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A complete chart of the chromatin regulatory elements of immune cells in patients with cancer and their dynamic behavior is
necessary to understand the developmental fates and guide therapeutic strategies. Here, we map the single-cell chromatin
landscape of immune cells from blood, normal tumor-adjacent kidney tissue and malignant tissue from patients with early-stage
clear cell renal cell carcinoma (ccRCC). We catalog the T cell states dictated by tissue-specific and developmental-stage-specific
chromatin accessibility patterns, infer key chromatin regulators and observe rewiring of regulatory networks in the progression
to dysfunction in CD8* T cells. Unexpectedly, among the transcription factors orchestrating the path to dysfunction, NF-kB is
associated with a pro-apoptotic program in late stages of dysfunction in tumor-infiltrating CD8* T cells. Importantly, this epig-
enomic profiling stratified ccRCC patients based on a NF-kB-driven pro-apoptotic signature. This study provides a rich resource

for understanding the functional states and regulatory dynamics of immune cells in ccRCC.

he tumor microenvironment is a complex ecosystem com-
posed of heterogeneous cell types. The composition and func-
tional state of tumor-infiltrating immune cells have critical
roles in tumor development'. Immunotherapies have revolutionized
cancer treatment, resulting in sustained clinical responses when
treating tumors of diverse origins’. Nevertheless, the efficacy of
immunotherapy is not uniform across cancer types, and the major-
ity of patients still succumb to disease. Therefore, it is imperative to
uncover the mechanisms that drive or hinder effective responses to
immunotherapy.

Key factors associated with clinical outcome include the num-
ber and functional state of T cells infiltrating the tumor at baseline
and during treatment’. Recent single-cell-based transcriptomic
analyses of tumor-infiltrating lymphocytes reveal extensive hetero-
geneity, which may influence therapeutic outcome**. In addition
to naive, effector, memory and regulatory T cells, a substantially
more heterogeneous T cell compartment that displays features of
dysfunction is frequently observed*’. Dysfunctional T cells are
characterized by impaired production of cytokines and cytotoxic
molecules and by increased surface expression of inhibitory recep-
tors®. Intriguingly, dysfunctional T cells in models of chronic viral
infection and in murine and human cancers harbor unique chro-
matin accessibility patterns®''. Moreover, current immunothera-
pies cannot epigenetically reprogram these dysfunctional T cells;
therefore, durable responses are impeded'’. Recent findings have
started to elucidate the transcriptional networks that mediate T cell
dysfunction®''-"*. At present, the nature of the regulatory circuit
that orchestrates T cell transition along the naive-to-dysfunction
path in cancer is unclear.

Renal cell carcinoma (RCC) is known to be respon-
sive to immune-based therapies, and the development of
immune-checkpoint inhibitors has transformed the management

of advanced-stage RCC'*"'. Nonetheless, the majority of patients
either have primary resistance to therapies or develop resistance
after an initial response'®". RCC displays unique characteristics
compared with other immune-responsive solid tumors, including a
modest mutation burden® and association of increased infiltration
of CD8* T cells with worse prognosis*. The latter paradox can be
explained, in part, by high heterogeneity in the activation and cyto-
toxic potential of infiltrating T cells**-*. Therefore, to develop novel
and improved immune-based treatments in RCC, an understand-
ing of the developmental and functional states of immune cells in
patients is of paramount importance.

Here, we generate an epigenetic map of the evolution of immune
cell states and examine in detail the regulatory landscape of T cells in
patients with ccRCC. To gain insight into the epigenetic regulation
of lymphocytes in RCC, we employ single-cell assay technology for
transposase-accessible chromatin using sequencing (scATAC-seq)”’.
Through surveying the chromatin landscapes of T cells of malignant
and nonmalignant tissues from patients with ccRCC, we observe
cell-type-specific and tissue-specific chromatin accessibility patterns.
Furthermore, analysis of intratumoral CD8" T cells demonstrates a
continuum of dysfunctional states and an extensive remodeling of
the accessibility of regulatory elements. Paradoxically, we observed
enrichment of the NF-kB-binding motif in the late dysfunctional
CD8* T cell subset. Our data provide a valuable resource for dis-
secting the epigenetic and transcriptional heterogeneity of T cells in
ccRCC and have the potential to guide therapeutic strategies based
on a patient’s immune cell fate repertoire.

Results

Single-cell chromatin landscapes of immune cells in ccRCC. To
catalog the heterogeneity of epigenetic states of immune cells within
ccRCC patients, we generated scATAC-seq profiles (10x Genomics
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platform)? of immune cells (CD45%) isolated from blood and from
malignant and normal adjacent kidney tissues of eight patients with
early-stage ccRCC (Fig. 1a). In total, we generated scATAC-seq pro-
files of 34,703 immune cells. To exclude low-quality cells, we filtered
scATAC-seq data using cut-offs of 1,000 unique nuclear fragments
per cell and a transcription start site (TSS) enrichment score of 8,
as previously described”” (Extended Data Fig. 1a; Methods). These
scATAC-seq profiles also exhibited fragment-size periodicity and
high enrichment of fragments at TSSs (Extended Data Fig. la;
Methods). Next, a graph-based clustering of the immune cells was
performed based on their chromatin accessibility landscape, result-
ing in a total of 21 major clusters (Extended Data Fig. 1b). To clas-
sify these clusters, we computed the gene activity scores of known
immune-lineage-defining marker genes in each cluster, thereby
evaluating the general accessibility of the gene (Methods)” .
Annotation of cell types using this method led to identification of
all expected cell types (Extended Data Fig. 1c). Importantly, the dis-
tribution of immune cells from different patients across the clus-
ters suggested no patient-specific cellular epigenetic states or batch
effects (Extended Data Fig. 1b, d). Moreover, we observed clusters
dominated by cells from specific tissues, suggesting that tissue
residency affects the epigenetic landscape of some immune cells
(Extended Data Fig. le). Thus, the single-cell epigenetic approach
revealed a complex composition of immune cell fates in ccRCC.

T cells form a continuum of epigenetic states in ccRCC. T cells are
the key target population for cancer immunotherapies and the iden-
tification of effective biomarkers requires deep understanding of
T cell states. Therefore, we identified a population of immune cells
with high gene activity scores for known T cell markers (CD3D,
CD8A and CD4) and re-clustered this subset of 18,736 T cells based
on the chromatin accessibility landscape. We identified 12 T cell sub-
clusters with a rich diversity of chromatin landscapes and cell states
(Fig. 1b). T cell chromatin accessibility clustering did not exhibit
patient-specific effects (Extended Data Fig. 2a), consistent with pre-
vious immune single-cell transcriptomic studies’. Examination of
gene accessibility in CD4 and CD8 loci identified four CD4* and
eight CD8" T cell clusters (Extended Data Fig. 2b). These clusters
exhibited distinct tissue distribution for T cells. For example, clus-
ter C1_CD4 contained mainly cells from blood, whereas clusters
C8,9,10,11_CD8 and C12_CD4 were almost exclusively populated
with cells from tumor tissue (Fig. 1c and Extended Data Fig. 2c).
To classify each cluster, we examined the most accessible (log-fold
change (LFC) > 1, false discovery rate (FDR) < 0.05) genes in each
cluster (Fig. 1d). Cells of C1,2_CD4 type, which were predomi-
nant in peripheral blood, demonstrated distinctly high chroma-
tin accessibility for naive marker genes including LEFI and SELL
(Fig. 1d,e and Extended Data Fig. 2d,e). The C3_CD4 cluster, com-
posed of CD4* T cells mainly from tumor tissue, had high accessibil-
ity for IL7R and IL2, consistent with a memory- and/or effector-like
fate* (Fig. 1d and Extended Data Fig. 2e). In addition, cells in this
cluster displayed increased accessibility for Tyy-specific genes such
as IL21, a cell population recently implicated in antitumor immu-
nity’>’! (Fig. 1d). C5,6,7_CD8, which was predominantly composed
of CD8* T cells from tumor tissue and blood, exhibited high gene
accessibility of cytotoxic molecules including GNLY, PRFI and
GZMB, with cells in C6_CD8 exhibiting the highest accessibility

for these cytolytic molecules (Fig. 1d and Extended Data Fig. 2d,e).
C4_CD8 was mainly composed of CD8" T cells from malignant and
adjacent normal kidney tissue (Fig. 1c and Extended Data Fig. 2c).
Compared with those in C5,6_CDS8, the C4_CD8 T cells had mark-
edly reduced gene accessibility of effector molecules such as GNLY
(Fig. 1d and Extended Data Fig. 2d). However, C4_CD8 was char-
acterized by high gene accessibility for IL2, suggesting that some
level of effector function was retained in these cells (Fig. 1d and
Extended Data Fig. 2e).

C9,10,11_CD8 cells were almost exclusively derived from
tumor tissue and were characterized by a distinct chromatin
landscape that clustered separately (Fig. 1b, c and Extended Data
Fig. 2¢). These cells displayed high gene accessibility for multiple
dysfunction-related genes including TOX, LAYN, ENTPDI1, CTLA4
and CXCL13 (refs. 7'**?) (Fig. 1d and Extended Data Fig. 2e). For
C8_CD8, which was mainly composed of CD8* T cells from tumors
(Fig. 1c and Extended Data Fig. 2c), we observed a pattern of gene
accessibility that resembled that of C9,10,11_CD8, albeit at a lower
intensity, suggesting that cells in this cluster had an early dysfunc-
tion fate (Fig. 1d). C12_CD4, which mainly comprised CD4* T cells
from tumors (Fig. 1c and Extended Data Fig. 2c), was associated
with high gene accessibility for markers of tumor-infiltrating regula-
tory T cells (Tregs), including TNFRSF18, ICOS and CTLA4 (Fig. 1d
and Extended Data Fig. 2e). Given the strong correlation between
the functional status of tumor-infiltrating T cells and patient prog-
nosis’', we investigated the epigenetic landscape of these cells. To
further examine the identities of T cell clusters, we applied GREAT
gene ontology enrichment analysis™ to the highly accessible poten-
tial regulatory elements in each cluster (FDR<0.05; LFC>1) to
evaluate putative biological processes associated with these regula-
tory elements. This unbiased annotation demonstrated the enrich-
ment of gene ontology terms for biological processes related to
naive, effector/memory and regulatory fates (Extended Data Fig. 2f).
Combined, our data reveal a diverse regulatory landscape of T cells
in ccRCC patients.

