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Machine learning can guide food security efforts
when primary data are not available
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Estimating how many people are food insecure and where they are is of fundamental importance for governments and humani-
tarian organizations to make informed and timely decisions on relevant policies and programmes. In this study, we propose a
machine learning approach to predict the prevalence of people with insufficient food consumption and of people using crisis
or above-crisis food-based coping when primary data are not available. Making use of a unique global dataset, the proposed
models can explain up to 81% of the variation in insufficient food consumption and up to 73% of the variation in crisis or above
food-based coping levels. We also show that the proposed models can nowcast the food security situation in near real time and
propose a method to identify which variables are driving the changes observed in predicted trends—which is key to make pre-

dictions serviceable to decision-makers.

haracterizing the socio-economic status of populations and

providing reliable and up-to-date estimates of who the most

vulnerable are, how many they are, where they live and why
they are vulnerable is essential for governments and humanitarian
organizations to make informed and timely decisions on imple-
mentation of humanitarian assistance policies and programmes'.
These data are traditionally collected through face-to-face surveys.
However, these are expensive, time-consuming and, in certain
areas, not possible to perform due to conflict, disease, insecurity
or remoteness. Therefore, during the past few years, research-
ers have begun to investigate the potential of non-traditional data
and new computational methods to estimate vulnerabilities and
socio-economic characteristics when primary data are not avail-
able. In these studies, mobile phone data’, satellite imagery’, a com-
bination of both*®, mobile money transaction records®, geolocated
Wikipedia articles’ or tweets® and social media advertising data’
have been used in combination with state-of-the-art machine learn-
ing methods to provide reliable estimates of poverty at different
spatial resolutions for several sub-Saharan African countries and
southern and southeastern Asian ones.

The methods proposed in these studies provide a unique oppor-
tunity to monitor poverty in near real time on a global scale. In this
work, we show that similar methods and data can be used to tackle
another outstanding form of vulnerability affecting populations
worldwide: food insecurity. In 2019, the number of under-nourished
people was estimated to be 650 million'’, with 135 million in 55
countries and territories reported to be acutely food insecure''.
These numbers have substantially increased as a consequence of the
COVID-19 pandemic, with at least 280 million people reported to
be acutely food insecure in 2020, more than doubling the number
from the previous year'”. To address this global issue, monitoring
the situation and its evolution is key. Governments and international
organizations such as the World Food Programme (WFP), the Food
and Agriculture Organization (FAO) and the World Bank perform
food security assessments on a regular basis through face-to-face
surveys or, increasingly so, through remote mobile phone surveys
(for example, computer-assisted telephone interviews) and further

supporting technologies such as interactive voice response and web
surveys'. However, as mentioned previously, there are limitations
with these approaches given their high costs in both monetary and
human resources. In addition, food insecurity is a more dynamic
and unstable phenomenon than poverty, with a seasonal compo-
nent related to agricultural production calendars and subject to
swift changes when external shocks hit, therefore requiring more
frequent and rapid assessments.

