol #IRB-AAAI7305 and Onconeurotek tumor bank certification
(NF S96 900) and authorization from Ethics committee (CPP Ile de France VI, ref A39Il), and the French Ministry for research
(AC2013-1962). Of the 23 PDOs utilized in the study 14 were males and 9 were females as assessed by the analysis of
chromosome X and Y ratio from whole exome sequencing.

Authentication Cell authentication was performed using short tandem repeats (STR) at the ATCC facility.

Mycoplasma contamination Cells were routinely tested for mycoplasma contamination using the Mycoplasma Plus PCR Primer Set (Agilent Technologies)
and were found to be negative.

Commonly misidentified lines  we have not used cell lines listed in the database of commonly misidentified cell lines.
(See ICLAC register)
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