A catalog of transcription factor programs in ccRCC. Having
mapped the epigenetic landscape of T cells across blood and normal
and malignant kidney tissue, we then sought to identify dynamic TF
regulatory programs in various T cell fates. The ATAC-seq method
enables the inference of TF activity?>***. By analyzing TF activity,
we identified cell-type-specific, fate-specific and tissue-specific
binding programs (Fig. 1f). Specifically, for CD4" T cells, the C1,2_
CD4 clusters were characterized by high TF activity for “naive”
TFs including LEF1, TCF7 and FOXO1 (Fig. 1f and Extended Data
Fig. 3a). Notably, in these clusters we observed motif enrichment for
CTCE an architectural factor that organizes higher-order chroma-
tin structure® (Fig. 1f and Extended Data Fig. 3a). C3_CD4 exhib-
ited motif enrichment for TFs related to immune activation such
as STAT1 (Extended Data Fig. 3a) and early-differentiated memory
T cells such as BACH2 (Extended Data Fig. 3a). C6_CD8, which
was composed of CD8* T cells with high effector function and a
substantial contribution from the blood (Fig. 1c,d and Extended
Data Fig. 2c), was enriched for motifs of less-described TFs includ-
ing RREBI, KLF3 and the bHLH family TF TWIST2 (Extended
Data Fig. 3a), in addition to TFs associated with effector function
such as EOMES.

>
>

Fig. 1] Single-cell chromatin accessibility of T cells in ccRCC. a, Schematic of chromatin accessibility, transcriptome and TCR profiling, and validation at
the protein level of cells from peripheral blood, tumor tissue and adjacent normal tissue in early-stage ccRCC patients. Imaged created with BioRender.com.
b, UMAP projection of 18,736 scATAC-seq profiles of T cells from peripheral blood, tumor tissue and adjacent normal tissue combining eight patient
samples. Dots represent individual cells and colors indicate cluster identity, specified next to each cluster. ¢, UMAP projection of T cells colored by tissue of
origin. d, Heatmap of gene activity scores of the most accessible genes in each cluster (LFC >1, FDR <0.05 compared with other clusters) derived from b.
e, Genome tracks of aggregate scATAC-seq data visualization of the LEFT locus, clustered as indicated in b. f, Heatmap representation of ATAC-seq
chromVAR bias-corrected deviations in the 49 most variable TFs across all scATAC-seq clusters. Cluster identities are indicated at the top of the plot.
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Heterogeneity of chromatin states of T cell dysfunction. In con-
trast to most other solid tumors that respond to immunotherapy, in
RCC high levels of infiltration by T cells is associated with inferior
prognosis®'. To gain insight into the heterogeneity of the fate com-
position of T cells, we further investigated the chromatin landscape
of T cells in the kidney. Compared with clusters characterized by
a high (>50%) contribution of effector CD8" T cells from tumor
tissue (C4,5,7_CD8), cells in C8,9,10,11_CD8, which were mainly
populated with cells from tumors (Extended Data Fig. 2c), exhibited
markedly higher gene accessibility for dysfunction-related genes
(Figs. 1d and 2a and Extended Data Fig. 4a,b). Also, the CDI01
locus was more accessible in effector CD8* T cells (Extended Data
Fig. 4b), in contrast to other tumor models'' where this receptor has
been associated with dysfunction.

To further dissect the mechanisms that drive the epigenomic
states of CD8" T cell dysfunction in ccRCC, we reconstructed
a cellular trajectory that approximated the development of cells
in C8,9,10,11 (refs. ***) and ordered these cells in pseudotime.
This analysis identified a trajectory starting with C8, progressing
through C9 and C10, and ending in C11 (Fig. 2b). We further iden-
tified genes with dynamic accessibility patterns across the trajectory
(Fig. 2¢). Genes that were highly accessible early in the trajectory
included genes encoding tissue-resident memory T cells markers
(ITGAE, CXCR6), costimulatory molecules (for example, TNFSF14)
and effector-related molecules (for example, TNF) (Fig. 2c
and Extended Data Fig. 4c). By contrast, genes that were accessible
late in the trajectory included dysfunction-related markers (for
example, TOX, TOX2, CD38, PRDM1, ENTPDI, BTLA, CXCL13
and CTLA4) (Fig. 2c). In addition, we observed differential acces-
sibility of genes encoding epigenetic modifiers along the trajec-
tory, with high accessibility early in the trajectory for epigenetic
modifiers such as KDM6B and later in the trajectory for modifiers
including JMJD4, SATB1, SMARCA2, SETBP1, STAG2 and ASXLI
(Fig. 2c and Extended Data Fig. 4c). Our data reveal a complex
interplay of epigenetic modifiers during the progression through the
dysfunction fates of CD8* T cells in ccRCC. Moreover, we observed
elevated accessibility of genes involved in protein homeostasis
(proteostasis; for example, HSPA2, HSPA1B, HSP90AAI, HSPH1,
FBXO2 and ATG?) in the middle-to-late stages of dysfunction
(Fig. 2c and Extended Data Fig. 4c). Thus, CD8" T cell progression
along the dysfunction path in ccRCC is accompanied by rewiring of
the regulatory landscape of stress response genes. Consistent with
these observations, regulatory elements within dysfunction-related
clusters were enriched in gene ontology terms for biological pro-
cess related to both chromatin remodeling and stress response
(Extended Data Fig. 2f).

Having cataloged the chromatin landscape of the fates of T cells
in the kidney, we next sought to identify the key TFs that could reg-
ulate these programs. Examination of TF-binding motif enrichment
revealed distinct patterns between effector cells in C4,5,7_CD8 and
dysfunctional cells in C9,10,11_CDS8 (Fig. 1f). C4_CD8, which was
composed of cells mainly from tumor and normal adjacent kidney
tissues (Extended Data Fig. 2c), was associated with high activity
of TFs involved in cytokine responses such as STAT3 and STAT5B
(Extended Data Fig. 3b). Within C4_CD8, we observed tissue of

origin specificity for TF activity. CD8" T cells primarily derived
from malignant tissue displayed binding motif enrichment for
AP-1 complex members including FOS, FOSB, JUN, JUNB, JUND,
MAFE, MAFG, MAFK and JDP2, which act downstream of T cell
receptor (TCR) signaling to promote cell-cycle progression and
effector functions including transcriptional activation of IL2
(Fig. 1c and Extended Data Fig. 3b). In addition, IRF4, which
cooperates with BATF/JUN heterodimers to promote CD8" T cell
effector differentiation”’, showed increased TF activity in T cells
prevalent in malignant tissue (Fig. 1c and Extended Data Fig. 3b).
By contrast, CD8" T cells with epigenetic landscapes similar to
those from normal tumor-adjacent kidney tissue were character-
ized by binding motif enrichment for KLF2, a transcription fac-
tor involved in T cell quiescence®, and several less-described TFs
including NFYA, SP4 and PBX3 (Fig. 1c and Extended Data Fig. 3b).
Tumor-infiltrating CD4* T cells (C12_CD4) were associated with
binding motif enrichment for cluster-specific TFs such as mem-
bers of the POU domain family (POU2F1, POU2F2 and POU2F3)
(Extended Data Fig. 3b), in addition to TF programs shared with
dysfunctional CD8* T cells (Fig. 1f).

To specifically illuminate the repertoire of TFs underlying
dysfunction-related chromatin configurations, we further exam-
ined the dynamic TF motif enrichment along the C8,9,10,11_CD8
dysfunction trajectory (Fig. 2b). We observed TFs such as TBX5
with enriched binding motifs throughout the dysfunction path
compared with effector cells, with the highest enrichment for late
dysfunction fates (Extended Data Fig. 3¢). Previous studies showed
that the TBX5-binding motif was enriched in loci more accessible
in stem-like versus dysfunctional CD8* T cells during chronic
infection”. Our findings indicate that disease-specific regulatory
processes may underlie T cell dysfunction in ccRCC patients. In
addition, we detected dysfunction-stage-specific motif enrichment
of TFs; for instance, IRF1 showed high activity early in the trajec-
tory (Extended Data Fig. 3c), whereas NFAT (NFATC2, NFATC3)
were more enriched late in the trajectory (Extended Data Fig. 3c).
In line with previous reports showing that activation of NFAT in the
absence of its binding partners JUN and FOS induces exhaustion®,
our findings demonstrate enrichment of NFAT and JUN/FOS bind-
ing motifs in dysfunctional (C9,10,11_CD8) (Extended Data Fig. 3¢)
and effector (C4_CD8) clusters (Extended Data Fig. 3b), respec-
tively. We also observed enriched TF activity for EPAS1 (also known
as HIF2a) in C11_CD8 (Extended Data Fig. 3c).