Food insecurity is a multi-dimensional concept, spanning from
food availability and access to utilization and stability’’. Multiple
indicators have been developed to characterize household food inse-
curity levels, each capturing different aspects. In this study, we focus
on the Food Consumption Score (FCS) and the reduced Coping
Strategy Index (rCSI), the former capturing quantity and diversity
of dietary intake and the latter the consequences of constrained
access to food, resulting in coping behaviours'. Aggregating a
representative number of household-level measurements of these
indicators makes it possible to characterize the food security situa-
tion of a geographical area during a specified time window through
the prevalence of people with insufficient food consumption and
that of people using crisis or above-crisis food-based coping,
respectively. In this study, we show that these two metrics can be
estimated from secondary data by means of machine learning algo-
rithms when primary data are not available. This opens the door to
food security near-real time nowcasting on a global scale, allowing
decision-makers to make more timely and informed decisions on
policies and programmes oriented towards the fight against hunger.
For example, when the proposed models are predicting increases in
the prevalence of food-insecure people, then WFP will trigger rapid
assessments through face-to-face or remote surveys and mobilize
in-country analysts to gain a better understanding of the situation.
The development of these models is motivated by a specific need of
WEP to fill a gap that currently exists because of limited resources
and inaccessibility, that is, to provide regular information for less
reachable places, where food security assessments are carried out
only once or twice per year but that nevertheless require a constant
flow of information to inform humanitarian operations.
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Previous work has explored the use of secondary data to inves-
tigate specific aspects of food insecurity, such as agricultural pro-
duction. Statistical crop models and climate modelling have been
used to make projections for 2030 of changes in crop productions
in 12 food-insecure regions due to climate change'*. Mobile phone
records have been used to analyse monthly mobility in Senegal,
leading to the discovery and characterization of seasonal mobility
profiles related to economic activities, agricultural calendars and
precipitation’. Other studies have proposed a characterization of
the food security situation based on a variety of secondary indica-
tors, addressing its multi-dimensional aspect and providing annual
national-level estimates'”'®. Famine risk prediction through machine
learning and stochastic models has also been the subject of recent
investigation. Okori and Obua used household socio-economic and
agricultural production characteristics to train several machine
learning models to predict households” food security status'. The
limitation of this approach is that up-to-date household-level data
are required not only during model training but also when using
the trained models to perform out-of-sample predictions. More
recently, the World Bank developed a suite of statistical models to
forecast transitions into critical states of food insecurity and famine
risk from secondary data’®”’. In this study, we focus on food secu-
rity nowcasting, proposing a methodology that allows us to estimate
the current prevalence of people with insufficient food consump-
tion and of people using crisis or above-crisis food-based coping
at the sub-national level at any given time from secondary data,
when primary data are not available. Seminal work by Lentz and
collaborators addressed this challenge, obtaining predictions that
explain up to 65% of the variation in food consumption, although
limited to Malawi only*. Similar studies in the context of Ethiopia®
and Burkina Faso®* were also recently proposed. Here we make use
of a unique dataset of sub-national-level food consumption and
food-based coping data collected during the past 15 years across,
respectively, 78 and 41 countries and aggregated by first-level
administrative country sub-divisions (for example, departments,
provinces and so on), allowing the development and validation
of nowcasting predictive models of food security indicators on
a global scale.

Results

Predictions using previously measured levels and secondary
data. The main assumption of this study is that when primary data
are not available, levels of insufficient food consumption and of
crisis or above food-based coping can be estimated from second-
ary information, specifically on the key drivers of food insecurity.
Experts identify three main causes for food insecurity: conflict, eco-
nomic shocks and extreme weather events''. To build the proposed
predictive models, we therefore collected historical data covering
all three dimensions: data on conflict-related fatalities, economic
information (prices of staple food in local markets, headline and
food inflation, currency exchange rates and gross domestic prod-
uct (GDP) per capita) and data on rainfall and vegetation, including
anomalies with respect to historical averages. For each available his-
torical measurement of insufficient food consumption and of crisis
or above food-based coping for a given geographical area and time
window, we associate as independent variables the corresponding
conflict, economic and weather situation for the same area in the
previous three-month window. Moreover, we also take into account
as independent variables under-nourishment and population den-
sity and the target prevalence measured during the most-recent pre-
vious food security assessment, whose time frame varies across the
different areas.

