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The tumor microenvironment is a complex ecosystem com-
posed of heterogeneous cell types. The composition and func-
tional state of tumor-infiltrating immune cells have critical 

roles in tumor development1. Immunotherapies have revolutionized 
cancer treatment, resulting in sustained clinical responses when 
treating tumors of diverse origins2. Nevertheless, the efficacy of 
immunotherapy is not uniform across cancer types, and the major-
ity of patients still succumb to disease. Therefore, it is imperative to 
uncover the mechanisms that drive or hinder effective responses to 
immunotherapy.

Key factors associated with clinical outcome include the num-
ber and functional state of T cells infiltrating the tumor at baseline 
and during treatment3. Recent single-cell-based transcriptomic 
analyses of tumor-infiltrating lymphocytes reveal extensive hetero-
geneity, which may influence therapeutic outcome4–6. In addition 
to naive, effector, memory and regulatory T cells, a substantially 
more heterogeneous T cell compartment that displays features of 
dysfunction is frequently observed4,7. Dysfunctional T cells are 
characterized by impaired production of cytokines and cytotoxic 
molecules and by increased surface expression of inhibitory recep-
tors8. Intriguingly, dysfunctional T cells in models of chronic viral 
infection and in murine and human cancers harbor unique chro-
matin accessibility patterns9–11. Moreover, current immunothera-
pies cannot epigenetically reprogram these dysfunctional T cells; 
therefore, durable responses are impeded10. Recent findings have 
started to elucidate the transcriptional networks that mediate T cell 
dysfunction9,11–13. At present, the nature of the regulatory circuit 
that orchestrates T cell transition along the naive-to-dysfunction 
path in cancer is unclear.

Renal cell carcinoma (RCC) is known to be respon-
sive to immune-based therapies, and the development of 
immune-checkpoint inhibitors has transformed the management 

of advanced-stage RCC14–18. Nonetheless, the majority of patients 
either have primary resistance to therapies or develop resistance 
after an initial response16–19. RCC displays unique characteristics 
compared with other immune-responsive solid tumors, including a 
modest mutation burden20 and association of increased infiltration 
of CD8+ T cells with worse prognosis21. The latter paradox can be 
explained, in part, by high heterogeneity in the activation and cyto-
toxic potential of infiltrating T cells22–26. Therefore, to develop novel 
and improved immune-based treatments in RCC, an understand-
ing of the developmental and functional states of immune cells in 
patients is of paramount importance.

Here, we generate an epigenetic map of the evolution of immune 
cell states and examine in detail the regulatory landscape of T cells in 
patients with ccRCC. To gain insight into the epigenetic regulation 
of lymphocytes in RCC, we employ single-cell assay technology for 
transposase-accessible chromatin using sequencing (scATAC-seq)27. 
Through surveying the chromatin landscapes of T cells of malignant 
and nonmalignant tissues from patients with ccRCC, we observe 
cell-type-specific and tissue-specific chromatin accessibility patterns. 
Furthermore, analysis of intratumoral CD8+ T cells demonstrates a 
continuum of dysfunctional states and an extensive remodeling of 
the accessibility of regulatory elements. Paradoxically, we observed 
enrichment of the NF-κB-binding motif in the late dysfunctional 
CD8+ T cell subset. Our data provide a valuable resource for dis-
secting the epigenetic and transcriptional heterogeneity of T cells in 
ccRCC and have the potential to guide therapeutic strategies based 
on a patient’s immune cell fate repertoire.

Results
Single-cell chromatin landscapes of immune cells in ccRCC. To 
catalog the heterogeneity of epigenetic states of immune cells within 
ccRCC patients, we generated scATAC-seq profiles (10x Genomics 
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platform)27 of immune cells (CD45+) isolated from blood and from 
malignant and normal adjacent kidney tissues of eight patients with 
early-stage ccRCC (Fig. 1a). In total, we generated scATAC-seq pro-
files of 34,703 immune cells. To exclude low-quality cells, we filtered 
scATAC-seq data using cut-offs of 1,000 unique nuclear fragments 
per cell and a transcription start site (TSS) enrichment score of 8, 
as previously described27 (Extended Data Fig. 1a; Methods). These 
scATAC-seq profiles also exhibited fragment-size periodicity and 
high enrichment of fragments at TSSs (Extended Data Fig. 1a; 
Methods). Next, a graph-based clustering of the immune cells was 
performed based on their chromatin accessibility landscape, result-
ing in a total of 21 major clusters (Extended Data Fig. 1b). To clas-
sify these clusters, we computed the gene activity scores of known 
immune-lineage-defining marker genes in each cluster, thereby 
evaluating the general accessibility of the gene (Methods)27–29. 
Annotation of cell types using this method led to identification of 
all expected cell types (Extended Data Fig. 1c). Importantly, the dis-
tribution of immune cells from different patients across the clus-
ters suggested no patient-specific cellular epigenetic states or batch 
effects (Extended Data Fig. 1b, d). Moreover, we observed clusters 
dominated by cells from specific tissues, suggesting that tissue 
residency affects the epigenetic landscape of some immune cells 
(Extended Data Fig. 1e). Thus, the single-cell epigenetic approach 
revealed a complex composition of immune cell fates in ccRCC.

T cells form a continuum of epigenetic states in ccRCC. T cells are 
the key target population for cancer immunotherapies and the iden-
tification of effective biomarkers requires deep understanding of 
T cell states. Therefore, we identified a population of immune cells 
with high gene activity scores for known T cell markers (CD3D, 
CD8A and CD4) and re-clustered this subset of 18,736 T cells based 
on the chromatin accessibility landscape. We identified 12 T cell sub-
clusters with a rich diversity of chromatin landscapes and cell states 
(Fig. 1b). T cell chromatin accessibility clustering did not exhibit 
patient-specific effects (Extended Data Fig. 2a), consistent with pre-
vious immune single-cell transcriptomic studies7. Examination of 
gene accessibility in CD4 and CD8 loci identified four CD4+ and 
eight CD8+ T cell clusters (Extended Data Fig. 2b). These clusters 
exhibited distinct tissue distribution for T cells. For example, clus-
ter C1_CD4 contained mainly cells from blood, whereas clusters 
C8,9,10,11_CD8 and C12_CD4 were almost exclusively populated 
with cells from tumor tissue (Fig. 1c and Extended Data Fig. 2c). 
To classify each cluster, we examined the most accessible (log-fold 
change (LFC) ≥ 1, false discovery rate (FDR) ≤ 0.05) genes in each 
cluster (Fig. 1d). Cells of C1,2_CD4 type, which were predomi-
nant in peripheral blood, demonstrated distinctly high chroma-
tin accessibility for naive marker genes including LEF1 and SELL  
(Fig. 1d,e and Extended Data Fig. 2d,e). The C3_CD4 cluster, com-
posed of CD4+ T cells mainly from tumor tissue, had high accessibil-
ity for IL7R and IL2, consistent with a memory- and/or effector-like 
fate4 (Fig. 1d and Extended Data Fig. 2e). In addition, cells in this 
cluster displayed increased accessibility for TFH-specific genes such 
as IL21, a cell population recently implicated in antitumor immu-
nity30,31 (Fig. 1d). C5,6,7_CD8, which was predominantly composed 
of CD8+ T cells from tumor tissue and blood, exhibited high gene 
accessibility of cytotoxic molecules including GNLY, PRF1 and 
GZMB, with cells in C6_CD8 exhibiting the highest accessibility 

for these cytolytic molecules (Fig. 1d and Extended Data Fig. 2d,e). 
C4_CD8 was mainly composed of CD8+ T cells from malignant and 
adjacent normal kidney tissue (Fig. 1c and Extended Data Fig. 2c). 
Compared with those in C5,6_CD8, the C4_CD8 T cells had mark-
edly reduced gene accessibility of effector molecules such as GNLY 
(Fig. 1d and Extended Data Fig. 2d). However, C4_CD8 was char-
acterized by high gene accessibility for IL2, suggesting that some 
level of effector function was retained in these cells (Fig. 1d and 
Extended Data Fig. 2e).

C9,10,11_CD8 cells were almost exclusively derived from 
tumor tissue and were characterized by a distinct chromatin 
landscape that clustered separately (Fig. 1b, c and Extended Data 
Fig. 2c). These cells displayed high gene accessibility for multiple 
dysfunction-related genes including TOX, LAYN, ENTPD1, CTLA4 
and CXCL13 (refs. 7,13,32) (Fig. 1d and Extended Data Fig. 2e). For 
C8_CD8, which was mainly composed of CD8+ T cells from tumors 
(Fig. 1c and Extended Data Fig. 2c), we observed a pattern of gene 
accessibility that resembled that of C9,10,11_CD8, albeit at a lower 
intensity, suggesting that cells in this cluster had an early dysfunc-
tion fate (Fig. 1d). C12_CD4, which mainly comprised CD4+ T cells 
from tumors (Fig. 1c and Extended Data Fig. 2c), was associated 
with high gene accessibility for markers of tumor-infiltrating regula-
tory T cells (Tregs), including TNFRSF18, ICOS and CTLA4 (Fig. 1d 
and Extended Data Fig. 2e). Given the strong correlation between 
the functional status of tumor-infiltrating T cells and patient prog-
nosis21, we investigated the epigenetic landscape of these cells. To 
further examine the identities of T cell clusters, we applied GREAT 
gene ontology enrichment analysis33 to the highly accessible poten-
tial regulatory elements in each cluster (FDR < 0.05; LFC > 1) to 
evaluate putative biological processes associated with these regula-
tory elements. This unbiased annotation demonstrated the enrich-
ment of gene ontology terms for biological processes related to 
naive, effector/memory and regulatory fates (Extended Data Fig. 2f).  
Combined, our data reveal a diverse regulatory landscape of T cells 
in ccRCC patients.