We hypothesized that a dynamic TF regulatory program
might underlie the progression from early to late dysfunction of
tumor-infiltrating CD8* T cells. To test this hypothesis, we exam-
ined dynamic changes in TF-binding motif enrichment along the
trajectory of dysfunction (Fig. 2d). We observed diminishing bind-
ing motif enrichment for members of the ETS family (for example,
ETS1, ETV2, ERG, ERE, FLI1, ELF1 and ELK1) during the progres-
sion from early- to late-stage dysfunction (Fig. 2d). Given that ETS
factors have an important role in T cell homeostasis”, further inves-
tigation is needed to characterize the pathways modified by altered
binding of ETS transcription factors during dysfunction progres-
sion. Late dysfunction stage was accompanied by motif enrichment
for TFs previously found to be associated with T cell dysfunction,

>
>

Fig. 2 | The chromatin landscape of dysfunctional T cells. a, Violin plots of gene activity scores of the indicated genes for effector/nondysfunctional
(C4,5,7_CD8) and dysfunctional (C8,9,10,11_CD8) T cell clusters. Pairwise comparisons of gene activity scores for the indicated gene between specified
T cell clusters were determined using a two-sided Wilcoxon rank-sum test. The P values obtained were subjected to multi-test correction with the FDR
method (****adjusted P < 0.0007; raw adjusted P values are listed in the source data; for clusters 4, 5, 7, 8, 9,10, 11, n=1,810, 1,821, 873, 924, 1,775,
2,440 and 1,613 cells, respectively). b, Cell alignment to the pseudotime developmental trajectory within the dysfunctional CD8* T cell populations. The
smoothened arrow represents a visualization of the interpreted trajectory in the UMAP embedding. ¢, Pseudotime heatmap ordering of gene activity
scores of the top 10% most variable genes across the potential CD8* T cell dysfunction trajectory. General ordering of cells from different dysfunction
clusters along the pseudotime course is marked along the trajectory at the top. d, Pseudotime heatmap ordering of the top 10% most variable chromVAR
TF motif bias-corrected deviations in the CD8* T cell dysfunction trajectory (for b, c and d, n=6,752 cells).
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including NR4A, BATF and EOMES (Fig. 2d). In addition, we
detected binding motif enrichment in the late dysfunction stage
for TFs with unknown role in antitumor immunity; these included
NFATS5, which has previously been implicated in the cellular
response to osmotic stress*’, as well as HIVEP1/3, NR2F2 and mem-
bers of the T-box family (TBX10, TBR1) (Fig. 2d). Thus, our data
indicate the existence of an elaborate network of TFs underlying the
potential regulation of dysfunction fates of tumor-infiltrating T cells
in ccRCC.

Recent single-cell RNA sequencing (scRNA-seq) profiling of
immune cells in ccRCC patients showed that inhibitory interac-
tions between dysfunctional CD8" T cells and tumor-associated
macrophages in advanced disease were associated with worse
prognosis’****. We attempted to further characterize the epigen-
etic landscape of myeloid cells (clusters 8 and 17; Extended Data
Fig. 1b, ¢) in stage I ccRCC patients. However, at this early disease
stage, we observed myeloid clusters predominantly composed of
cells from blood and normal adjacent kidney tissue (Extended Data
Fig. le), and the low numbers of cells (2,799 in total; 229 derived
from tumors) precluded further characterization of the fate evolu-
tion of this cell type.

Transcriptional programs of T cell dysfunction in ccRCC.
To investigate the link between chromatin landscapes and tran-
scriptional programs, we performed scRNA-seq in immune cells
(CD45%) of a subset (n=4) of the ccRCC patients that had been
profiled epigenetically for which we had a sufficient number of
CD45% cells. Unsupervised clustering of 108,328 CD45" cells
revealed an immune cell composition of 23 clusters (Extended Data
Fig. 5a,b,c). In line with our epigenetic profiling data, the myeloid
clusters were predominantly composed of cells from blood and
normal tumor-adjacent kidney tissue (Extended Data Fig. 5d). To
gain insight into the diversity of gene expression programs of T cells
in ccRCC, we performed fine clustering of the T cell subsets. A
total of 14 clusters emerged, including ten clusters for CD8" and
four clusters for CD4* T cells (Fig. 3a). Overall, the majority of the
T cell transcriptional states identified were shared among patients
(Extended Data Fig. 6a). The expression of known functional mark-
ers suggested that CD8" T cell clusters included transitional (or
early) effector (low TCF7, IL7R, GNLY and GZMB expression), resi-
dent memory (marked by high ZNF683, CXCR6, IL7R and ANXA1
expression), effector memory (EM, marked by GNLY, GZMB, IL7R
and ANXAI expression) and dysfunctional T cells, as well as con-
ventional CD4* T cells (naive, memory, effector) and CD4* Tregs
(Fig. 3a,b). T cells in these clusters exhibited distinct distributions of
tissues of origin (Extended Data Fig. 6b). For example, C3_RNAseq,
representing naive CD4* T cells, was characterized by high expres-
sion of TCF7 and LEFI and was almost exclusively populated with
cells from blood, whereas cells in the effector T cell clusters C6_
CD8_RNAseq and C7,8_CD8_RNAseq expressed high levels of
GNLY and originated mainly from tumor or normal adjacent kidney

tissue and blood, respectively (Fig. 3b and Extended Data Fig. 6b,c).
Focusing on dysfunctional CD8* T cells, we observed that cells in
C1,4,9,10,12_CD8_RNAseq, predominant in tumors, expressed
high levels of multiple dysfunction-related genes including CTLA4,
LAG3, HAVCR2 (TIM3) and TOX2 (Extended Data Fig. 6b,c).
In line with previous reports®, we found that in RCC, TNFRSF9
(4-1BB) was mainly co-expressed with dysfunction-related markers
(Extended Data Fig. 6¢). In agreement with the epigenetic profiling
data, CD101 expression was detected, at low levels, outside the dys-
function clusters (Extended Data Fig. 6c).

To better understand how epigenetic and transcriptomic changes
may regulate T cell fates in ccRCC, we integrated the derived gene
activity scores with gene expression in four patients for whom
matched data from both modalities were available*>** (Fig. 3c). The
clustering and annotation of scATAC-seq cell clusters were con-
cordant between the subset of four patients and the total of eight
ccRCC patients (Fig. 1b and Fig. 3c). We identified anchors between
scATAC-seq and scRNA-seq data and annotated scATAC-seq cells
via cell cluster labels transferred from scRNA-seq data*’. We found
that the majority (71%) of cells in the scATAC-seq dataset could
be annotated via label transfer from scRNA-seq with confidence
(maximum prediction score > 0.5; Fig. 3d and Extended Data
Fig. 6d,e). Importantly, we found that multiple scATAC-seq T cell
clusters with different chromatin states (C1,2,9_CD8_ATACseq)
were annotated with the identity of one major dysfunction-associated
scRNA-seq T cell cluster (C1_CD8_RNAseq; Fig. 3d). Thus, cells in
certain dysfunction states, defined by transcriptomic analysis, may
be destined for different fates as revealed by the epigenetic analy-
sis. In line with previous reports*’, we were not able to annotate a
cluster of cycling cells in the scATAC-seq dataset through integra-
tion analysis, whereas there was a single cycling population in the
scRNA-seq data (cluster 12; Fig. 3d and Extended Data Fig. 6¢,d).
These findings suggest that chromatin accessibility makes a limited
contribution to changes in expression of cell-cycle-associated genes.

To examine whether CD8* T cells exhibited a gradient of dys-
function states at the transcriptional level, similar to that observed
at the epigenetic level, we performed weighted gene co-expression
network analysis (WGCNA) on T cell scRNA-seq data and identi-
fied multiple sets of co-regulated gene modules, including a module
associated with T cell dysfunction (Extended Data Fig. 6f). Based
on the module analysis, for every gene within the dysfunction mod-
ule we calculated the expression z-score across all T cell clusters to
compare dysfunction gene activities. We then performed a quantita-
tive comparison of the dysfunction levels across CD8* T cell clusters
and observed a spectrum of transcriptional intensity for dysfunc-
tion (Fig. 3e).

To investigate the connection between the identified functional
T cell subsets and clonality, we used single-cell TCR sequenc-
ing (TCR-seq) data to track the lineage of each single T cell. We
obtained 30,708 T cells with paired full-length TCR alpha and beta
chains spanning the 14 clusters. We found 8,550 unique clonotypes,

>
>

Fig. 3 | Single-cell transcriptional profiling of T cells in ccRCC. a, UMAP projection of 47,390 scRNA-seq profiles of T cells isolated from peripheral
blood, tumor and adjacent normal tissue from four patients (a subset of the patients that were profiled epigenetically). Each dot corresponds to one
single cell colored according to cell cluster. b, Heatmap of normalized expression of the top five marker genes in each cluster. ¢, Workflow for integrating
scATAC-seq and scRNA-seq data from the same samples, divided into two. Left, experimental workflow. Image created with BioRender.com. Right, UMAP
projection of scATAC-seq (top panel) and scRNA-seq (bottom panel) cells from four ccRCC patients for whom matched data from both modalities were
available. d, Alluvial plot depicting annotation of cells in scATAC-seq data with cluster identities transferred from scRNA-seq data. The ribbon width
corresponds to the number of cells in the specified scATAC-seq cluster (left side of the ribbon) that were annotated with the cluster identity of the
corresponding scRNA-seq cluster (right side of the ribbon). To reduce clutter, only ribbons with width representing more than 20 cells are presented in
this plot. For a complete overview, see Extended Data Fig. 6d. Color of ribbons corresponds to the color of the scRNA-seq clusters in the UMAP projection
in c. e, Dysfunction gene expression levels in the indicated CD8* T cell clusters (n=4 patients; Methods). Each dot represents one of the 75 genes in the
dysfunction gene module identified through gene module analysis; gene expression z-score distribution of these genes is depicted in boxplot format for
each of the T cell clusters. One-way ANOVA test, Holm-Sidak correction for multiple comparisons. *P< 0.05, **P< 0.01, ****P < 0.0001. f, Plot showing
counts of cells assigned into specific TCR clonal frequency ranges in each cluster as indicated in a.
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of which 1,512 were expanded clonotypes shared by at least two
cells. To unveil the dynamic relationships of the TCR repertoire in
ccRCC, we measured different indices based on the single T cell
analysis by RNA-seq and a TCR tracking (STARTRAC) method".
First, focusing on CD8* T cells, STARTRAC expansion (expa index)
analysis revealed the dysfunctional cells (C1,4,9,10,12) to be in the
clusters with the highest degree of clonal expansion (Extended Data
Fig. 7a and Fig. 3f). Of the two Treg clusters, C14_Treg-Naive was
predominantly composed of cells from peripheral blood, whereas
C11_Treg-Activated cells were predominantly from tumor tissue
(Extended Data Fig. 6b). We found that Treg clonal expansion was
cluster specific and occurred within tumors (Extended Data Fig.
7b), suggesting the potential for tumor-associated antigen recogni-
tion and local clonal expansion of suppressive tumor-resident Tregs.
To evaluate the extent of tissue migration across blood, normal tis-
sue and malignant kidney tissue of a certain clonotype, we per-
formed STARTRAC migration (migr index) analysis. We observed
that T effector memory (Ty,) and T effector (Ty;) cells were associ-
ated with the highest mobility across tissues, whereas dysfunctional
CD8* T cells exhibited tumor specificity (Extended Data Fig. 7a).
Finally, we tested the extent of state transition of each clonotype
among T cell clusters. STARTRAC transition (tran index) analysis
indicated that cells from the dysfunction clusters (C1,4,9,10,12_
CD8) were connected, corroborating the developmental trajectory
of dysfunction observed at the chromatin and gene expression levels
(Extended Data Fig. 7c). Taken together, our findings allow us to
link the transcriptional states of T cells in treatment-naive patients
to TCR clonality and provide a resource for investigating T cell
dynamics in ccRCC.