For each target variable, after having defined and selected the
input variables as described in Methods, we fitted N, =100 boot-
strapped models using gradient boosted regression trees*, employ-
ing the first (in temporal terms) approximately 85% of the historical
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Table 1| Model performance metrics
R? MAE
0.81 0.07

Prevalence from previous
assessment included as
independent variable

Food consumption

Prevalence from previous 0.74 0.09
assessment not included as

independent variable

Baseline model using 0.51 0.15
prevalence from previous

assessment only

Baseline model using GDP 0.40 014

per capita only

Baseline model 0.39 013
using prevalence of

under-nourishment only

Baseline model 0.66 on
using prevalence of
under-nourishment and GDP

per capita

Baseline model using 014 0.14
weather-related variables

only

Prevalence from previous 0.73 0.08
assessment included as

independent variable

Food-based coping

Prevalence from previous 0.61 0.09
assessment not included as

independent variable

Baseline model using 0.45 0.12
prevalence from previous

assessment only

Baseline model using GDP 0.20 0.12

per capita only

Baseline model 0.19 0.12
using prevalence of

under-nourishment only

Baseline model 0.39 0.10
using prevalence of
under-nourishment and GDP

per capita

Baseline model using 0.37 0.13

weather-related variables only

Coefficients of determination (R?) and mean absolute errors (MAE) obtained on the test set for
each of the four proposed models (in bold) and for the different baseline approaches.

data, as further detailed in Methods. As reported in Table 1, the pro-
posed models are able to explain on the remaining approximately
15% out-of-sample data (that is, corresponding to the past two
months of data), 81% of the variation in the prevalence within each
country subdivision of people with insufficient food consumption
and 73% of the variation in the prevalence of people using crisis
or above-crisis food-based coping with a mean absolute error of,
respectively, 0.07 and 0.08. Figure 1 (top plots) shows the predicted
versus actual prevalence for each observation in the test set. The
former is calculated as the median of the predicted values obtained
from the N bootstrapped models.

As one might expect, in both models, the most predictive vari-
able is the previously measured prevalence (Supplementary Fig. 1).
Therefore, the question arises whether the independent variables
built from secondary data bring significant additional information
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Fig. 1| Predicted versus observed values in the test set for each of the four models. Each plot shows the predicted value (obtained as the median of

N, =100 predictions, each generated from one of the bootstrapped models) versus the actual value for each observation in the test set. The blue line
represents the best fit for the plotted points, whereas the grey line represents where the points would fall if all predicted values perfectly matched the
observed ones. The closer the two lines are, the better the model’s performance is. The top plots refer to the models that include the prevalence from the
previous assessment as an independent variable, and the bottom plots refer to the models that use secondary data only.

into the models or whether most of their explanatory power could
be due to the previous assessment variable. To tackle this question,
we compare the results of the proposed models with those obtained
from a naive approach that uses only the prevalence measured dur-
ing the previous assessment as an independent variable. We find
that this naive model can explain only 51% of the variation in the
prevalence of people with insufficient food consumption and 45% of
the variation in the prevalence of people using crisis or above-crisis
food-based coping, demonstrating the fundamental importance
played by secondary data to capture the dynamic nature of food
insecurity and to explain the current situation when up-to-date pri-
mary data are not available.

Predictions using secondary data only. Having demonstrated the
potential of the proposed approach when information on both key
drivers and previous values of the target indicator is available and
the fundamental role played by the secondary data, we then tested
to what extent insufficient food consumption and crisis or above
food-based coping levels can be predicted when previously mea-
sured prevalence is not available.

We trained two additional models, using the same approach
but removing the prevalence from the previous assessment from
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the set of independent variables, hence using secondary data only.
As reported in Table 1, in this case results show that the proposed
models are able to explain, on the test set, 74% of the variance in the
prevalence of people with insufficient food consumption and 61% of
the variance in the prevalence of people using crisis or above-crisis
food-based coping, with a mean absolute error of 0.09. Figure 1
(bottom plots) shows the predicted versus actual prevalence for
each observation in the test set. As expected, these latter models
have lower explanatory power and slightly higher errors than the
former ones; however, the reported metrics are still satisfactory. The
advantage of these models is that they also allow prediction of the
food security situation in areas where no previous measurement
is available, substantially expanding the application horizon of the
proposed approach.