A catalog of transcription factor programs in ccRCC. Having 
mapped the epigenetic landscape of T cells across blood and normal 
and malignant kidney tissue, we then sought to identify dynamic TF 
regulatory programs in various T cell fates. The ATAC-seq method 
enables the inference of TF activity27,34,35. By analyzing TF activity, 
we identified cell-type-specific, fate-specific and tissue-specific 
binding programs (Fig. 1f). Specifically, for CD4+ T cells, the C1,2_
CD4 clusters were characterized by high TF activity for “naive” 
TFs including LEF1, TCF7 and FOXO1 (Fig. 1f and Extended Data  
Fig. 3a). Notably, in these clusters we observed motif enrichment for 
CTCF, an architectural factor that organizes higher-order chroma-
tin structure36 (Fig. 1f and Extended Data Fig. 3a). C3_CD4 exhib-
ited motif enrichment for TFs related to immune activation such 
as STAT1 (Extended Data Fig. 3a) and early-differentiated memory 
T cells such as BACH2 (Extended Data Fig. 3a). C6_CD8, which 
was composed of CD8+ T cells with high effector function and a 
substantial contribution from the blood (Fig. 1c,d and Extended 
Data Fig. 2c), was enriched for motifs of less-described TFs includ-
ing RREB1, KLF3 and the bHLH family TF TWIST2 (Extended 
Data Fig. 3a), in addition to TFs associated with effector function 
such as EOMES.

Fig. 1 | Single-cell chromatin accessibility of T cells in ccRCC. a, Schematic of chromatin accessibility, transcriptome and TCR profiling, and validation at 
the protein level of cells from peripheral blood, tumor tissue and adjacent normal tissue in early-stage ccRCC patients. Imaged created with BioRender.com.  
b, UMAP projection of 18,736 scATAC-seq profiles of T cells from peripheral blood, tumor tissue and adjacent normal tissue combining eight patient 
samples. Dots represent individual cells and colors indicate cluster identity, specified next to each cluster. c, UMAP projection of T cells colored by tissue of 
origin. d, Heatmap of gene activity scores of the most accessible genes in each cluster (LFC ≥ 1, FDR ≤ 0.05 compared with other clusters) derived from b.  
e, Genome tracks of aggregate scATAC-seq data visualization of the LEF1 locus, clustered as indicated in b. f, Heatmap representation of ATAC-seq 
chromVAR bias-corrected deviations in the 49 most variable TFs across all scATAC-seq clusters. Cluster identities are indicated at the top of the plot.
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Heterogeneity of chromatin states of T cell dysfunction. In con-
trast to most other solid tumors that respond to immunotherapy, in 
RCC high levels of infiltration by T cells is associated with inferior 
prognosis21. To gain insight into the heterogeneity of the fate com-
position of T cells, we further investigated the chromatin landscape 
of T cells in the kidney. Compared with clusters characterized by 
a high (>50%) contribution of effector CD8+ T cells from tumor 
tissue (C4,5,7_CD8), cells in C8,9,10,11_CD8, which were mainly 
populated with cells from tumors (Extended Data Fig. 2c), exhibited 
markedly higher gene accessibility for dysfunction-related genes 
(Figs. 1d and 2a and Extended Data Fig. 4a,b). Also, the CD101 
locus was more accessible in effector CD8+ T cells (Extended Data 
Fig. 4b), in contrast to other tumor models11 where this receptor has 
been associated with dysfunction.

To further dissect the mechanisms that drive the epigenomic 
states of CD8+ T cell dysfunction in ccRCC, we reconstructed 
a cellular trajectory that approximated the development of cells 
in C8,9,10,11 (refs. 27,28) and ordered these cells in pseudotime. 
This analysis identified a trajectory starting with C8, progressing 
through C9 and C10, and ending in C11 (Fig. 2b). We further iden-
tified genes with dynamic accessibility patterns across the trajectory 
(Fig. 2c). Genes that were highly accessible early in the trajectory 
included genes encoding tissue-resident memory T cells markers 
(ITGAE, CXCR6), costimulatory molecules (for example, TNFSF14) 
and effector-related molecules (for example, TNF) (Fig. 2c  
and Extended Data Fig. 4c). By contrast, genes that were accessible 
late in the trajectory included dysfunction-related markers (for 
example, TOX, TOX2, CD38, PRDM1, ENTPD1, BTLA, CXCL13 
and CTLA4) (Fig. 2c). In addition, we observed differential acces-
sibility of genes encoding epigenetic modifiers along the trajec-
tory, with high accessibility early in the trajectory for epigenetic 
modifiers such as KDM6B and later in the trajectory for modifiers 
including JMJD4, SATB1, SMARCA2, SETBP1, STAG2 and ASXL1  
(Fig. 2c and Extended Data Fig. 4c). Our data reveal a complex 
interplay of epigenetic modifiers during the progression through the 
dysfunction fates of CD8+ T cells in ccRCC. Moreover, we observed 
elevated accessibility of genes involved in protein homeostasis 
(proteostasis; for example, HSPA2, HSPA1B, HSP90AA1, HSPH1, 
FBXO2 and ATG7) in the middle-to-late stages of dysfunction 
(Fig. 2c and Extended Data Fig. 4c). Thus, CD8+ T cell progression 
along the dysfunction path in ccRCC is accompanied by rewiring of 
the regulatory landscape of stress response genes. Consistent with 
these observations, regulatory elements within dysfunction-related 
clusters were enriched in gene ontology terms for biological pro-
cess related to both chromatin remodeling and stress response 
(Extended Data Fig. 2f).

Having cataloged the chromatin landscape of the fates of T cells 
in the kidney, we next sought to identify the key TFs that could reg-
ulate these programs. Examination of TF-binding motif enrichment 
revealed distinct patterns between effector cells in C4,5,7_CD8 and 
dysfunctional cells in C9,10,11_CD8 (Fig. 1f). C4_CD8, which was 
composed of cells mainly from tumor and normal adjacent kidney 
tissues (Extended Data Fig. 2c), was associated with high activity 
of TFs involved in cytokine responses such as STAT3 and STAT5B 
(Extended Data Fig. 3b). Within C4_CD8, we observed tissue of 

origin specificity for TF activity. CD8+ T cells primarily derived 
from malignant tissue displayed binding motif enrichment for 
AP-1 complex members including FOS, FOSB, JUN, JUNB, JUND, 
MAFF, MAFG, MAFK and JDP2, which act downstream of T cell 
receptor (TCR) signaling to promote cell-cycle progression and  
effector functions including transcriptional activation of IL2  
(Fig. 1c and Extended Data Fig. 3b). In addition, IRF4, which 
cooperates with BATF/JUN heterodimers to promote CD8+ T cell 
effector differentiation37, showed increased TF activity in T cells 
prevalent in malignant tissue (Fig. 1c and Extended Data Fig. 3b). 
By contrast, CD8+ T cells with epigenetic landscapes similar to 
those from normal tumor-adjacent kidney tissue were character-
ized by binding motif enrichment for KLF2, a transcription fac-
tor involved in T cell quiescence38, and several less-described TFs 
including NFYA, SP4 and PBX3 (Fig. 1c and Extended Data Fig. 3b).  
Tumor-infiltrating CD4+ T cells (C12_CD4) were associated with 
binding motif enrichment for cluster-specific TFs such as mem-
bers of the POU domain family (POU2F1, POU2F2 and POU2F3) 
(Extended Data Fig. 3b), in addition to TF programs shared with 
dysfunctional CD8+ T cells (Fig. 1f).

To specifically illuminate the repertoire of TFs underlying 
dysfunction-related chromatin configurations, we further exam-
ined the dynamic TF motif enrichment along the C8,9,10,11_CD8 
dysfunction trajectory (Fig. 2b). We observed TFs such as TBX5 
with enriched binding motifs throughout the dysfunction path 
compared with effector cells, with the highest enrichment for late 
dysfunction fates (Extended Data Fig. 3c). Previous studies showed 
that the TBX5-binding motif was enriched in loci more accessible 
in stem-like versus dysfunctional CD8+ T cells during chronic 
infection39. Our findings indicate that disease-specific regulatory 
processes may underlie T cell dysfunction in ccRCC patients. In 
addition, we detected dysfunction-stage-specific motif enrichment 
of TFs; for instance, IRF1 showed high activity early in the trajec-
tory (Extended Data Fig. 3c), whereas NFAT (NFATC2, NFATC3) 
were more enriched late in the trajectory (Extended Data Fig. 3c). 
In line with previous reports showing that activation of NFAT in the 
absence of its binding partners JUN and FOS induces exhaustion40, 
our findings demonstrate enrichment of NFAT and JUN/FOS bind-
ing motifs in dysfunctional (C9,10,11_CD8) (Extended Data Fig. 3c)  
and effector (C4_CD8) clusters (Extended Data Fig. 3b), respec-
tively. We also observed enriched TF activity for EPAS1 (also known 
as HIF2α) in C11_CD8 (Extended Data Fig. 3c).