NF-kB induces a pro-apoptotic program in dysfunctional T cells.
TCR signaling upon tumor antigen-dependent engagement results
in activation and nuclear translocation of several TFs including
NEF-kB, to promote survival and effector differentiation*. Ostensibly
at odds with the critical role of NF-kB in T cell activation, our epig-
enomic analysis revealed robust NF-kB motif enrichment in late
dysfunctional (C11_CD8) RCC-infiltrating CD8" T cells (Fig. 1f).
In addition to NFKB1 and NFKB2, we observed increased TF activ-
ity for other members of the NF-kB family, indicating enriched
activity of both classical and alternative NF-kB pathways in late
dysfunctional CD8" T cells (Fig. 4a). Moreover, the regulatory ele-
ments in the cluster composed of late dysfunctional CD8* T cells
were enriched in gene ontology terms for biological processes
related to NF-kB pathway activity (Extended Data Fig. 2f). Previous
studies have shown that in chimeric antigen receptor (CAR) T cells,
self-clustering of CD19 CAR results in 4-1BB-dependent persistent
activation of the NF-xB pathway, upregulation of pro-apoptotic
genes and apoptosis of CAR T cells”. A pro-apoptotic role of
NEF-kB in T cells in diverse contexts such as infection has also been

described*. We hypothesized that in late dysfunctional CD8" T cells
in ccRCC, NF-kB could drive a pathway that impairs survival. To
test this hypothesis, we monitored the chromatin landscape of genes
involved in apoptotic pathways. We first examined FAS (CD95),
FASLG and TNFSF10 (TRAIL), which have been shown to be direct
transcriptional targets of NF-kB***. We observed significantly
increased gene scores for FAS, FASLG and TNFSF10 in C11_CD8
compared with the nondysfunctional/effector tumor-infiltrating
CD8" T cells and earlier dysfunction fates (Fig. 4b). For a number
of potential enhancers and/or regulatory regions of those genes, we
detected increased accessibility along the axis from nondysfunction
to late dysfunction (Extended Data Fig. 8a). Moreover, we observed
significantly increased gene scores and accessibility of potential
regulatory elements for TRAFI and TRAF2 in the late dysfunction
cluster compared with effector cells and earlier dysfunction fates
(Extended Data Fig. 8b). TRAFI and TRAF2 are NF-kB-inducible
genes encoding adapter molecules that function upstream of NF-kB
and downstream of diverse signaling pathways, including the 4-1BB
signaling pathway. In complete agreement with our epigenetic pro-
filing data, gene expression of FAS, FASLG, TNFSF10, TRAFI and
TRAF?2 was higher in the clusters corresponding to dysfunctional
tumor-infiltrating CD8* T cells (Fig. 4c). To further investigate the
potential link between high NF-xB pathway activity in dysfunc-
tional T cells and cell death, we examined the chromatin landscape
of other pro-apoptotic genes including BCL2L14, DTHD1 and BID
and found increased accessibility for potential regulatory elements
of those genes along the nondysfunction to late dysfunction axis
(Extended Data Fig. 8c). Moreover, GREAT gene ontology analysis
of regulatory elements enriched in late dysfunctional CD8* T cells
confirmed enrichment in biological processes related to apoptosis
(Extended Data Fig. 2f).

TCR repertoire analysis across blood, tumor tissue and normal
adjacent kidney tissue revealed potential sources of CD8" T cells
that enter the dysfunction trajectory®. Among the 8,550 unique
clonotypes, we identified 258 clonotypes present in at least one of
the dysfunction-related clusters and one of the nondysfunctional
CD8" T cell clusters (Extended Data Fig. 7d). We observed clono-
types shared between blood (effector memory) and dysfunctional
CD8* T cell clusters (for example, clonotype 187), normal adjacent
tissue/nondysfunctional tumor clusters (resident memory) and dys-
functional CD8* T cell clusters (for example, clonotype 56), as well
as among the three tissues (for example, clonotype 237) (Extended
Data Fig. 7d,e).

At the protein level, we used flow cytometry to validate the
co-expression of dysfunction markers (for example, PD1, TOX,
EOMES, CD39 and TIM3) with FAS, TRAF1 and 4-1BB in
tumor-infiltrating CD8* T cells in ¢ccRCC patient samples that
had also been analyzed by single-cell transcriptomic/epigenomic
assays, as well as in an additional set of tumor samples (n=9;

>
>

Fig. 4 | NF-xB drives a pro-apoptotic program in late dysfunctional CD8* T cells infiltrating ccRCC. a, UMAP projection of scATAC-seq profiles colored
by chromVAR TF motif bias-corrected deviations of the indicated TFs (NFKB1/2 and RELA/B were significantly enriched in C11_CD8 compared with the
other CD8 T cell clusters; two-sided Wilcoxon rank-sum test P< 2.2 x 107", n=18,736 cells). b, Violin plots of gene activity scores of the indicated NF-kB
transcriptional targets for effector/nondysfunctional (C4,5,7_CD8) and dysfunctional (C8,9,10,11_CD8) T cell clusters. Pairwise comparisons of gene
activity scores for the indicated gene between specified T cell clusters were determined using a two-sided Wilcoxon rank-sum test. The resulting P values
underwent multi-test correction with the FDR method (**adjusted P < 0.01, ****adjusted-P < 0.0001; raw adjusted P values are listed in the source data; for
clusters 4,5, 7,8,9,10,11,n=1,810, 1,821, 873, 924, 1,775, 2,440 and 1,613 cells, respectively). ¢, Violin plots showing gene expression levels of the indicated
NF-kB transcriptional targets in CD4* and CD8* clusters, clustered as indicated in Fig. 3a (for clusters 1,2,3, 4,5, 6,7,8,9,10,11,12,13 and 14, n=8,677,
7,423, 5,390, 5,272, 4,469, 4,160, 3,974, 3,689, 1,080, 890, 751, 669, 618 and 328 cells, respectively). d, Flow cytometry analysis of tumor-infiltrating
CD8* T cells. UMAP projection of expression of selected T cell markers in CD8* T cells (n=9 ccRCC patients). Color gradient indicates expression

level (red, high; blue, low). e, Protein expression of NF-kB targets in tumor-infiltrating CD8* T cells. FACS plot (FAS versus TRAF1) overlay of PD-1"TOX~
(nondysfunctional) and PD-1*TOX*4-1BB* (late dysfunctional) CD8* T cell populations (left). Dot plots showing the percentages of FAS* and FAS*TRAF1*
cells in different CD8* T cell populations (right; one-way ANOVA test, Holm-Sidak correction for multiple comparisons; n=9 ccRCC patients; **P< 0.01,
***P<0.001, ****P<0.00071; raw P values are listed in the source data). f, Apoptosis flow cytometry analysis. Bar graph showing the viability status (mean
+ s.e.m.) as defined by flow cytometry for the indicated CD8* T cell subsets (n=10 ccRCC patients; raw P values are listed in the source data).
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Supplementary Table 1) (Fig. 4d and Extended Data Fig. 9a). As
expected, these dysfunctional cells expressed low levels of proteins
associated with effector function and memory (Fig. 4d). Notably,
the protein expression of FAS and TRAF1 was significantly higher
in late dysfunctional CD8* T cells marked by co-expression of
PD1, TOX and 4-1BB (Fig. 4e). To further investigate whether
the late dysfunctional CD8* T cells were prone to cell death as a

RESOURCE

consequence of chronic NF-kB activation in the tumor, we employed
flow cytometry to monitor different stages of cell death (early/late
apoptosis and necrosis). We utilized established markers of dys-
function (PD1 and TIM3), as well as 4-1BB, which is co-expressed
with dysfunction markers in RCC*, and NF-kB transcriptional
targets (FAS) to examine the relationship between dysfunctional
state and cell death (Extended Data Fig. 9b). Phenotypic analysis
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revealed that CD8" T cells with high expression levels of PD1, TIM3
and 4-1BB, corresponding to the late stage of dysfunction according
to chromatin and gene expression data, showed the highest rates of
late apoptosis (Fig. 4f and Extended Data Fig. 9¢).