To test to what extent the performance of these models is due
to variables such as the GDP per capita and the prevalence of
under-nourishment, which are strong proxies for a country’s
socio-economic development, we created a set of baseline models
using these individual variables in isolation and in combination.
Results show that these variables alone can explain up to 66% of
the variation in food consumption and 39% of the variation in
food-based coping. This means that these variables are, indeed,
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those explaining the largest part of the variation in the two indica-
tors; however, because they are annual national-level figures, they
serve as a fundamental baseline but cannot help in predicting the
sub-national and rapidly changing dynamics characterizing food
insecurity, which is the objective of this study.

Finally, given the recent advances in the use of climate extremes
data in famine early-warning systems®, we also created an addi-
tional baseline which includes the weather-related variables only.
Results show that these models can explain only 14% of the varia-
tion in food consumption and 37% of the variation in food-based
coping and cannot therefore be used in isolation. However, the
dynamic nature of weather-related features is fundamental to pre-
dict the observed rapid changes in the food security situation, as
shown in the final section.

Near-real time nowcasts. WFP is currently monitoring the food
security situation in near real time in a number of countries, col-
lecting food consumption and food-based coping data through
daily remote phone surveys“”. The predictive models proposed in
this study aim at serving WFP’s need to estimate the situation in
additional countries where primary near-real time data are not cur-
rently available to provide humanitarian stakeholders with regular
and frequent up-to-date global overviews of the food security situ-
ation and allow for timely decision-making on resource allocation.

To test the effectiveness of the proposed models in capturing
the current situation, we compared insufficient food consump-
tion and crisis or above food-based coping trends measured by
WFEFP’s near-real time monitoring systems between 1 August and
30 September 2021 with the corresponding prevalence predicted by
the proposed models, which were trained and tested on data col-
lected before 1 August 2021. For areas where the prevalence from
a previous assessment—performed before the start of the near-real
time monitoring system in the country—is available, we use the
models that include this information as an independent variable;
for areas where this is not available, we resort to the models that rely
on secondary data only.

National-level results for insufficient food consumption are
shown in Fig. 2. The red lines represent the target prevalence as
measured by WFP’s near-real time monitoring systems, the blue
lines the predicted prevalence and the green dashed lines the prev-
alence from the previous assessments, where available. All preva-
lence levels were first obtained at the spatial resolution of first-level
administrative units and then aggregated to obtain national trends.
Sub-national trends are reported in Supplementary Figs. 2-16.
We can observe that in most cases the prevalence measured by
the near-real time monitoring systems falls within the prediction
intervals (or within a reasonable distance of less than 5%) for at
least part of the trend. In those cases where the actual data line is
further from the prediction interval, we can observe that the pre-
dicted trend is however visibly closer to the observed one than the
prevalence from the previous assessment (for example, Malawi and
Zambia). In the remaining case, where no previous assessment is
available (that is, Somalia), the predicted and observed trends
both fall within the same severity level (>40%) defined by WEP".
Similar results can be observed for crisis or above food-based cop-
ing in Fig. 3 (Supplementary Figs. 17-31 provide the corresponding
sub-national trends), with the exception of Congo and Somalia.