We hypothesized that a dynamic TF regulatory program 
might underlie the progression from early to late dysfunction of 
tumor-infiltrating CD8+ T cells. To test this hypothesis, we exam-
ined dynamic changes in TF-binding motif enrichment along the 
trajectory of dysfunction (Fig. 2d). We observed diminishing bind-
ing motif enrichment for members of the ETS family (for example, 
ETS1, ETV2, ERG, ERF, FLI1, ELF1 and ELK1) during the progres-
sion from early- to late-stage dysfunction (Fig. 2d). Given that ETS 
factors have an important role in T cell homeostasis41, further inves-
tigation is needed to characterize the pathways modified by altered 
binding of ETS transcription factors during dysfunction progres-
sion. Late dysfunction stage was accompanied by motif enrichment 
for TFs previously found to be associated with T cell dysfunction, 

Fig. 2 | The chromatin landscape of dysfunctional T cells. a, Violin plots of gene activity scores of the indicated genes for effector/nondysfunctional 
(C4,5,7_CD8) and dysfunctional (C8,9,10,11_CD8) T cell clusters. Pairwise comparisons of gene activity scores for the indicated gene between specified 
T cell clusters were determined using a two-sided Wilcoxon rank-sum test. The P values obtained were subjected to multi-test correction with the FDR 
method (****adjusted P < 0.0001; raw adjusted P values are listed in the source data; for clusters 4, 5, 7, 8, 9, 10, 11, n = 1,810, 1,821, 873, 924, 1,775, 
2,440 and 1,613 cells, respectively). b, Cell alignment to the pseudotime developmental trajectory within the dysfunctional CD8+ T cell populations. The 
smoothened arrow represents a visualization of the interpreted trajectory in the UMAP embedding. c, Pseudotime heatmap ordering of gene activity 
scores of the top 10% most variable genes across the potential CD8+ T cell dysfunction trajectory. General ordering of cells from different dysfunction 
clusters along the pseudotime course is marked along the trajectory at the top. d, Pseudotime heatmap ordering of the top 10% most variable chromVAR 
TF motif bias-corrected deviations in the CD8+ T cell dysfunction trajectory (for b, c and d, n = 6,752 cells).
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including NR4A, BATF and EOMES (Fig. 2d). In addition, we 
detected binding motif enrichment in the late dysfunction stage 
for TFs with unknown role in antitumor immunity; these included 
NFAT5, which has previously been implicated in the cellular 
response to osmotic stress42, as well as HIVEP1/3, NR2F2 and mem-
bers of the T-box family (TBX10, TBR1) (Fig. 2d). Thus, our data 
indicate the existence of an elaborate network of TFs underlying the 
potential regulation of dysfunction fates of tumor-infiltrating T cells 
in ccRCC.

Recent single-cell RNA sequencing (scRNA-seq) profiling of 
immune cells in ccRCC patients showed that inhibitory interac-
tions between dysfunctional CD8+ T cells and tumor-associated 
macrophages in advanced disease were associated with worse 
prognosis22,23,25. We attempted to further characterize the epigen-
etic landscape of myeloid cells (clusters 8 and 17; Extended Data 
Fig. 1b, c) in stage I ccRCC patients. However, at this early disease 
stage, we observed myeloid clusters predominantly composed of 
cells from blood and normal adjacent kidney tissue (Extended Data  
Fig. 1e), and the low numbers of cells (2,799 in total; 229 derived 
from tumors) precluded further characterization of the fate evolu-
tion of this cell type.

Transcriptional programs of T cell dysfunction in ccRCC. 
To investigate the link between chromatin landscapes and tran-
scriptional programs, we performed scRNA-seq in immune cells 
(CD45+) of a subset (n = 4) of the ccRCC patients that had been 
profiled epigenetically for which we had a sufficient number of 
CD45+ cells. Unsupervised clustering of 108,328 CD45+ cells 
revealed an immune cell composition of 23 clusters (Extended Data 
Fig. 5a,b,c). In line with our epigenetic profiling data, the myeloid 
clusters were predominantly composed of cells from blood and 
normal tumor-adjacent kidney tissue (Extended Data Fig. 5d). To 
gain insight into the diversity of gene expression programs of T cells 
in ccRCC, we performed fine clustering of the T cell subsets. A 
total of 14 clusters emerged, including ten clusters for CD8+ and 
four clusters for CD4+ T cells (Fig. 3a). Overall, the majority of the 
T cell transcriptional states identified were shared among patients 
(Extended Data Fig. 6a). The expression of known functional mark-
ers suggested that CD8+ T cell clusters included transitional (or 
early) effector (low TCF7, IL7R, GNLY and GZMB expression), resi-
dent memory (marked by high ZNF683, CXCR6, IL7R and ANXA1 
expression), effector memory (EM, marked by GNLY, GZMB, IL7R 
and ANXA1 expression) and dysfunctional T cells, as well as con-
ventional CD4+ T cells (naive, memory, effector) and CD4+ Tregs 
(Fig. 3a,b). T cells in these clusters exhibited distinct distributions of 
tissues of origin (Extended Data Fig. 6b). For example, C3_RNAseq, 
representing naive CD4+ T cells, was characterized by high expres-
sion of TCF7 and LEF1 and was almost exclusively populated with 
cells from blood, whereas cells in the effector T cell clusters C6_
CD8_RNAseq and C7,8_CD8_RNAseq expressed high levels of 
GNLY and originated mainly from tumor or normal adjacent kidney 

tissue and blood, respectively (Fig. 3b and Extended Data Fig. 6b,c). 
Focusing on dysfunctional CD8+ T cells, we observed that cells in 
C1,4,9,10,12_CD8_RNAseq, predominant in tumors, expressed 
high levels of multiple dysfunction-related genes including CTLA4, 
LAG3, HAVCR2 (TIM3) and TOX2 (Extended Data Fig. 6b,c). 
In line with previous reports24, we found that in RCC, TNFRSF9  
(4-1BB) was mainly co-expressed with dysfunction-related markers 
(Extended Data Fig. 6c). In agreement with the epigenetic profiling 
data, CD101 expression was detected, at low levels, outside the dys-
function clusters (Extended Data Fig. 6c).

To better understand how epigenetic and transcriptomic changes 
may regulate T cell fates in ccRCC, we integrated the derived gene 
activity scores with gene expression in four patients for whom 
matched data from both modalities were available43,44 (Fig. 3c). The 
clustering and annotation of scATAC-seq cell clusters were con-
cordant between the subset of four patients and the total of eight 
ccRCC patients (Fig. 1b and Fig. 3c). We identified anchors between 
scATAC-seq and scRNA-seq data and annotated scATAC-seq cells 
via cell cluster labels transferred from scRNA-seq data44. We found 
that the majority (71%) of cells in the scATAC-seq dataset could 
be annotated via label transfer from scRNA-seq with confidence 
(maximum prediction score > 0.5; Fig. 3d and Extended Data  
Fig. 6d,e). Importantly, we found that multiple scATAC-seq T cell 
clusters with different chromatin states (C1,2,9_CD8_ATACseq) 
were annotated with the identity of one major dysfunction-associated 
scRNA-seq T cell cluster (C1_CD8_RNAseq; Fig. 3d). Thus, cells in 
certain dysfunction states, defined by transcriptomic analysis, may 
be destined for different fates as revealed by the epigenetic analy-
sis. In line with previous reports45, we were not able to annotate a 
cluster of cycling cells in the scATAC-seq dataset through integra-
tion analysis, whereas there was a single cycling population in the 
scRNA-seq data (cluster 12; Fig. 3d and Extended Data Fig. 6c,d). 
These findings suggest that chromatin accessibility makes a limited 
contribution to changes in expression of cell-cycle-associated genes.

To examine whether CD8+ T cells exhibited a gradient of dys-
function states at the transcriptional level, similar to that observed 
at the epigenetic level, we performed weighted gene co-expression 
network analysis (WGCNA) on T cell scRNA-seq data and identi-
fied multiple sets of co-regulated gene modules, including a module 
associated with T cell dysfunction (Extended Data Fig. 6f). Based 
on the module analysis, for every gene within the dysfunction mod-
ule we calculated the expression z-score across all T cell clusters to 
compare dysfunction gene activities. We then performed a quantita-
tive comparison of the dysfunction levels across CD8+ T cell clusters 
and observed a spectrum of transcriptional intensity for dysfunc-
tion (Fig. 3e).

To investigate the connection between the identified functional 
T cell subsets and clonality, we used single-cell TCR sequenc-
ing (TCR-seq) data to track the lineage of each single T cell. We 
obtained 30,708 T cells with paired full-length TCR alpha and beta 
chains spanning the 14 clusters. We found 8,550 unique clonotypes, 