Finally, we tested whether the enriched NF-xB activity in
late dysfunctional CD8* T cells—specifically, the NF-kB-driven
pro-apoptotic transcriptional program—was predictive of clinical

894

outcome in human ccRCC. To evaluate this, we generated a sig-
nature composed of previously described cell-death-related
NE-kB-inducible genes** that in our dataset exhibited: increased
regulatory element accessibility at the chromatin level, increased
gene expression at the mRNA level and increased protein level in
late dysfunctional CD8" T cells compared with nondysfunctional/
effector CD8* T cells. Specifically, this signature included the
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Fig. 5 | A chromatin-derived NF-kB signature of late dysfunctional CD8 T cells predicts patient survival. a, A gene expression signature of pro-apoptotic
NF-xB targets in late dysfunctional CD8* T cells for the indicated disease stage in the external TCGA KIRC cohort (two-sided Wilcoxon rank-sum test for
pairwise comparison; Kruskal-Wallis test for global P value; n=325 patients for early ccRCC, n=123 patients for locally advanced ccRCC, n=83 patients
for metastatic ccRCC). Box plot statistical values including whiskers, quartiles, and median, max and min values are listed in the source data. b, Overall
survival for the overall TCGA ccRCC cohorts based on high pro-apoptotic NF-xB signature (>median) versus low signature expression. Log-rank test was
used to compare the survival between the two groups. y>=6.6 on 1degrees of freedom, P=0.01. ¢, Overall survival for the advanced TCGA ccRCC cohorts
based on high pro-apoptotic NF-kB signature (>median) versus low signature expression. Log-rank test was used to compare the survival between the
two groups. y?=4.3 with 1 degree of freedom, P=0.04. d, Overall survival for the entire CheckMate cohort, based on high pro-apoptotic NF-kB signature
(=median) versus low signature expression. Log-rank test was used to compare the survival between the two groups. y*=4 with 1 degree of freedom,
P=0.045. e, Overall survival for the PD-1 blockade CheckMate cohort, based on high pro-apoptotic NF-kB signature (>median) versus low signature
expression. Log-rank test was used to compare the survival between the two groups. y?=7.7 for 1 degree of freedom, P=0.005. f, Model of the NF-«xB
pro-apoptotic program in late dysfunctional CD8* T cells. Image created with BioRender.com.

pro-apoptotic genes FAS, FASLG and TNFSFI0, as well as TRAFI
and TRAF2 (ref. *'). Notably, in the ccRCC cohort (KIRC) of The
Cancer Genome Atlas (TCGA)®, expression of the pro-apoptotic
NF-kB signature was increased in more advanced disease stages
(P=1.9%107% Fig. 5a). High expression of this gene signature was
associated with reduced overall patient survival in the TCGA KIRC
cohort (P=0.01; Fig. 5b), and this association was specific in patients
with advanced disease (stage IV; P=0.04; Fig. 5c and Extended Data
Fig. 10a). Next, we examined whether the pro-apoptotic NF-kB
activity was associated with response to therapy. We evaluated the
signature in patients treated with either nivolumab (PD-1 blockade)
or everolimus (mTOR inhibitor) in the CheckMate RCC cohorts'>>*,
The pro-apoptotic NF-kB signature was not predictive of response
to either PD-1 blockade or mTOR inhibition (Extended Data
Fig. 10b). However, patients with high expression of this signature had
worse overall survival (P=0.045; Fig. 5d). Notably, this association
was observed only among patients receiving nivolumab (P=0.005;
Fig. 5e and Extended Data Fig. 10c). These findings suggest that the
ccRCC microenvironment induces a rewired, pro-apoptotic tran-
scriptional program of NF-kB in a subset of tumor-infiltrating CD8*
T cells, which is associated with a worse overall prognosis.

Discussion

InRCC, in contrast to otherimmunotherapy-responsive solid tumors,
high infiltration by CD8* T cells is associated with a worse progno-
sis?’. To test the hypothesis that heterogeneity of infiltrating CD8*
T cell fate may, at least in part, explain this paradox, we performed
deep epigenetic profiling at the single-cell level, along with scRNA/
TCR-seq and flow cytometry of immune cells from treatment-naive
ccRCC patients. Developmental fates of T cells in cancer patients are
orchestrated by a complex interplay between epigenetic modulators
and cis-regulatory sequences that drive gene expression programs in
response to cues emanating primarily from the tissue of residency.
Recent technological advances including ATAC-seq”** have proven
valuable for functional genome annotation™.

Our findings provide a comprehensive map of the dynamic
changes in the dysfunction-regulome of T cells, focusing on the
path to dysfunction of ccRCC-infiltrating CD8" T cells. We found
a dynamic evolution of potential regulatory elements of epigenetic
modulators that may, in part, explain the unique chromatin acces-
sibility signature of exhausted T cells described previously in cancer
and chronic infections**-"!. We also found alterations in the accessi-
bility of potential regulatory elements of stress response genes dur-
ing progression of dysfunction, probably reflecting the extensive fate
rewiring that occurs along the dysfunction axis. T cells acquiring a
late dysfunction chromatin identity also displayed enriched binding
motifs for HIF2a. The potential effect of HIF2a inhibitors™* on
T cells needs further investigation. We also provide evidence sug-
gesting stark differences between the path to T cell dysfunction in
ccRCC and that in other tumor types or in chronic infection at the
level of TFs (for example, TBX5) and surface markers (for example,
CD101). Moreover, by integrating the derived gene activity scores
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with gene expression levels, we found that chromatin accessibility
analysis could define dysfunction fates with high resolution.

The role of NF-kB as an antiapoptotic regulatory factor in diverse
cell types has been previously described***'. Strikingly, our studies
showed that in late dysfunctional CD8* T cells infiltrating ccRCC,
NF-xB induced a pro-apoptotic program (Fig. 5f). Importantly, a
gene signature composed of cell-death-related NF-kB-induced tar-
gets could predict patient survival in ccRCC. Previous studies have
shown that 4-1BB is co-expressed with exhaustion markers® and is
upregulated during hypoxia®. Further studies are needed to gener-
ate mechanistic insights into the signaling pathways that converge
on NF-kB in ccRCC-infiltrating CD8* T cells and to test whether
NEF-kB-hijacking of a pro-apoptotic pathway is an immune feature
of other cancers (Fig. 5f).

A notable limitation of our study was the epigenomic analysis
of treatment-naive patient samples in the early disease stage (stage
I). Further studies are needed to map the epigenetic landscape dur-
ing disease progression and in relation to the genetic makeup®>***
and subsets of RCC'"*. Recent scRNA-seq studies have shown
that terminally exhausted CD8" T cells are enriched in advanced
ccRCC and specific CD8" T cell phenotypes are associated with
immune-checkpoint blockade***. Investigation of the impact of
therapy on the epigenetic landscape of immune cells and the plas-
ticity of the TF networks in response to or resistance to immuno-
therapy is warranted. Profiling of epigenetic states may help us to
understand whether T cell populations can be durably reactivated
by therapy. Our results in ccRCC, along with previous findings in
preclinical models’’, raise questions regarding the potential clini-
cal applicability of epigenetic therapy in preventing progression to or
even reversing unfavorable epigenetic states. Alternatively, targeting
key transcription factors with emerging therapeutic modalities may
remodel the epigenome of dysfunctional immune cells. Finally, our
analysis included a modest number of patient samples. Future work
should enhance our study by profiling the epigenetic landscape of
a larger number of patient samples and integrating epigenetic and
transcriptomic data in an immune cell fate atlas for ccRCC.

In conclusion, our study provides a unique resource of single-cell
epigenomic data along with transcriptomic, TCR- and protein-based
information for immune cells in ccRCC patients. Our study dem-
onstrates the power of single-cell epigenomics for the derivation
of epigenetic and/or fate signatures with prognostic value, which
represents a step toward immune-type-based patient stratifica-
tion. These comprehensive single-cell maps of T cells could facili-
tate understanding of T cell biology in cancer patients and guide
therapeutic strategies to overcome resistance due to immune cell
fate heterogeneity.

Methods

Human specimens. Surgically removed stage I primary ccRCC tumor tissue,
adjacent normal kidney tissue and whole blood were obtained within 24 h
post-surgery (Avaden Bio; single-cell analyses). Additional RCC tumor samples
(stage I; flow cytometry/functional assays) were obtained from Discovery Life
Science. No patient had received prior systemic therapy for their cancer. No ethical
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approval was required for the study, as informed consent was obtained prior to
tissue acquisition by the vendors, as stated by their policies. Patient information is
summarized in Supplementary Table 1.

Sample processing. Renal tumor and adjacent normal tissue samples were
dissociated into single cells by a semi-automated mechanical and enzymatic
process. Tumor tissue was cut into pieces of (~2-3 mm) and transferred to C Tubes
(Miltenyi Biotech) containing a mix of enzymes (Tumor Dissociation Kit, human;
Miltenyi Biotech). Mechanical dissociation was performed on a gentleMACS
dissociator (program 37C_h_TDK_1). To allow for enzymatic digestion, the
tubes were incubated for 30 min at 37°C, with rotation, after the first and second
mechanical dissociation step. Mononuclear cells from whole peripheral blood of
paired subjects were isolated by density gradient centrifugation using SepMate
tubes (Stem Cell Technologies). Cells were then cryopreserved in Recovery Cell
Culture Freezing Medium (Thermo Fisher). Prior to single-cell sequencing,

cells were rapidly thawed in warm Dulbecco’s modified Eagle medium (Gibco)
supplemented with 10% fetal bovine serum (FBS) and pelleted.

Cell sorting. Tumor and adjacent normal tissue cells and peripheral blood
mononuclear cells (PBMCs) were resuspended in FACS staining buffer (1% bovine
serum albumin (BSA) and 1 mM EDTA in Dulbeccos phosphate-buffered saline
(PBS); Gibco) and incubated with Human TruStain FcX (BioLegend) for 10 min
on ice to block nonspecific binding to Fc receptors. Cells were then washed and
stained with CD45-PE-Dazzle594 (BioLegend) for 20 min on ice. Next, cells were
filtered and resuspended in FACS staining buffer with addition of DNase for

FACS sorting. DAPI was added to the cell suspension immediately before FACS
sorting for dead cell exclusion. Live CD45" single cells were sorted for downstream
single-cell analysis.

Nucleus isolation. Isolation of nuclear suspensions was performed according

to ref. ” and the demonstrated protocol: Nuclei Isolation for Single Cell ATAC
Sequencing (10x Genomics). Owing to the limited numbers of immune cells from
patient samples, we followed a low cell input nucleus isolation protocol. Briefly,
cells were resuspended in 50 pl PBS +0.04% BSA and transferred to a 0.2 ml tube
and centrifuged (300g for 5min at 4°C). The supernatant was removed, added to
45 pl of chilled lysis buffer (10 mM Tris-HCI (pH 7.4), 10 mM NaCl, 3mM MgClL,
0.1% Tween-20, 0.1% Nonidet P40 Substitute, 0.01% digitonin and 1% BSA) and
gently mixed by pipetting. The tube was then incubated on ice for 3 min. After
lysis, 50 pl of chilled wash buffer (10 mM Tris-HCI (pH 7.4), 10 mM NaCl, 3mM
MgCl,, 0.1% Tween-20 and 1% BSA) was added without mixing. Nuclei were
centrifuged (500g for 5 min at 4°C) and the supernatant was carefully removed.
Next, 45 pl of diluted Nuclei Buffer (10x Genomics) was added without mixing,
nuclei were centrifuged (500g for 5min at 4°C), and the supernatant was carefully
removed. Isolated nuclei were resuspended in 7 pl chilled diluted Nuclei Buffer
(10x Genomics). Nuclei were immediately used to generate scATAC-seq libraries as
described in the Methods section.