To better understand these findings, a characterization of predic-
tion errors was carried out. As shown in Fig. 4, we classify errors on
the basis of how far predicted values are from the observed ones: we
classify as correct those predictions that differ from the observed
value by maximum + 5 prevalence points; as high over-estimation
(under-estimation) a predicted prevalence >40% (<40%) when the
observed prevalence is <40% (>40%); finally, all other regions are
classified as low under- and over-estimation. We find that 44.2%
(36.8%) of predictions are classified as correct and another 46.0%
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(50.5%) are low under-/over-estimations, whereas 2.1% (5.0%) of
predicted values highly overestimate and 7.7% (7.7%) highly under-
estimate the prevalence of people with insufficient food consump-
tion (with crisis or above-crisis food-based coping). Supplementary
Figs. 32-33 show the distribution of each independent variable for
training data, for correct predicted values and for high over- and
under-estimated predicted values. Results indicate that, as one
might expect, errors happen when the independent variables take
on values that differ the most from those most frequently seen by
the models during training. This is particularly evident for the prev-
alence of under-nourishment, the prevalence from previous assess-
ment and market price alerts. For instance, the high over-estimation
of crisis or above food-based coping in Congo and Somalia is
probably due to the corresponding extremely high values of the
prevalence of under-nourishment. These insights should guide the
handling of predictions: when running the models for a new area
and date, one should first check the values of the input variables and
how they compare to their distribution in the historical data used to
train the model. When values falling in the tails of the distributions
are observed, care must be taken as predictions are more likely to be
farther from the actual unknown prevalence.

Opverall, these results show that the proposed models allow WFP
to obtain adequate national estimates of the considered food secu-
rity indicators for the majority of countries of operational relevance
for WFP, complementing the information from WEFP’s near-real
time monitoring systems.

Explanations of predicted values and of changes in predicted
trends. Machine learning approaches are often seen as black boxes
that provide recommendations without the user being able to
access the process and rationale that generated them. This is not an
acceptable practice when the model outputs are being generated in
support of decision-making. Therefore, in this context, proposing
methods to explain predicted results is as important as building the
models themselves.

Here we make use of SHAP (SHapley Additive exPlanations)
values®” to explain how each prediction is obtained. SHAP values
make it possible to explain each predicted prevalence as a value
obtained starting from the average prevalence observed in the train-
ing set (baseline) and then accounting for how much each inde-
pendent variable contributes to the final prediction by moving the
prevalence towards lower or higher values.

We first show how this method is able to demystify the pre-
dicted prevalence of people with insufficient food consumption or
of people using crisis or above-crisis food-based coping, explain-
ing how the models predict values compatible with what has been
measured through WFP’s near-real time monitoring systems. In
Fig. 5, we show an exemplification of this approach to explain both
predicted indicators in the cases of Mali on 1 August 2021, using a
waterfall plot approach”. Starting from the bottom, each variable’s
contribution is summed to the baseline E(f(x)) to eventually reach
the predicted value f(x). Variables are ordered by importance (in
terms of the absolute value of their contribution) and coloured by
the sign of the contribution: red if increasing and blue if decreas-
ing, with respect to the baseline. In Fig. 5a, we see that the most
important variables in determining the high prevalence of people
with insufficient food consumption (0.52) in Mali is the prevalence
of under-nourishment (>5%), together with the low GDP per capita
(US$778.5). Conversely, the lower value of the prevalence measured
during a previous assessment (0.20) drives the predicted value
down, similarly to what happens in Fig. 5b when considering the
prevalence of people using crisis or above-crisis food-based coping.
Supplementary Figs. 52-79 report the same plots for the remain-
ing 14 countries shown in Figs. 2-3. It should be noted that each
country (and sub-national area) is characterized by a different vari-
able importance order. For instance, in high-intensity conflict areas
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Fig. 2 | Comparison between near-real time monitoring of insufficient food consumption and predicted trends. Each plot shows the prevalence of people
with insufficient food consumption between 1 August and 30 September 2021, as measured through WFP's near-real time monitoring systems (red

lines) and as predicted by the proposed models (the blue lines represent the median of the N, =100 bootstrapped models predictions, and the light blue
area around them the corresponding 99% confidence interval). The dashed green lines represent the value measured during the previous assessments
(performed before the start of the near-real time monitoring system in the country), where available. The background colours represent severity levels