Fig. 3 | Single-cell transcriptional profiling of T cells in ccRCC. a, UMAP projection of 47,390 scRNA-seq profiles of T cells isolated from peripheral 
blood, tumor and adjacent normal tissue from four patients (a subset of the patients that were profiled epigenetically). Each dot corresponds to one 
single cell colored according to cell cluster. b, Heatmap of normalized expression of the top five marker genes in each cluster. c, Workflow for integrating 
scATAC-seq and scRNA-seq data from the same samples, divided into two. Left, experimental workflow. Image created with BioRender.com. Right, UMAP 
projection of scATAC-seq (top panel) and scRNA-seq (bottom panel) cells from four ccRCC patients for whom matched data from both modalities were 
available. d, Alluvial plot depicting annotation of cells in scATAC-seq data with cluster identities transferred from scRNA-seq data. The ribbon width 
corresponds to the number of cells in the specified scATAC-seq cluster (left side of the ribbon) that were annotated with the cluster identity of the 
corresponding scRNA-seq cluster (right side of the ribbon). To reduce clutter, only ribbons with width representing more than 20 cells are presented in 
this plot. For a complete overview, see Extended Data Fig. 6d. Color of ribbons corresponds to the color of the scRNA-seq clusters in the UMAP projection 
in c. e, Dysfunction gene expression levels in the indicated CD8+ T cell clusters (n = 4 patients; Methods). Each dot represents one of the 75 genes in the 
dysfunction gene module identified through gene module analysis; gene expression z-score distribution of these genes is depicted in boxplot format for 
each of the T cell clusters. One-way ANOVA test, Holm–Sidak correction for multiple comparisons. *P < 0.05, **P < 0.01, ****P < 0.0001. f, Plot showing 
counts of cells assigned into specific TCR clonal frequency ranges in each cluster as indicated in a.
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of which 1,512 were expanded clonotypes shared by at least two 
cells. To unveil the dynamic relationships of the TCR repertoire in 
ccRCC, we measured different indices based on the single T cell 
analysis by RNA-seq and a TCR tracking (STARTRAC) method6. 
First, focusing on CD8+ T cells, STARTRAC expansion (expa index) 
analysis revealed the dysfunctional cells (C1,4,9,10,12) to be in the 
clusters with the highest degree of clonal expansion (Extended Data 
Fig. 7a and Fig. 3f). Of the two Treg clusters, C14_Treg-Naive was 
predominantly composed of cells from peripheral blood, whereas 
C11_Treg-Activated cells were predominantly from tumor tissue 
(Extended Data Fig. 6b). We found that Treg clonal expansion was 
cluster specific and occurred within tumors (Extended Data Fig. 
7b), suggesting the potential for tumor-associated antigen recogni-
tion and local clonal expansion of suppressive tumor-resident Tregs. 
To evaluate the extent of tissue migration across blood, normal tis-
sue and malignant kidney tissue of a certain clonotype, we per-
formed STARTRAC migration (migr index) analysis. We observed 
that T effector memory (TEM) and T effector (TEff) cells were associ-
ated with the highest mobility across tissues, whereas dysfunctional 
CD8+ T cells exhibited tumor specificity (Extended Data Fig. 7a). 
Finally, we tested the extent of state transition of each clonotype 
among T cell clusters. STARTRAC transition (tran index) analysis 
indicated that cells from the dysfunction clusters (C1,4,9,10,12_
CD8) were connected, corroborating the developmental trajectory 
of dysfunction observed at the chromatin and gene expression levels 
(Extended Data Fig. 7c). Taken together, our findings allow us to 
link the transcriptional states of T cells in treatment-naive patients 
to TCR clonality and provide a resource for investigating T cell 
dynamics in ccRCC.

NF-κB induces a pro-apoptotic program in dysfunctional T cells. 
TCR signaling upon tumor antigen-dependent engagement results 
in activation and nuclear translocation of several TFs including 
NF-κB, to promote survival and effector differentiation46. Ostensibly 
at odds with the critical role of NF-κB in T cell activation, our epig-
enomic analysis revealed robust NF-κB motif enrichment in late 
dysfunctional (C11_CD8) RCC-infiltrating CD8+ T cells (Fig. 1f). 
In addition to NFKB1 and NFKB2, we observed increased TF activ-
ity for other members of the NF-κB family, indicating enriched 
activity of both classical and alternative NF-κB pathways in late 
dysfunctional CD8+ T cells (Fig. 4a). Moreover, the regulatory ele-
ments in the cluster composed of late dysfunctional CD8+ T cells 
were enriched in gene ontology terms for biological processes 
related to NF-κB pathway activity (Extended Data Fig. 2f). Previous 
studies have shown that in chimeric antigen receptor (CAR) T cells, 
self-clustering of CD19 CAR results in 4-1BB-dependent persistent 
activation of the NF-κB pathway, upregulation of pro-apoptotic 
genes and apoptosis of CAR T cells47. A pro-apoptotic role of 
NF-κB in T cells in diverse contexts such as infection has also been 

described46. We hypothesized that in late dysfunctional CD8+ T cells 
in ccRCC, NF-κB could drive a pathway that impairs survival. To 
test this hypothesis, we monitored the chromatin landscape of genes 
involved in apoptotic pathways. We first examined FAS (CD95), 
FASLG and TNFSF10 (TRAIL), which have been shown to be direct 
transcriptional targets of NF-κB48,49. We observed significantly 
increased gene scores for FAS, FASLG and TNFSF10 in C11_CD8 
compared with the nondysfunctional/effector tumor-infiltrating 
CD8+ T cells and earlier dysfunction fates (Fig. 4b). For a number 
of potential enhancers and/or regulatory regions of those genes, we 
detected increased accessibility along the axis from nondysfunction 
to late dysfunction (Extended Data Fig. 8a). Moreover, we observed 
significantly increased gene scores and accessibility of potential 
regulatory elements for TRAF1 and TRAF2 in the late dysfunction 
cluster compared with effector cells and earlier dysfunction fates 
(Extended Data Fig. 8b). TRAF1 and TRAF2 are NF-κB-inducible 
genes encoding adapter molecules that function upstream of NF-κB 
and downstream of diverse signaling pathways, including the 4-1BB 
signaling pathway. In complete agreement with our epigenetic pro-
filing data, gene expression of FAS, FASLG, TNFSF10, TRAF1 and 
TRAF2 was higher in the clusters corresponding to dysfunctional 
tumor-infiltrating CD8+ T cells (Fig. 4c). To further investigate the 
potential link between high NF-κB pathway activity in dysfunc-
tional T cells and cell death, we examined the chromatin landscape 
of other pro-apoptotic genes including BCL2L14, DTHD1 and BID 
and found increased accessibility for potential regulatory elements 
of those genes along the nondysfunction to late dysfunction axis 
(Extended Data Fig. 8c). Moreover, GREAT gene ontology analysis 
of regulatory elements enriched in late dysfunctional CD8+ T cells 
confirmed enrichment in biological processes related to apoptosis 
(Extended Data Fig. 2f).

TCR repertoire analysis across blood, tumor tissue and normal 
adjacent kidney tissue revealed potential sources of CD8+ T cells 
that enter the dysfunction trajectory50. Among the 8,550 unique 
clonotypes, we identified 258 clonotypes present in at least one of 
the dysfunction-related clusters and one of the nondysfunctional 
CD8+ T cell clusters (Extended Data Fig. 7d). We observed clono-
types shared between blood (effector memory) and dysfunctional 
CD8+ T cell clusters (for example, clonotype 187), normal adjacent 
tissue/nondysfunctional tumor clusters (resident memory) and dys-
functional CD8+ T cell clusters (for example, clonotype 56), as well 
as among the three tissues (for example, clonotype 237) (Extended 
Data Fig. 7d,e).

At the protein level, we used flow cytometry to validate the 
co-expression of dysfunction markers (for example, PD1, TOX, 
EOMES, CD39 and TIM3) with FAS, TRAF1 and 4-1BB in 
tumor-infiltrating CD8+ T cells in ccRCC patient samples that 
had also been analyzed by single-cell transcriptomic/epigenomic 
assays, as well as in an additional set of tumor samples (n = 9; 

Fig. 4 | NF-κB drives a pro-apoptotic program in late dysfunctional CD8+ T cells infiltrating ccRCC. a, UMAP projection of scATAC-seq profiles colored 
by chromVAR TF motif bias-corrected deviations of the indicated TFs (NFKB1/2 and RELA/B were significantly enriched in C11_CD8 compared with the 
other CD8 T cell clusters; two-sided Wilcoxon rank-sum test P < 2.2 × 10−16, n = 18,736 cells). b, Violin plots of gene activity scores of the indicated NF-κB 
transcriptional targets for effector/nondysfunctional (C4,5,7_CD8) and dysfunctional (C8,9,10,11_CD8) T cell clusters. Pairwise comparisons of gene 
activity scores for the indicated gene between specified T cell clusters were determined using a two-sided Wilcoxon rank-sum test. The resulting P values 
underwent multi-test correction with the FDR method (**adjusted P < 0.01, ****adjusted-P < 0.0001; raw adjusted P values are listed in the source data; for 
clusters 4, 5, 7, 8, 9, 10, 11, n = 1,810, 1,821, 873, 924, 1,775, 2,440 and 1,613 cells, respectively). c, Violin plots showing gene expression levels of the indicated 
NF-κB transcriptional targets in CD4+ and CD8+ clusters, clustered as indicated in Fig. 3a (for clusters 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14, n = 8,677, 
7,423, 5,390, 5,272, 4,469, 4,160, 3,974, 3,689, 1,080, 890, 751, 669, 618 and 328 cells, respectively). d, Flow cytometry analysis of tumor-infiltrating 
CD8+ T cells. UMAP projection of expression of selected T cell markers in CD8+ T cells (n = 9 ccRCC patients). Color gradient indicates expression 
level (red, high; blue, low). e, Protein expression of NF-κB targets in tumor-infiltrating CD8+ T cells. FACS plot (FAS versus TRAF1) overlay of PD-1−TOX− 
(nondysfunctional) and PD-1+TOX+4-1BB+ (late dysfunctional) CD8+ T cell populations (left). Dot plots showing the percentages of FAS+ and FAS+TRAF1+ 
cells in different CD8+ T cell populations (right; one-way ANOVA test, Holm–Sidak correction for multiple comparisons; n = 9 ccRCC patients; **P < 0.01, 
***P < 0.001, ****P < 0.0001; raw P values are listed in the source data). f, Apoptosis flow cytometry analysis. Bar graph showing the viability status (mean 
± s.e.m.) as defined by flow cytometry for the indicated CD8+ T cell subsets (n = 10 ccRCC patients; raw P values are listed in the source data).
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Supplementary Table 1) (Fig. 4d and Extended Data Fig. 9a). As 
expected, these dysfunctional cells expressed low levels of proteins 
associated with effector function and memory (Fig. 4d). Notably, 
the protein expression of FAS and TRAF1 was significantly higher 
in late dysfunctional CD8+ T cells marked by co-expression of 
PD1, TOX and 4-1BB (Fig. 4e). To further investigate whether 
the late dysfunctional CD8+ T cells were prone to cell death as a  

consequence of chronic NF-κB activation in the tumor, we employed 
flow cytometry to monitor different stages of cell death (early/late 
apoptosis and necrosis). We utilized established markers of dys-
function (PD1 and TIM3), as well as 4-1BB, which is co-expressed 
with dysfunction markers in RCC24, and NF-κB transcriptional 
targets (FAS) to examine the relationship between dysfunctional 
state and cell death (Extended Data Fig. 9b). Phenotypic analysis 
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revealed that CD8+ T cells with high expression levels of PD1, TIM3 
and 4-1BB, corresponding to the late stage of dysfunction according 
to chromatin and gene expression data, showed the highest rates of 
late apoptosis (Fig. 4f and Extended Data Fig. 9c).