Preparation and sequencing of scATAC-seq library. Nuclei were suspended at
1:20 dilution in 20x Nuclei Buffer provided by the Chromium NextGEM Single
Cell ATAC Library & Gel Bead Kit. Nuclei were aliquoted for the transposition
reaction to target 2000 recovered nuclei. Transposed nuclei were partitioned using
a Chromium Single Cell Instrument (10x Genomics) and libraries were generated.
Sequencing was performed on an Illumina NextSeq 500 platform (Illumina) by

a multiplexed paired-read run with 2x50 cycles. Cell Ranger ATAC v.3.0.2 (10x
Genomics) was used to perform demultiplexing and read alignment.

Preparation and sequencing of scRNA-seq and TCR library. Single cells
suspended in PBS with 0.04% BSA were loaded on a Chromium Single Cell
Instrument (10x Genomics). RNA-seq and V(D)] libraries were prepared

using the Chromium Single Cell 5" Library, Gel Beads, & Multiplex Kit (10x
Genomics). After amplification, cDNA was split into RNA-seq and V(D)

] library aliquots. To enrich the V(D)]J library aliquot for TCR a/b, the

c¢DNA was split into two 20 ng aliquots and amplified in two rounds using
primers designed in-house. Specifically, for first-round amplification, the
primers used were MP147 (ACACTCTTTCCCTACACGACGC) for short

R1, MP120 (GCAGACAGACTTGTCACTGGA) for human TRAC and
MPI121(CTCTGCTTCTGATGGCTCAAACA) for human TRBC. For second
round amplification, 20 ng aliquots from the first round were amplified using
MP147, MP128 (GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCAG-
GGTCAGGGTTCTGGATA), a nested R2 plus human TRAC and MP129
(GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCAGGGTCAGGGT
TCTGGATA), a nested R2 plus human TRABC. V(D)] libraries were prepared
from 25ng each of hTRAC- and hTRBC-amplified cDNA. Paired-end sequencing
was performed on an Illumina NextSeq500 for RNA-seq libraries (Read 1: 26-bp
for UMI and cell barcode, 8-bp i7 sample index; Read 2: 55-bp transcript read)
and V(D)] libraries (Read 1: 150-bp, 8-bp i7 sample index; Read 2: 150-bp read).
For RNA-seq libraries, Cell Ranger Single-Cell Software Suite (10X Genomics,
v.2.2.0) was used to perform sample demultiplexing, alignment, filtering and UMI
counting. The human GRCh38 genome assembly and RefSeq gene model for

896

human were used for the alignment. For V(D)] libraries, Cell Ranger Single-Cell
Software Suite (10x Genomics, v.3.0.2) was used to perform sample demultiplexing,
de novo assembly of read pairs into contigs, alignment and annotation of contigs
against the germline segment V(D)] reference sequences from IMGT, labeling and
location of CDR3 regions and grouping of clonotypes.

Flow cytometry staining. Single-cell suspensions were aliquoted into a 96-well
V-bottomed plate. The plate was centrifuged (500g for 3min at 4°C) and
supernatant was removed. Cell pellets were washed with FACS buffer (PBS with

5% FBS and 2mM EDTA) and resuspended in a mixture of TruStain FcX and
True-Stain Monocyte Blocker (BioLegend) to block human Fc receptors and
nonspecific binding, respectively, and LIVE/DEAD Fixable Blue Dead Cell Stain
(Thermo Fisher) for 15min on ice. Cells were washed, resuspended in a mixture of
fluorochrome-conjugated cell-surface-staining antibodies diluted in FACS buffer
and incubated on ice for 20 min. Cells were washed and resuspended in fixation/
permeabilization buffer (Thermo Fisher) on ice for 20 min. After fixation and
permeabilization, cells were washed twice with permeabilization/wash buffer.

Cell pellets were resuspended in intracellular staining antibodies diluted in
permeabilization buffer at 4 °C overnight. To quantify apoptosis status, we used a
Vybrant FAM-VAD-FMK poly caspase kit (Molecular Probes). Samples were filtered
using an AcroPrep Advance Filter Plate and acquired using a BD Symphony A5
cytometry or Cytek Aurora spectral cytometer. The antibodies used in this study
were as follows: PD-1 (BD Bioscience, clone EH12.1, BUV737, catalog no. 612792,
1:50 dilution); TOX (Miltenyi, clone REA473, PE, catalog no. 130-120-716, 1:50
dilution); EOMES (Invitrogen, clone WD1928, PE-eFluor610, catalog no. 61-4877-
41, 1:50 dilution); TCF1/TCF7 (Cell Signaling, clone C63D9, Pacific Blue, catalog
no. 9066, dilution 1:50); 4-1BB (BD Bioscience, clone 4B4-1, BV480, catalog no.
746700, dilution 1:50); TRAF1 (BD Bioscience, clone 1F3, AF647, catalog no. 566738,
dilution 1:25); CD95 (BioLegend, clone DX2, APC/Fire 750, catalog no. 305638,
dilution 1:50); CD39 (BD Bioscience, clone TU66, BUV661, catalog no. 749967,
dilution1:50); CD3 (BioLegend, clone UCHT1, BV570, catalog no. 300436, dilution
1:25); CD4 (BioLegend, clone SK3, SparkBlue550, catalog no. 344656, dilution
1:400); CD8 (BD Bioscience, clone RPA-T8, BUV805, catalog no. 749366, dilution
1:100); TIM3 (BioLegend, clone F38-2E2, BV650, catalog no. 345028, dilution 1:100);
Ki67 (BD Bioscience, clone B56, BV711, catalog no. 563755, dilution 1:200); PRF1
(BioLegend, clone B-D48, AF700, catalog no. 353324, dilution 1:100); and CD45RA
(BD Bioscience, clone HI100, BVU395, catalog no. 740298, dilution 1:100).

scATAC-seq quality control and filtering. scATAC-seq data from eight patients
and three tissue types (PBMC, tumor and adjacent normal) underwent quality
control analysis and filtering based on enrichment of ATAC-seq accessibility

at TSSs and the number of unique fragments per cell, as described in ref. 7.

TSS positions were acquired from the TxDb.Hsapiens.UCSC.hg38.knownGene
Bioconductor package. Potential doublets were identified and removed using the
software tool ArchR*, following the instructions in the manual for ArchR v.1.0.1.

Genome-accessibility-based cell clustering. Two rounds of feature selection,
dimension reduction and cell clustering were performed as previously
described”!. For immune cell clustering, first, a tiling window-by-cell counting
matrix was constructed by counting the Tn5 insertion overlaps per window for
each cell, using a tiling window size of 2.5kb across the human genome (hg38). The
matrix was then binarized and dimension reduction was conducted by computing
the term frequency-inverse document frequency (TF-IDF) transformation. The
resulted TF-IDF matrix then underwent irlba singular value decomposition (SVD)
and the second to 25th dimensions were retained; cells were then clustered using
Seurat’s SNN graph clustering (v.3.0) with a starting resolution of 0.8, requiring
the minimum size of a cluster to be 200. In this specific case, a final resolution of
0.8 was used in the first round of clustering as the criterion for minimum cluster
size was met. For the second round, peaks were called in each crude cell cluster
obtained from the first round using MACS2%, and a union peak set was collected
by combining peaks from all the cell clusters. A peak-by-cell counting matrix was
then constructed by counting the Tn5 insertion overlaps per peak for each cell, and
dimension reduction and cell clustering were performed as in round one. During
this round of clustering, resolutions of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0 and
2.0 were tested, and a final resolution of 0.8 was chosen. For the subclustering of
T cells, all the other parameters remained the same except that the minimum size
of a cluster was set to be 250 for the first round of clustering, and a final resolution
of 0.5 was used to meet this criterion.

Gene activity score. Gene activity scores were calculated based on a model
described previously*. ATAC-seq signals from the whole gene body were
considered, and additional signals with bi-directional exponential decay

weight from the gene TSS (extended 5kb upstream) and the gene transcription
termination site up to 100kb were scaled and incorporated after filtering signals
from overlapping neighbor gene boundaries.

TF motif enrichment calculation. TF motif enrichment for peaks in each

cell cluster was calculated using chromVAR™. CIS-BP motifs of 857 TFs
were collected from chromVAR motifs ‘human_pwms_v2’, and the motif
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matches within peaks as well as raw signal counts for all peaks were used. GC
bias-corrected deviation scores and variability for each TF motif were then
calculated as instructed by chromVAR.

Pseudotime analysis along dysfunction clusters. Cells from dysfunction clusters
were ordered in pseudotime, and changes in gene score and TF motifs along the
pseudotime trajectory were calculated and visualized in the form of heatmaps
using the ArchR software tool**.

scRNA-seq analysis. scRNA-seq data from four RCC patients and three tissue
types were filtered using Seurat (v.3.0)"* according to the instructions with the
following criteria: nFeature_RNA > 500 & nFeature_RNA <5000 & percent.
mito < 0.25 & nCount_RNA <50000. Cells with multiple TCR alpha or beta
chains were filtered as well. For T cell subclustering, T cells were recognized

as having constructive TCR beta chains. Filtered data from four RCC patients
were integrated and batch-effect-corrected, clustered, analyzed and visualized
following the standard dataset integration and analysis workflow in Seurat v.3.0.
Sets (modules) of highly correlated genes in the scRNA-seq data were calculated
using WGCNA® from the four-patient scRNA-seq Seurat object constructed as
described above, with the following parameters: power = 10,corType = “bicor”,
networkType = “signed”, minModuleSize = 10, reassignThreshold =

0, mergeCutHeight = 0.15, numericLabels = E, maxBlockSize=47000,
pamRespectsDendro = FALSE.

TCR-seq analysis. TCR-seq data were analyzed using scRepertoire (v.1.0.2)".