Finally, we tested whether the enriched NF-κB activity in 
late dysfunctional CD8+ T cells—specifically, the NF-κB-driven 
pro-apoptotic transcriptional program—was predictive of clinical  

outcome in human ccRCC. To evaluate this, we generated a sig-
nature composed of previously described cell-death-related 
NF-κB-inducible genes47,48 that in our dataset exhibited: increased 
regulatory element accessibility at the chromatin level, increased 
gene expression at the mRNA level and increased protein level in 
late dysfunctional CD8+ T cells compared with nondysfunctional/
effector CD8+ T cells. Specifically, this signature included the 
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pro-apoptotic genes FAS, FASLG and TNFSF10, as well as TRAF1 
and TRAF2 (ref. 51). Notably, in the ccRCC cohort (KIRC) of The 
Cancer Genome Atlas (TCGA)52, expression of the pro-apoptotic 
NF-κB signature was increased in more advanced disease stages 
(P = 1.9 × 10−5; Fig. 5a). High expression of this gene signature was 
associated with reduced overall patient survival in the TCGA KIRC 
cohort (P = 0.01; Fig. 5b), and this association was specific in patients 
with advanced disease (stage IV; P = 0.04; Fig. 5c and Extended Data 
Fig. 10a). Next, we examined whether the pro-apoptotic NF-κB 
activity was associated with response to therapy. We evaluated the 
signature in patients treated with either nivolumab (PD-1 blockade) 
or everolimus (mTOR inhibitor) in the CheckMate RCC cohorts15,53. 
The pro-apoptotic NF-κB signature was not predictive of response 
to either PD-1 blockade or mTOR inhibition (Extended Data  
Fig. 10b). However, patients with high expression of this signature had 
worse overall survival (P = 0.045; Fig. 5d). Notably, this association 
was observed only among patients receiving nivolumab (P = 0.005; 
Fig. 5e and Extended Data Fig. 10c). These findings suggest that the 
ccRCC microenvironment induces a rewired, pro-apoptotic tran-
scriptional program of NF-κB in a subset of tumor-infiltrating CD8+ 
T cells, which is associated with a worse overall prognosis.

Discussion
In RCC, in contrast to other immunotherapy-responsive solid tumors, 
high infiltration by CD8+ T cells is associated with a worse progno-
sis21. To test the hypothesis that heterogeneity of infiltrating CD8+ 
T cell fate may, at least in part, explain this paradox, we performed 
deep epigenetic profiling at the single-cell level, along with scRNA/
TCR-seq and flow cytometry of immune cells from treatment-naive 
ccRCC patients. Developmental fates of T cells in cancer patients are 
orchestrated by a complex interplay between epigenetic modulators 
and cis-regulatory sequences that drive gene expression programs in 
response to cues emanating primarily from the tissue of residency. 
Recent technological advances including ATAC-seq27,34 have proven 
valuable for functional genome annotation54.

Our findings provide a comprehensive map of the dynamic 
changes in the dysfunction-regulome of T cells, focusing on the 
path to dysfunction of ccRCC-infiltrating CD8+ T cells. We found 
a dynamic evolution of potential regulatory elements of epigenetic 
modulators that may, in part, explain the unique chromatin acces-
sibility signature of exhausted T cells described previously in cancer 
and chronic infections4,9–11. We also found alterations in the accessi-
bility of potential regulatory elements of stress response genes dur-
ing progression of dysfunction, probably reflecting the extensive fate 
rewiring that occurs along the dysfunction axis. T cells acquiring a 
late dysfunction chromatin identity also displayed enriched binding 
motifs for HIF2α. The potential effect of HIF2α inhibitors55,56 on 
T cells needs further investigation. We also provide evidence sug-
gesting stark differences between the path to T cell dysfunction in 
ccRCC and that in other tumor types or in chronic infection at the 
level of TFs (for example, TBX5) and surface markers (for example, 
CD101). Moreover, by integrating the derived gene activity scores 

with gene expression levels, we found that chromatin accessibility 
analysis could define dysfunction fates with high resolution.

The role of NF-κB as an antiapoptotic regulatory factor in diverse 
cell types has been previously described46,51. Strikingly, our studies 
showed that in late dysfunctional CD8+ T cells infiltrating ccRCC, 
NF-κB induced a pro-apoptotic program (Fig. 5f). Importantly, a 
gene signature composed of cell-death-related NF-κB-induced tar-
gets could predict patient survival in ccRCC. Previous studies have 
shown that 4-1BB is co-expressed with exhaustion markers24 and is 
upregulated during hypoxia57. Further studies are needed to gener-
ate mechanistic insights into the signaling pathways that converge 
on NF-κB in ccRCC-infiltrating CD8+ T cells and to test whether 
NF-κB-hijacking of a pro-apoptotic pathway is an immune feature 
of other cancers (Fig. 5f).

A notable limitation of our study was the epigenomic analysis 
of treatment-naive patient samples in the early disease stage (stage 
I). Further studies are needed to map the epigenetic landscape dur-
ing disease progression and in relation to the genetic makeup53,58,59 
and subsets of RCC18,60. Recent scRNA-seq studies have shown 
that terminally exhausted CD8+ T cells are enriched in advanced 
ccRCC and specific CD8+ T cell phenotypes are associated with 
immune-checkpoint blockade22,23,25. Investigation of the impact of 
therapy on the epigenetic landscape of immune cells and the plas-
ticity of the TF networks in response to or resistance to immuno-
therapy is warranted. Profiling of epigenetic states may help us to 
understand whether T cell populations can be durably reactivated 
by therapy. Our results in ccRCC, along with previous findings in 
preclinical models9–11, raise questions regarding the potential clini-
cal applicability of epigenetic therapy in preventing progression to or 
even reversing unfavorable epigenetic states. Alternatively, targeting 
key transcription factors with emerging therapeutic modalities may 
remodel the epigenome of dysfunctional immune cells. Finally, our 
analysis included a modest number of patient samples. Future work 
should enhance our study by profiling the epigenetic landscape of 
a larger number of patient samples and integrating epigenetic and 
transcriptomic data in an immune cell fate atlas for ccRCC.

In conclusion, our study provides a unique resource of single-cell 
epigenomic data along with transcriptomic, TCR- and protein-based 
information for immune cells in ccRCC patients. Our study dem-
onstrates the power of single-cell epigenomics for the derivation 
of epigenetic and/or fate signatures with prognostic value, which 
represents a step toward immune-type-based patient stratifica-
tion. These comprehensive single-cell maps of T cells could facili-
tate understanding of T cell biology in cancer patients and guide 
therapeutic strategies to overcome resistance due to immune cell 
fate heterogeneity.

Methods
Human specimens. Surgically removed stage I primary ccRCC tumor tissue, 
adjacent normal kidney tissue and whole blood were obtained within 24 h 
post-surgery (Avaden Bio; single-cell analyses). Additional RCC tumor samples 
(stage I; flow cytometry/functional assays) were obtained from Discovery Life 
Science. No patient had received prior systemic therapy for their cancer. No ethical 

Fig. 5 | A chromatin-derived NF-κB signature of late dysfunctional CD8+ T cells predicts patient survival. a, A gene expression signature of pro-apoptotic 
NF-κB targets in late dysfunctional CD8+ T cells for the indicated disease stage in the external TCGA KIRC cohort (two-sided Wilcoxon rank-sum test for 
pairwise comparison; Kruskal–Wallis test for global P value; n = 325 patients for early ccRCC, n = 123 patients for locally advanced ccRCC, n = 83 patients 
for metastatic ccRCC). Box plot statistical values including whiskers, quartiles, and median, max and min values are listed in the source data. b, Overall 
survival for the overall TCGA ccRCC cohorts based on high pro-apoptotic NF-κB signature (≥median) versus low signature expression. Log-rank test was 
used to compare the survival between the two groups. χ2 = 6.6 on 1 degrees of freedom, P = 0.01. c, Overall survival for the advanced TCGA ccRCC cohorts 
based on high pro-apoptotic NF-κB signature (≥median) versus low signature expression. Log-rank test was used to compare the survival between the 
two groups. χ2 = 4.3 with 1 degree of freedom, P = 0.04. d, Overall survival for the entire CheckMate cohort, based on high pro-apoptotic NF-κB signature 
(≥median) versus low signature expression. Log-rank test was used to compare the survival between the two groups. χ2 = 4 with 1 degree of freedom, 
P = 0.045. e, Overall survival for the PD-1 blockade CheckMate cohort, based on high pro-apoptotic NF-κB signature (≥median) versus low signature 
expression. Log-rank test was used to compare the survival between the two groups. χ2 = 7.7 for 1 degree of freedom, P = 0.005. f, Model of the NF-κB 
pro-apoptotic program in late dysfunctional CD8+ T cells. Image created with BioRender.com.
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approval was required for the study, as informed consent was obtained prior to 
tissue acquisition by the vendors, as stated by their policies. Patient information is 
summarized in Supplementary Table 1.

Sample processing. Renal tumor and adjacent normal tissue samples were 
dissociated into single cells by a semi-automated mechanical and enzymatic 
process. Tumor tissue was cut into pieces of (~2–3 mm) and transferred to C Tubes 
(Miltenyi Biotech) containing a mix of enzymes (Tumor Dissociation Kit, human; 
Miltenyi Biotech). Mechanical dissociation was performed on a gentleMACS 
dissociator (program 37C_h_TDK_1). To allow for enzymatic digestion, the 
tubes were incubated for 30 min at 37 oC, with rotation, after the first and second 
mechanical dissociation step. Mononuclear cells from whole peripheral blood of 
paired subjects were isolated by density gradient centrifugation using SepMate 
tubes (Stem Cell Technologies). Cells were then cryopreserved in Recovery Cell 
Culture Freezing Medium (Thermo Fisher). Prior to single-cell sequencing, 
cells were rapidly thawed in warm Dulbecco’s modified Eagle medium (Gibco) 
supplemented with 10% fetal bovine serum (FBS) and pelleted.

Cell sorting. Tumor and adjacent normal tissue cells and peripheral blood 
mononuclear cells (PBMCs) were resuspended in FACS staining buffer (1% bovine 
serum albumin (BSA) and 1 mM EDTA in Dulbecco’s phosphate-buffered saline 
(PBS); Gibco) and incubated with Human TruStain FcX (BioLegend) for 10 min 
on ice to block nonspecific binding to Fc receptors. Cells were then washed and 
stained with CD45-PE-Dazzle594 (BioLegend) for 20 min on ice. Next, cells were 
filtered and resuspended in FACS staining buffer with addition of DNase for 
FACS sorting. DAPI was added to the cell suspension immediately before FACS 
sorting for dead cell exclusion. Live CD45+ single cells were sorted for downstream 
single-cell analysis.

Nucleus isolation. Isolation of nuclear suspensions was performed according 
to ref. 27 and the demonstrated protocol: Nuclei Isolation for Single Cell ATAC 
Sequencing (10x Genomics). Owing to the limited numbers of immune cells from 
patient samples, we followed a low cell input nucleus isolation protocol. Briefly, 
cells were resuspended in 50 μl PBS + 0.04% BSA and transferred to a 0.2 ml tube 
and centrifuged (300g for 5 min at 4 oC). The supernatant was removed, added to 
45 μl of chilled lysis buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 
0.1% Tween-20, 0.1% Nonidet P40 Substitute, 0.01% digitonin and 1% BSA) and 
gently mixed by pipetting. The tube was then incubated on ice for 3 min. After 
lysis, 50 μl of chilled wash buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM 
MgCl2, 0.1% Tween-20 and 1% BSA) was added without mixing. Nuclei were 
centrifuged (500g for 5 min at 4 oC) and the supernatant was carefully removed. 
Next, 45 μl of diluted Nuclei Buffer (10x Genomics) was added without mixing, 
nuclei were centrifuged (500g for 5 min at 4 oC), and the supernatant was carefully 
removed. Isolated nuclei were resuspended in 7 μl chilled diluted Nuclei Buffer 
(10x Genomics). Nuclei were immediately used to generate scATAC-seq libraries as 
described in the Methods section.

Preparation and sequencing of scATAC-seq library. Nuclei were suspended at 
1:20 dilution in 20x Nuclei Buffer provided by the Chromium NextGEM Single 
Cell ATAC Library & Gel Bead Kit. Nuclei were aliquoted for the transposition 
reaction to target 2000 recovered nuclei. Transposed nuclei were partitioned using 
a Chromium Single Cell Instrument (10x Genomics) and libraries were generated. 
Sequencing was performed on an Illumina NextSeq 500 platform (Illumina) by 
a multiplexed paired-read run with 2×50 cycles. Cell Ranger ATAC v.3.0.2 (10x 
Genomics) was used to perform demultiplexing and read alignment.

Preparation and sequencing of scRNA-seq and TCR library. Single cells 
suspended in PBS with 0.04% BSA were loaded on a Chromium Single Cell 
Instrument (10x Genomics). RNA-seq and V(D)J libraries were prepared 
using the Chromium Single Cell 5′ Library, Gel Beads, & Multiplex Kit (10x 
Genomics). After amplification, cDNA was split into RNA-seq and V(D)
J library aliquots. To enrich the V(D)J library aliquot for TCR a/b, the 
cDNA was split into two 20 ng aliquots and amplified in two rounds using 
primers designed in-house. Specifically, for first-round amplification, the 
primers used were MP147 (ACACTCTTTCCCTACACGACGC) for short 
R1, MP120 (GCAGACAGACTTGTCACTGGA) for human TRAC and 
MP121(CTCTGCTTCTGATGGCTCAAACA) for human TRBC. For second 
round amplification, 20 ng aliquots from the first round were amplified using 
MP147, MP128 (GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCAG
GGTCAGGGTTCTGGATA), a nested R2 plus human TRAC and MP129  
(GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCAGGGTCAGGGT
TCTGGATA), a nested R2 plus human TRABC. V(D)J libraries were prepared 
from 25 ng each of hTRAC- and hTRBC-amplified cDNA. Paired-end sequencing 
was performed on an Illumina NextSeq500 for RNA-seq libraries (Read 1: 26-bp 
for UMI and cell barcode, 8-bp i7 sample index; Read 2: 55-bp transcript read) 
and V(D)J libraries (Read 1: 150-bp, 8-bp i7 sample index; Read 2: 150-bp read). 
For RNA-seq libraries, Cell Ranger Single-Cell Software Suite (10X Genomics, 
v.2.2.0) was used to perform sample demultiplexing, alignment, filtering and UMI 
counting. The human GRCh38 genome assembly and RefSeq gene model for 

human were used for the alignment. For V(D)J libraries, Cell Ranger Single-Cell 
Software Suite (10x Genomics, v.3.0.2) was used to perform sample demultiplexing, 
de novo assembly of read pairs into contigs, alignment and annotation of contigs 
against the germline segment V(D)J reference sequences from IMGT, labeling and 
location of CDR3 regions and grouping of clonotypes.

Flow cytometry staining. Single-cell suspensions were aliquoted into a 96-well 
V-bottomed plate. The plate was centrifuged (500 g for 3 min at 4 °C) and 
supernatant was removed. Cell pellets were washed with FACS buffer (PBS with 
5% FBS and 2 mM EDTA) and resuspended in a mixture of TruStain FcX and 
True-Stain Monocyte Blocker (BioLegend) to block human Fc receptors and 
nonspecific binding, respectively, and LIVE/DEAD Fixable Blue Dead Cell Stain 
(Thermo Fisher) for 15 min on ice. Cells were washed, resuspended in a mixture of 
fluorochrome-conjugated cell-surface-staining antibodies diluted in FACS buffer 
and incubated on ice for 20 min. Cells were washed and resuspended in fixation/
permeabilization buffer (Thermo Fisher) on ice for 20 min. After fixation and 
permeabilization, cells were washed twice with permeabilization/wash buffer. 
Cell pellets were resuspended in intracellular staining antibodies diluted in 
permeabilization buffer at 4 oC overnight. To quantify apoptosis status, we used a 
Vybrant FAM-VAD-FMK poly caspase kit (Molecular Probes). Samples were filtered 
using an AcroPrep Advance Filter Plate and acquired using a BD Symphony A5 
cytometry or Cytek Aurora spectral cytometer. The antibodies used in this study 
were as follows: PD-1 (BD Bioscience, clone EH12.1, BUV737, catalog no. 612792, 
1:50 dilution); TOX (Miltenyi, clone REA473, PE, catalog no. 130-120-716, 1:50 
dilution); EOMES (Invitrogen, clone WD1928, PE-eFluor610, catalog no. 61-4877-
41, 1:50 dilution); TCF1/TCF7 (Cell Signaling, clone C63D9, Pacific Blue, catalog 
no. 9066 S, dilution 1:50); 4-1BB (BD Bioscience, clone 4B4-1, BV480, catalog no. 
746700, dilution 1:50); TRAF1 (BD Bioscience, clone 1F3, AF647, catalog no. 566738, 
dilution 1:25); CD95 (BioLegend, clone DX2, APC/Fire 750, catalog no. 305638, 
dilution 1:50); CD39 (BD Bioscience, clone TU66, BUV661, catalog no. 749967, 
dilution1:50); CD3 (BioLegend, clone UCHT1, BV570, catalog no. 300436, dilution 
1:25); CD4 (BioLegend, clone SK3, SparkBlue550, catalog no. 344656, dilution 
1:400); CD8 (BD Bioscience, clone RPA-T8, BUV805, catalog no. 749366, dilution 
1:100); TIM3 (BioLegend, clone F38-2E2, BV650, catalog no. 345028, dilution 1:100); 
Ki67 (BD Bioscience, clone B56, BV711, catalog no. 563755, dilution 1:200); PRF1 
(BioLegend, clone B-D48, AF700, catalog no. 353324, dilution 1:100); and CD45RA 
(BD Bioscience, clone HI100, BVU395, catalog no. 740298, dilution 1:100).

scATAC-seq quality control and filtering. scATAC-seq data from eight patients 
and three tissue types (PBMC, tumor and adjacent normal) underwent quality 
control analysis and filtering based on enrichment of ATAC-seq accessibility 
at TSSs and the number of unique fragments per cell, as described in ref. 27. 
TSS positions were acquired from the TxDb.Hsapiens.UCSC.hg38.knownGene 
Bioconductor package. Potential doublets were identified and removed using the 
software tool ArchR28, following the instructions in the manual for ArchR v.1.0.1.