A TCR clonotype is defined as the combination of genes comprising the TCR

and the nucleotide sequence of the CDR3 region (gene + nucleotide) for paired
TCR alpha and beta chains. Differential gene expression analysis between T cell
populations with different clonotypes (or clonotype features) was performed using
Seurat 3.0 (ref. ). Comparisons of the degree of clonal expansion (expa index),
extent of tissue migration of TCR clonotype (migr index) and extent of state (cell
cluster type) transitions of TCR clonotype (tran index) for each cell cluster were
performed using STARTRAC as described previously’. Counts of cells per cluster
assigned by specific frequency ranges were obtained using scRepertoire (v.1.0.2)%.

NF-kB signature analysis in TCGA and CheckMate cohorts. Bulk RNA-seq data
for the TCGA KIRC cohort were obtained through the Broad GDAC Firehose
(https://gdac.broadinstitute.org/), and clinical data for TCGA KIRC were obtained
from cBioPortal for Cancer Genomics (https://www.cbioportal.org/)*>*. Bulk
RNA-seq data and clinical data for the CheckMate cohorts were obtained from
ref. . For both cohorts, the expression value of each gene was converted into a
z-score (centered at 0). The NF-kB signature score was calculated as the average
of the z-score expression values for all five genes in the signature. The association
between the high and low signature score groups (defined as scores higher or
lower than the median signature score of each cohort, respectively) and the overall
survival time was evaluated by Kaplan—Meier analysis. Two-sided log-rank test
was used to detect significant differences in overall survival between the high and
low signature groups. All survival analyses were performed using the R packages
survival (v.3.2-10) and survminer (v.0.4.9). For the CheckMate cohort, pairwise
comparisons of NF-kB signature gene expression levels between clinical response
groups were evaluated using two-sided Wilcoxon rank-sum test. For the TCGA
KIRC cohort, the overall differences in levels of NF-kB signature gene expression
among clinical stages were evaluated using Kruskal-Wallis test, and for pairwise
comparisons between different stages a two-sided Wilcoxon rank-sum test was
performed. All tests were performed using the R environment (R v.4.0.3).

Integration of paired four-patient scATAC-seq and scRNA-seq data. We used
Seurat v.3.0 and Signac (v.1.5.0) to integrate scATAC-seq and scRNA-seq datasets
collected from the same samples of four patients, according to the method
introduced by Stuart and colleagues*. Integration was performed following the
‘Integrating scRNA-seq and scATAC-seq data vignette’ instructions in Seurat.

Cells with prediction score greater than 0.5 were classified as high-confidence cells
projected from scATAC-seq onto the UMAP derived from the scRNA-seq dataset.
An alluvial plot showing the projection of cells from the scATAC-seq platform onto
the UMAP derived from the scRNA-seq data was generated using the ggalluvial
package (v.0.12.3) in R.

Functional analysis of cis-regulatory regions. GREAT gene ontology (v.4.0.4)
(http://great.stanford.edu/public/html/)* was used to assign associated gene ontology
terms to cis-regulatory regions that were most accessible (defined as FDR less than
0.01 and log,(fold change) greater than 1.5 compared with other clusters) in each

T cell subcluster in the scATAC-seq data. The basal plus extension model was chosen
to associate genes with cis-regulatory genomic regions. hg38 genome assembly was
used in the analysis. Heatmaps comparing enrichment of GO terms across the clusters
was generated using Morpheus (https://software.broadinstitute.org/ GENE-E/).

Statistics and reproducibility. No statistical method was used to predetermine

sample sizes, but our sample sizes were similar to those reported in previous
publications?**** . No data were excluded from the analyses. The experiments
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were not randomized. The investigators were not blinded to allocation during
experiments or outcome assessment. Data collection and analysis were not
performed blind to the conditions of the experiments. Statistical analysis was
performed in R v.4.0.3. In general, comparisons of numerical variables between
groups were carried out with a nonparametric approach (two-tailed Wilcoxon
rank-sum test, Kruskal-Wallis test). Statistical analysis for flow cytometry and
dysfunction score was performed by one-way analysis of variance (ANOVA). Data
distribution was not formally tested to be normal. Gene ontology term enrichment
was calculated using either the binomial test or the hypergeometric test. Survival
curves were analyzed by the Kaplan-Meier method and compared using the
log-rank test.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Single-cell ATAC-seq, RNA-seq and TCR-seq data that support the findings of
this study have been deposited in the Gene Expression Omnibus under accession
code GSE181064. Bulk RNA-seq data for the TCGA KIRC cohort were obtained
through the Broad GDAC Firehose (https://gdac.broadinstitute.org/), and clinical
data for TCGA KIRC were obtained from cBioPortal for Cancer Genomics
(https://www.cbioportal.org/)*>*. Bulk RNA-seq data and clinical data for the
CheckMate cohorts were obtained from ref. . Source data are provided with this
paper. All other data supporting the findings of this study are available from the
corresponding author on reasonable request.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Single-cell chromatin accessibility of immune cells in ccRCC. a, Representative scATAC-seq data quality control filters of a patient
sample (patient 1002300, tumor; left). The x-axis shows the number of unique ATAC-seq nuclear fragments (in log scale) in each single cell (each

dot) and the y-axis shows the transcriptional start sites (TSS) enrichment of all fragments in that cell. Dashed lines represent the filters for high-quality
single-cell data (at least 1,000 unique fragments and TSS score great than or equal to 8). Representative plot of scATAC-seq fragment size distributions
demonstrating sub-, mono-, and multi-nucleosome spanning ATAC-seq fragments (right). b, UMAP projection of 34,703 scATAC-seq profiles of CD45*
cells from peripheral blood, tumor, and adjacent normal tissue combining eight patient samples. Dots represent individual cells and colors indicate cluster
identity. ¢, UMAP projection of immune cells colored by gene scores, reflecting the general chromatin accessibility of the indicated gene. d, Patient-specific
contribution of cells in each cluster derived from b. e, Tissue-specific contribution of cells in each cluster derived from b.

NATURE CANCER | www.nature.com/natcancer


http://www.nature.com/natcancer

NATURE CANCER

a

Clusters

e

UMAP dimension 2

UMAP dimension 2

b

Log2(NormCounts + 1)

Log2(NormCounts + 1)

RESOURCE

Log2(NormCounts + 1)

2 _ CD3E o o8 18 CD4 0 CD8A o 1
s I Patient contribution . E
g 000 | 10 % 5
s EEET ;
g 00 T s
a
7 I 2 E
o I ... -
Patient 5 0 Patient
o IS E i%%%%i% % o 1%%%%285 UMAP dimension 1 UMAP dimension 1 UMAP dimension 1
10 I = .
2001077 -5 © 2001077
11 — 2001215 2001215
1 2001221 © 2001221
12 7 7001025 © 7001025
! 7001031 10 © 7001031
0 025 05 075 1 -10 =5 0 5
Frequency UMAP dimension 1
Clusters Cell #
2 _ 1812 chr1:169,661,697-169,723,698 chr2:85,670,174-85,715,175 Clusters
o
. Al A 1
+ I, 510 L J | . g
4
. A A A A L Ad 5
I -7 — TR W ¥ -
7 I > " A ’
o I 775 1 , ra—r
" _ 1613 =2§MC g | 169680000 169700000 169730000 85680000 85690000 85700000 85710000  Strand
Jacent normal ;
12 | 203 & umor .
SELL GNLY
0 025 05 0.75 1
Frequency
Log2(NormCounts + 1) Log2(NormCounts + 1) Log2(NormCounts + 1)
LEF1 , W 7R .. Gz |, EE
0 5
UMAP dimension 1 UMAP dimension 1 UMAP dimension 1
Log2(NormCounts + 1) Log2(NormCounts + 1) Log2(NormCounts + 1)
12 , W Tox | W cray
1.9,10,11

UMAP dimension 1

Clusters
106 524911318712

~ -Logso(p-val)

min

max

UMAP dimension 1

UMAP dimension 1

negative_regulation_of_cell_division

beta-catenin-TCF_complex_assembly
regulation_of_interleukin-4_production

JAK-STAT _cascade
cell_killing

|-kappaB_kinase/NF-kappaB_signaling

cellular_response_to_stress
tolerance_induction

negative_regulation_of_chronic_inflamm._response
positive_regulation_of NF-kB_transcrip._factor_activity
release_of_cytochrome_c_from_mitochondria

T_cell_apoptotic_process

ATP-dependent_chromatin_remodeling

apoptotic_nuclear_changes

positive_regulation_of_chromatin_organization

Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Cis-regulatory elements in open chromatin regions of T cells in ccRCC. a, Patient-specific contribution of T cells in each cluster
derived from Fig. 1b (left), and UMAP projection (right). b, UMAP projection of T cells colored by gene activity scores of the indicated gene (n=18736
cells). ¢, Tissue-specific contribution of T cells in each cluster. d, Genome tracks of aggregate scATAC-seq data visualization of the SELL and GNLY loci,
clustered as indicated in Fig. 1b. e, UMAP projection of T cells colored by gene activity scores of the indicated gene. f, Enrichment of Gene Ontology terms
associated with the top accessible cis-regulatory elements of at least one cluster (LFC > 1.5, FDR < 0.01 compared to other clusters), across all clusters.
Selected Gene Ontology terms that are significantly enriched (adjusted binomial p-value or adjusted hypergeometric p-value<0.05; here term enrichment
was calculated using either the binomial test or the hypergeometric test, with p-values corrected with the Benjamini-Hochberg procedure) in at least one
cluster are shown. Analysis was done using the software tool GREAT. Here, Benjamini-Hochberg corrected binomial p-values are shown.
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Extended Data Fig. 3 | TF motif enrichment in open chromatin regions of T cells in ccRCC. a, UMAP projection of T cell scATAC-seq profiles colored by
chromVAR TF motif bias-corrected deviations for the indicated TFs (two-sided Wilcoxon rank sum test; p <2.2x107' for the TFs in the indicated clusters
-CD4 clusters: LEF1, TCF7, FOXO1, TCF7, STAT1, BACH2 and CD8 clusters: RREB1, KLF3, TWIST2- compared to the other CD4 or CD8 T cell clusters,
respectively). b, UMAP projection of T cell scATAC-seq profiles colored by chromVAR TF motif bias-corrected deviations for the indicated TFs (two-sided
Wilcoxon rank sum test; p<2.2x107% for STAT3 and STAT5 in C4_CD8 compared to the other CD8 T cell clusters, p <2.2x107' for POU2F1in C12_CD4
compared to the other CD4 T cell clusters). ¢, UMAP projection of T cell scATAC-seq profiles colored by chromVAR TF motif bias-corrected deviations for
the indicated TFs (two-sided Wilcoxon rank sum test; for TBX5, p <2.2x107'¢ for C11_CD8 compared to C10_CD8 or C9_CD8, p <2.2x107'¢ for C9,10,11_
CD8 compared to the other clusters; for IRF1, NFATC2, NFATC3, and EPAST, p <2.2x107" for the indicated cluster compared to the other clusters; a, b, ¢,
n=18736 cells).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Regulatory chromatin landscapes of T cells in ccRCC. a, Violin plots of gene activity scores of the indicated genes for effector/
non-dysfunctional (C4,5,7_CD8) and dysfunctional (C8,9,10,11_CD8) T cell clusters. Pair-wise comparisons of gene activity scores for the indicated gene
between specified T cell clusters were determined using a two-sided Wilcoxon rank-sum test. Resulted p values further underwent multi-test correction
with the FDR method (*, adjusted-p < 0.05; **, adjusted-p < 0.07; ****, adjusted-p < 0.0007; raw adjusted p values are listed in the Source Data file).

b, Genome tracks of aggregate scATAC-seq data visualization of the indicated gene locus, clustered as denoted in Fig. 1b. ¢, Violin plots of gene activity
scores of the indicated genes for dysfunctional (C8,9,10,11_CD8) T cell clusters (two-sided Wilcoxon rank sum test; ****, p < 0.0007; raw adjusted p values
are listed in the Source Data file). Comparisons based on Fig. 2c (early/middle versus late dysfunction fate). Effector/non-dysfunctional (C4,5,7_CD8) T
cell clusters are included for comparison. a, ¢, for clusters 4, 5, 7, 8, 9,10, 11, n=1810, 1821, 873, 924, 1775, 2440, 1613 cells, respectively.
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Extended Data Fig. 5 | Single-cell transcriptional profiling of CD45+ cells in ccRCC. a, UMAP projection of 108,328 scRNA-seq profiles of CD45* cells
isolated from tumor, adjacent normal tissue, and peripheral blood of four patient samples. Each dot corresponds to one single-cell colored according to
cell cluster. b, UMAP projection of cells colored by gene expression levels of selected lineage marker genes across CD45* cell clusters. ¢, Heatmap of
expression of the top 3 marker genes in each cluster across all clusters. d, Tissue-specific contribution of cells in each cluster derived from a.
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Extended Data Fig. 6 | Single-cell transcriptional profiling of T cells in ccRCC. a, Patient-specific contribution of T cells in each cluster derived from Fig.
3a (left), and UMAP projection (right). b, Tissue-specific contribution of T cells in each cluster derived from Fig. 3a and UMAP projection (right). ¢, UMAP
projection of cells colored by gene expression levels of the indicated marker genes. d, Heatmap showing the proportions of cells from each scATAC-seq
cluster (x axis) that are annotated with cluster labels transferred from scRNA-seq clusters (y axis). e, Histogram of maximum prediction scores for every
cell in scATAC-seq data; maximum prediction score measures the confidence level of annotating the scATAC-seq cell with cluster labels transferred from
scRNA-seq data. Here, prediction score higher than 0.5 is considered of high confidence (n=18736 cells). f, Gene-gene correlation heatmap of genes
within each module identified by weighted gene co-expression module analysis. Selected genes from the dysfunction module (boxed) are listed (see
Methods).
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Extended Data Fig. 7 | Single-cell TCR profiling of T cells in ccRCC. a, Clonal expansion and tissue migration indices of CD8* T cell in the indicated
clusters, calculated by STARTRAC. Each dot represents one patient; n=4 patients. Box plot statistical values including whiskers, quartiles, median, max
and min values are listed in the Source Data file. b, Clonal expansion index of the indicated CD4+ clusters, calculated by STARTRAC. Each dot represents
one patient; n=4 patients. Box plot statistical values including whiskers, quartiles, median, max and min values are listed in the Source Data file.

¢, Heatmap displaying the pair-wise cellular state transition index of T cells between clusters based on clonotype similarity, calculated by STARTRAC.

d, Heatmap of 258 clonotypes (each row) shared by at least one of the dysfunction-related clusters (cl1, 4, 9, 10, 12) and one of the non-dysfunctional
CD8* T cell clusters (cl.5, 6, 7, 8,13). Red grid indicates detection of the clonotype in the corresponding cluster (each column) and blue grid indicates
no detection of the clonotype in the corresponding cluster. e, Examples of clonotypes and their distribution on UMAP projection of T cells. Each red dot
represents cells sharing the indicated clonotype.
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Extended Data Fig. 8 | Cis-regulatory element accessibility of proapoptotic genes in late dysfunctional ccRCC infiltrating CD8* T cells. a, Genome
tracks of aggregate scATAC-seq data visualization of NFkB transcriptional targets gene loci, clustered as indicated in Fig. 1b. b, Violin plots of gene activity
scores (left) and genome tracks of aggregate scATAC-seq data visualization of the NFkB transcriptional target genes (right), clustered as indicated in Fig.
1b. Pair-wise comparisons of gene activity scores for the indicated gene between specified T cell clusters were determined using a two-sided Wilcoxon
rank-sum test. Resulted p values further underwent multi-test correction with the FDR method (**, adjusted-p < 0.01; ****, adjusted-p < 0.0001; raw
adjusted p values are listed in the Source Data file; for clusters 4, 5, 7, 8,9, 10, 11, n=1810, 1821, 873, 924, 1775, 2440 and 1613 cells, respectively).

¢, Genome tracks of aggregate scATAC-seq data visualization of proapoptotic gene loci, clustered as indicated in Fig. 1b.
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Extended Data Fig. 9 | Apoptosis flow cytometry analysis. a, Gating strategy for flow cytometry analysis of tumor-infiltrating CD8* T cells. b, UMAP
projection of tumor-infiltrating CD8* T cells from ccRCC patients (n=5), colored by the expression levels of the indicated markers. Color gradient
indicates expression level (red-high, blue-low). ¢, Representative viability FACS plots for the indicated CD8* T cell subsets.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Single-cell chromatin derived signature and survival. a, Overall survival for the indicated early stage (I, II, 1) TCGA ccRCC
cohorts based on high proapoptotic NFkB signature (>median) versus low signature expression. Log-rank test was used to compare the survival between
the two groups in each panel. TCGA stage |: Chisq=0.1 on 1 degrees of freedom, p=0.7; TCGA stage II: Chisq=0.4 on 1 degrees of freedom, p=0.5; TCGA
stage lll: Chisq=0.5 on 1 degrees of freedom, p=0.5. b, NFkB-derived signature analysis of tumors from the CheckMate cohorts of advanced ccRCC
examining response (two-sided Wilcoxon rank-sum test) following treatment with PD-1 blockade (left) or mTOR inhibition (right). For PD-1 blockade,
CR/PR, n=139 patients, SD n=64 patients, PD n=69 patients. For mTOR inhibition, CR/PR, n=5 patients, SD n=67 patients, PD n=37 patients. Box plot
statistical values including whiskers, quartiles, median, max and min values are listed in the Source Data file. ¢, Overall survival for the mTOR inhibition
CheckMate cohort, based on high proapoptotic NFkB signature (>median) versus low signature expression. Log-rank test was used to compare the
survival between the two groups in each panel; Chisq=0.1 on 1 degrees of freedom, p=0.818.
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Single-cell ATAC-seq, RNA-seq, and TCR-seq data that support the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under
accession code GSE181064.

Bulk RNA-seq data for the TCGA ccRCC cohort (KIRC) was obtained through the Broad GDAC Firehose (https://gdac.broadinstitute.org/), and clinical data for TCGA
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EOMES: Invitrogen, WD1928, PE-eFluor610, 61-4877-42, 1:50
CD39: BD Bioscience, TU66, BUVE61, 749967, 1:50
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TCF7: Cell Signaling, C63D9, Pacific Blue, 9066S, 1:50
CD45RA: BD Bioscience, HI100, BUV395, 740298, 1:100
CD4: BiolLegend, SK3, SparkBlue 550, 344656, 1:400
CD3: BioLegend, UCHT1, BV570, 300436, 1:25

CD8: BD Bioscience, RPA-T8, BUV805, 749366, 1:100
Ki67:BD Bioscience, B56, BV711, 563755, 1:200
FAM-VAD-FMK poly caspases: Invitrogen, V35117

Validation All the antibodies used in this study were commercial antibodies, with validation procedures from the manufacturer described in the
following sites: https://www.biolegend.com; https://www.bdbiosciences.com/en-us; https://www.thermofisher.com/us/en/home/
brands/invitrogen.html; https://www.cellsignal.com; https://www.miltenyibiotec.com/US-en/#gref

Human research participants
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Population characteristics All patients had Stage | renal cell carcinoma with clear cell histology. Information about the age and sex of the patients is
provided in Supplementary Table 1. None of the patients received therapy prior to tumor resection

Recruitment There is no evidence that this study was prone to self-selection bias

Ethics oversight Consented patient samples were procured from commercial vendors (Avaden BioSciences and Discovery Life Sciences)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Methodology
Sample preparation Consented patient samples were procured from commercial vendors (Avaden BioSciences and Discovery Life Sciences). The
sample processing protocol is described in Methods
Instrument BD FACSymphony A5, Cytek Aurora
Software oMiQ
Cell population abundance The abundance of CD45+ determined by testing the sorted cells with FACS, reached >99%
Gating strategy Gating strategy used to derive data in Fig. 4e. Viable cells were gated for CD45+ cells, T cells (CD2+CD3+), CD3+CD8+CD4-

cells, and the % cells expressing PD-1, TOX, 4-1BB, FAS, TRAF1 and combinations was assessed. Positive and negative
expression was based on isotype and FMO controls.
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