Genome-accessibility-based cell clustering. Two rounds of feature selection, 
dimension reduction and cell clustering were performed as previously 
described27,61. For immune cell clustering, first, a tiling window-by-cell counting 
matrix was constructed by counting the Tn5 insertion overlaps per window for 
each cell, using a tiling window size of 2.5 kb across the human genome (hg38). The 
matrix was then binarized and dimension reduction was conducted by computing 
the term frequency-inverse document frequency (TF-IDF) transformation. The 
resulted TF-IDF matrix then underwent irlba singular value decomposition (SVD) 
and the second to 25th dimensions were retained; cells were then clustered using 
Seurat’s SNN graph clustering (v.3.0) with a starting resolution of 0.8, requiring 
the minimum size of a cluster to be 200. In this specific case, a final resolution of 
0.8 was used in the first round of clustering as the criterion for minimum cluster 
size was met. For the second round, peaks were called in each crude cell cluster 
obtained from the first round using MACS262, and a union peak set was collected 
by combining peaks from all the cell clusters. A peak-by-cell counting matrix was 
then constructed by counting the Tn5 insertion overlaps per peak for each cell, and 
dimension reduction and cell clustering were performed as in round one. During 
this round of clustering, resolutions of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0 and 
2.0 were tested, and a final resolution of 0.8 was chosen. For the subclustering of 
T cells, all the other parameters remained the same except that the minimum size 
of a cluster was set to be 250 for the first round of clustering, and a final resolution 
of 0.5 was used to meet this criterion.

Gene activity score. Gene activity scores were calculated based on a model 
described previously28. ATAC-seq signals from the whole gene body were 
considered, and additional signals with bi-directional exponential decay 
weight from the gene TSS (extended 5 kb upstream) and the gene transcription 
termination site up to 100 kb were scaled and incorporated after filtering signals 
from overlapping neighbor gene boundaries.

TF motif enrichment calculation. TF motif enrichment for peaks in each 
cell cluster was calculated using chromVAR35. CIS-BP motifs of 857 TFs 
were collected from chromVAR motifs ‘human_pwms_v2’, and the motif 
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matches within peaks as well as raw signal counts for all peaks were used. GC 
bias-corrected deviation scores and variability for each TF motif were then 
calculated as instructed by chromVAR.

Pseudotime analysis along dysfunction clusters. Cells from dysfunction clusters 
were ordered in pseudotime, and changes in gene score and TF motifs along the 
pseudotime trajectory were calculated and visualized in the form of heatmaps 
using the ArchR software tool28.

scRNA-seq analysis. scRNA-seq data from four RCC patients and three tissue 
types were filtered using Seurat (v.3.0)44 according to the instructions with the 
following criteria: nFeature_RNA > 500 & nFeature_RNA < 5000 & percent.
mito < 0.25 & nCount_RNA < 50000. Cells with multiple TCR alpha or beta 
chains were filtered as well. For T cell subclustering, T cells were recognized 
as having constructive TCR beta chains. Filtered data from four RCC patients 
were integrated and batch-effect-corrected, clustered, analyzed and visualized 
following the standard dataset integration and analysis workflow in Seurat v.3.0. 
Sets (modules) of highly correlated genes in the scRNA-seq data were calculated 
using WGCNA63 from the four-patient scRNA-seq Seurat object constructed as 
described above, with the following parameters: power = 10,corType = “bicor”, 
networkType = “signed”, minModuleSize = 10, reassignThreshold = 
0, mergeCutHeight = 0.15, numericLabels = F, maxBlockSize=47000, 
pamRespectsDendro = FALSE.

TCR-seq analysis. TCR-seq data were analyzed using scRepertoire (v.1.0.2)64. 
A TCR clonotype is defined as the combination of genes comprising the TCR 
and the nucleotide sequence of the CDR3 region (gene + nucleotide) for paired 
TCR alpha and beta chains. Differential gene expression analysis between T cell 
populations with different clonotypes (or clonotype features) was performed using 
Seurat 3.0 (ref. 44). Comparisons of the degree of clonal expansion (expa index), 
extent of tissue migration of TCR clonotype (migr index) and extent of state (cell 
cluster type) transitions of TCR clonotype (tran index) for each cell cluster were 
performed using STARTRAC as described previously6. Counts of cells per cluster 
assigned by specific frequency ranges were obtained using scRepertoire (v.1.0.2)64.

NF-κB signature analysis in TCGA and CheckMate cohorts. Bulk RNA-seq data 
for the TCGA KIRC cohort were obtained through the Broad GDAC Firehose 
(https://gdac.broadinstitute.org/), and clinical data for TCGA KIRC were obtained 
from cBioPortal for Cancer Genomics (https://www.cbioportal.org/)65,66. Bulk 
RNA-seq data and clinical data for the CheckMate cohorts were obtained from 
ref. 23. For both cohorts, the expression value of each gene was converted into a 
z-score (centered at 0). The NF-κB signature score was calculated as the average 
of the z-score expression values for all five genes in the signature. The association 
between the high and low signature score groups (defined as scores higher or 
lower than the median signature score of each cohort, respectively) and the overall 
survival time was evaluated by Kaplan–Meier analysis. Two-sided log-rank test 
was used to detect significant differences in overall survival between the high and 
low signature groups. All survival analyses were performed using the R packages 
survival (v.3.2-10) and survminer (v.0.4.9). For the CheckMate cohort, pairwise 
comparisons of NF-κB signature gene expression levels between clinical response 
groups were evaluated using two-sided Wilcoxon rank-sum test. For the TCGA 
KIRC cohort, the overall differences in levels of NF-κB signature gene expression 
among clinical stages were evaluated using Kruskal–Wallis test, and for pairwise 
comparisons between different stages a two-sided Wilcoxon rank-sum test was 
performed. All tests were performed using the R environment (R v.4.0.3).

Integration of paired four-patient scATAC-seq and scRNA-seq data. We used 
Seurat v.3.0 and Signac (v.1.5.0) to integrate scATAC-seq and scRNA-seq datasets 
collected from the same samples of four patients, according to the method 
introduced by Stuart and colleagues44. Integration was performed following the 
‘Integrating scRNA-seq and scATAC-seq data vignette’ instructions in Seurat. 
Cells with prediction score greater than 0.5 were classified as high-confidence cells 
projected from scATAC-seq onto the UMAP derived from the scRNA-seq dataset. 
An alluvial plot showing the projection of cells from the scATAC-seq platform onto 
the UMAP derived from the scRNA-seq data was generated using the ggalluvial 
package (v.0.12.3) in R.

Functional analysis of cis-regulatory regions. GREAT gene ontology (v.4.0.4) 
(http://great.stanford.edu/public/html/)33 was used to assign associated gene ontology 
terms to cis-regulatory regions that were most accessible (defined as FDR less than 
0.01 and log2(fold change) greater than 1.5 compared with other clusters) in each 
T cell subcluster in the scATAC-seq data. The basal plus extension model was chosen 
to associate genes with cis-regulatory genomic regions. hg38 genome assembly was 
used in the analysis. Heatmaps comparing enrichment of GO terms across the clusters 
was generated using Morpheus (https://software.broadinstitute.org/GENE-E/).

Statistics and reproducibility. No statistical method was used to predetermine 
sample sizes, but our sample sizes were similar to those reported in previous 
publications22,23,25. No data were excluded from the analyses. The experiments 

were not randomized. The investigators were not blinded to allocation during 
experiments or outcome assessment. Data collection and analysis were not 
performed blind to the conditions of the experiments. Statistical analysis was 
performed in R v.4.0.3. In general, comparisons of numerical variables between 
groups were carried out with a nonparametric approach (two-tailed Wilcoxon 
rank-sum test, Kruskal–Wallis test). Statistical analysis for flow cytometry and 
dysfunction score was performed by one-way analysis of variance (ANOVA). Data 
distribution was not formally tested to be normal. Gene ontology term enrichment 
was calculated using either the binomial test or the hypergeometric test. Survival 
curves were analyzed by the Kaplan–Meier method and compared using the 
log-rank test.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Single-cell ATAC-seq, RNA-seq and TCR-seq data that support the findings of 
this study have been deposited in the Gene Expression Omnibus under accession 
code GSE181064. Bulk RNA-seq data for the TCGA KIRC cohort were obtained 
through the Broad GDAC Firehose (https://gdac.broadinstitute.org/), and clinical 
data for TCGA KIRC were obtained from cBioPortal for Cancer Genomics 
(https://www.cbioportal.org/)65,66. Bulk RNA-seq data and clinical data for the 
CheckMate cohorts were obtained from ref. 23. Source data are provided with this 
paper. All other data supporting the findings of this study are available from the 
corresponding author on reasonable request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Single-cell chromatin accessibility of immune cells in ccRCC. a, Representative scATAC-seq data quality control filters of a patient 
sample (patient 1002300, tumor; left). The x-axis shows the number of unique ATAC-seq nuclear fragments (in log scale) in each single cell (each 
dot) and the y-axis shows the transcriptional start sites (TSS) enrichment of all fragments in that cell. Dashed lines represent the filters for high-quality 
single-cell data (at least 1,000 unique fragments and TSS score great than or equal to 8). Representative plot of scATAC-seq fragment size distributions 
demonstrating sub-, mono-, and multi-nucleosome spanning ATAC-seq fragments (right). b, UMAP projection of 34,703 scATAC-seq profiles of CD45+ 
cells from peripheral blood, tumor, and adjacent normal tissue combining eight patient samples. Dots represent individual cells and colors indicate cluster 
identity. c, UMAP projection of immune cells colored by gene scores, reflecting the general chromatin accessibility of the indicated gene. d, Patient-specific 
contribution of cells in each cluster derived from b. e, Tissue-specific contribution of cells in each cluster derived from b.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Cis-regulatory elements in open chromatin regions of T cells in ccRCC. a, Patient-specific contribution of T cells in each cluster 
derived from Fig. 1b (left), and UMAP projection (right). b, UMAP projection of T cells colored by gene activity scores of the indicated gene (n = 18736 
cells). c, Tissue-specific contribution of T cells in each cluster. d, Genome tracks of aggregate scATAC-seq data visualization of the SELL and GNLY loci, 
clustered as indicated in Fig. 1b. e, UMAP projection of T cells colored by gene activity scores of the indicated gene. f, Enrichment of Gene Ontology terms 
associated with the top accessible cis-regulatory elements of at least one cluster (LFC > 1.5, FDR < 0.01 compared to other clusters), across all clusters. 
Selected Gene Ontology terms that are significantly enriched (adjusted binomial p-value or adjusted hypergeometric p-value<0.05; here term enrichment 
was calculated using either the binomial test or the hypergeometric test, with p-values corrected with the Benjamini-Hochberg procedure) in at least one 
cluster are shown. Analysis was done using the software tool GREAT. Here, Benjamini-Hochberg corrected binomial p-values are shown.
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Extended Data Fig. 3 | TF motif enrichment in open chromatin regions of T cells in ccRCC. a, UMAP projection of T cell scATAC-seq profiles colored by 
chromVAR TF motif bias-corrected deviations for the indicated TFs (two-sided Wilcoxon rank sum test; p < 2.2×10−16 for the TFs in the indicated clusters 
-CD4 clusters: LEF1, TCF7, FOXO1, TCF7, STAT1, BACH2 and CD8 clusters: RREB1, KLF3, TWIST2- compared to the other CD4 or CD8 T cell clusters, 
respectively). b, UMAP projection of T cell scATAC-seq profiles colored by chromVAR TF motif bias-corrected deviations for the indicated TFs (two-sided 
Wilcoxon rank sum test; p < 2.2×10−16 for STAT3 and STAT5 in C4_CD8 compared to the other CD8 T cell clusters, p < 2.2×10−16 for POU2F1 in C12_CD4 
compared to the other CD4 T cell clusters). c, UMAP projection of T cell scATAC-seq profiles colored by chromVAR TF motif bias-corrected deviations for 
the indicated TFs (two-sided Wilcoxon rank sum test; for TBX5, p < 2.2×10−16 for C11_CD8 compared to C10_CD8 or C9_CD8, p < 2.2×10−16 for C9,10,11_
CD8 compared to the other clusters; for IRF1, NFATC2, NFATC3, and EPAS1, p < 2.2×10−16 for the indicated cluster compared to the other clusters; a, b, c, 
n = 18736 cells).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Regulatory chromatin landscapes of T cells in ccRCC. a, Violin plots of gene activity scores of the indicated genes for effector/
non-dysfunctional (C4,5,7_CD8) and dysfunctional (C8,9,10,11_CD8) T cell clusters. Pair-wise comparisons of gene activity scores for the indicated gene 
between specified T cell clusters were determined using a two-sided Wilcoxon rank-sum test. Resulted p values further underwent multi-test correction 
with the FDR method (*, adjusted-p < 0.05; **, adjusted-p < 0.01; ****, adjusted-p < 0.0001; raw adjusted p values are listed in the Source Data file).  
b, Genome tracks of aggregate scATAC-seq data visualization of the indicated gene locus, clustered as denoted in Fig. 1b. c, Violin plots of gene activity 
scores of the indicated genes for dysfunctional (C8,9,10,11_CD8) T cell clusters (two-sided Wilcoxon rank sum test; ****, p < 0.0001; raw adjusted p values 
are listed in the Source Data file). Comparisons based on Fig. 2c (early/middle versus late dysfunction fate). Effector/non-dysfunctional (C4,5,7_CD8) T 
cell clusters are included for comparison. a, c, for clusters 4, 5, 7, 8, 9, 10, 11, n = 1810, 1821, 873, 924, 1775, 2440, 1613 cells, respectively.
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Extended Data Fig. 5 | Single-cell transcriptional profiling of CD45+ cells in ccRCC. a, UMAP projection of 108,328 scRNA-seq profiles of CD45+ cells 
isolated from tumor, adjacent normal tissue, and peripheral blood of four patient samples. Each dot corresponds to one single-cell colored according to 
cell cluster. b, UMAP projection of cells colored by gene expression levels of selected lineage marker genes across CD45+ cell clusters. c, Heatmap of 
expression of the top 3 marker genes in each cluster across all clusters. d, Tissue-specific contribution of cells in each cluster derived from a.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Single-cell transcriptional profiling of T cells in ccRCC. a, Patient-specific contribution of T cells in each cluster derived from Fig. 
3a (left), and UMAP projection (right). b, Tissue-specific contribution of T cells in each cluster derived from Fig. 3a and UMAP projection (right). c, UMAP 
projection of cells colored by gene expression levels of the indicated marker genes. d, Heatmap showing the proportions of cells from each scATAC-seq 
cluster (x axis) that are annotated with cluster labels transferred from scRNA-seq clusters (y axis). e, Histogram of maximum prediction scores for every 
cell in scATAC-seq data; maximum prediction score measures the confidence level of annotating the scATAC-seq cell with cluster labels transferred from 
scRNA-seq data. Here, prediction score higher than 0.5 is considered of high confidence (n = 18736 cells). f, Gene-gene correlation heatmap of genes 
within each module identified by weighted gene co-expression module analysis. Selected genes from the dysfunction module (boxed) are listed (see 
Methods).
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Extended Data Fig. 7 | Single-cell TCR profiling of T cells in ccRCC. a, Clonal expansion and tissue migration indices of CD8+ T cell in the indicated 
clusters, calculated by STARTRAC. Each dot represents one patient; n = 4 patients. Box plot statistical values including whiskers, quartiles, median, max 
and min values are listed in the Source Data file. b, Clonal expansion index of the indicated CD4+ clusters, calculated by STARTRAC. Each dot represents 
one patient; n = 4 patients. Box plot statistical values including whiskers, quartiles, median, max and min values are listed in the Source Data file.  
c, Heatmap displaying the pair-wise cellular state transition index of T cells between clusters based on clonotype similarity, calculated by STARTRAC. 
d, Heatmap of 258 clonotypes (each row) shared by at least one of the dysfunction-related clusters (cl.1, 4, 9, 10, 12) and one of the non-dysfunctional 
CD8+ T cell clusters (cl.5, 6, 7, 8, 13). Red grid indicates detection of the clonotype in the corresponding cluster (each column) and blue grid indicates 
no detection of the clonotype in the corresponding cluster. e, Examples of clonotypes and their distribution on UMAP projection of T cells. Each red dot 
represents cells sharing the indicated clonotype.
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Extended Data Fig. 8 | Cis-regulatory element accessibility of proapoptotic genes in late dysfunctional ccRCC infiltrating CD8+ T cells. a, Genome 
tracks of aggregate scATAC-seq data visualization of NFκB transcriptional targets gene loci, clustered as indicated in Fig. 1b. b, Violin plots of gene activity 
scores (left) and genome tracks of aggregate scATAC-seq data visualization of the NFκB transcriptional target genes (right), clustered as indicated in Fig. 
1b. Pair-wise comparisons of gene activity scores for the indicated gene between specified T cell clusters were determined using a two-sided Wilcoxon 
rank-sum test. Resulted p values further underwent multi-test correction with the FDR method (**, adjusted-p < 0.01; ****, adjusted-p < 0.0001; raw 
adjusted p values are listed in the Source Data file; for clusters 4, 5, 7, 8, 9, 10, 11, n = 1810, 1821, 873, 924, 1775, 2440 and 1613 cells, respectively).  
c, Genome tracks of aggregate scATAC-seq data visualization of proapoptotic gene loci, clustered as indicated in Fig. 1b.
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Extended Data Fig. 9 | Apoptosis flow cytometry analysis. a, Gating strategy for flow cytometry analysis of tumor-infiltrating CD8+ T cells. b, UMAP 
projection of tumor-infiltrating CD8+ T cells from ccRCC patients (n = 5), colored by the expression levels of the indicated markers. Color gradient 
indicates expression level (red-high, blue-low). c, Representative viability FACS plots for the indicated CD8+ T cell subsets.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Single-cell chromatin derived signature and survival. a, Overall survival for the indicated early stage (I, II, III) TCGA ccRCC 
cohorts based on high proapoptotic NFκB signature (≥median) versus low signature expression. Log-rank test was used to compare the survival between 
the two groups in each panel. TCGA stage I: Chisq=0.1 on 1 degrees of freedom, p = 0.7; TCGA stage II: Chisq=0.4 on 1 degrees of freedom, p = 0.5; TCGA 
stage III: Chisq=0.5 on 1 degrees of freedom, p = 0.5. b, NFκB-derived signature analysis of tumors from the CheckMate cohorts of advanced ccRCC 
examining response (two-sided Wilcoxon rank-sum test) following treatment with PD-1 blockade (left) or mTOR inhibition (right). For PD-1 blockade,  
CR/PR, n = 39 patients, SD n = 64 patients, PD n = 69 patients. For mTOR inhibition, CR/PR, n = 5 patients, SD n = 67 patients, PD n = 37 patients. Box plot 
statistical values including whiskers, quartiles, median, max and min values are listed in the Source Data file. c, Overall survival for the mTOR inhibition 
CheckMate cohort, based on high proapoptotic NFκB signature (≥median) versus low signature expression. Log-rank test was used to compare the 
survival between the two groups in each panel; Chisq=0.1 on 1 degrees of freedom, p = 0.818.
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