in terms of national prevalence as defined by WFP (<5%: very low, 5—10%: low, 10—20%: moderately low, 20—30%: moderately high, 30—40%: high,
>40%: very high)?.
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Fig. 3 | Comparison between near-real time monitoring of crisis or above food-based coping and predicted trends. Each plot shows the prevalence of
people using crisis or above-crisis food-based coping between 1 August and 30 September 2021, as measured through WFP's near-real time monitoring
systems (red lines) and as predicted by the proposed models (the blue lines represent the median of the N, =100 bootstrapped models predictions and
the light blue area around them the corresponding 99% confidence interval). The dashed green lines represent the value measured during the previous
assessments (performed before the start of the near-real time monitoring system in the country), where available. The background colours represent
severity levels in terms of national prevalence as defined by WFP (<5%: very low, 5—10%: low, 10—20%: moderately low, 20—30%: moderately high,
30—-40%: high, >40%: very high)?".
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Fig. 4 | Error classification for real time monitoring predictions. Predictions that differ from the observed value by maximum + 5 prevalence points

are classified as correct. Predicted prevalence >40% (<40%) when the observed prevalence is <40% (>40%) are classified as high over-estimation
(under-estimation). The other regions are classified as low under- and over-estimation. The solid black line indicates where the points would fall if all
predicted values perfectly matched the observed ones, and the grey dashed diagonal lines indicate a distance of +5 prevalence points from it. The grey

dashed horizontal and vertical lines indicate the 40% prevalence thresholds.

in countries such as Somalia, Syria and Yemen, the conflict vari-
able is in the top 50% most important variables, as one can see in
Supplementary Figs. 80-83.

Beyond using SHAP values to explain individual predictions,
in this study, we propose a method based on this framework to
measure the relative importance of each independent variable
in explaining changes in the predictions of food consumption
and food-based coping between two dates. This is important for
decision-makers to understand why the models, when deployed to
produce near-real time trends, show improvements or deteriora-
tion in the food security situation. This is done by exploiting the
differences in SHAP values between two dates, and its mathemati-
cal formulation is detailed in Methods. In Fig. 6, we show the pro-
posed method applied to a specific example. On the left, we see
how the predicted food consumption situation in Indonesia dete-
riorated between 15 August and 15 September 2021. Our method
is able to identify that the most important variable in determining
this change has been the change in food inflation, which, as shown
in the bottom table, increased within the month under consider-
ation. Other variables also had a smaller impact in the change, for
example, an increase in the amount of rainfall and in the green-
ness of the vegetation, with respect to the historical averages in the
same period of the year, played instead a positive role reducing the
extent of the predicted deterioration. Let us note that variables that
did not change their value during the time period considered can,
however, still change their SHAP importance, as this is relative to
the values of all variables at each point in time. On the right, we
explain an increase in the predicted prevalence of people using cri-
sis or above-crisis food-based coping in the same time period in
the same country. In this case, the main causes are an increase in
both food and headline inflation, while an increase in the green-
ness of the vegetation with respect to the historical average con-
tributed to reduce the extent of the deterioration. Sub-national
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investigations reveal that the positive contribution of rainfall and
vegetation greenness is not homogeneous across provinces, as one
can see in Supplementary Figs. 84-151.

To conclude, this kind of analysis will allow WFP to identify the
main factors behind a predicted change in insufficient food con-
sumption or in crisis or above food-based coping. More specifi-
cally, WFP will be able to divide countries in various tiers of risks
by combining levels of prevalence of insufficient food consumption
and food-based coping with levels of deterioration over time™. This
will allow food security experts to evaluate to what extent the situ-
ation should be considered concerning and whether more in-depth
analyses are required, including, for instance, triggering ad hoc data
collection to obtain further information on the different concerned
dimensions.

Discussion

In this study, we propose an approach that makes it possible to pre-
dict the current sub-national food consumption and food-based
coping situation on a global scale from secondary data on the key
drivers of food insecurity. We show that when a previous measure-
ment of the target indicator is available and included as an indepen-
dent variable, the models, as expected, have a higher explanatory
power and lower errors than when relying on secondary information
only. Importantly, we also demonstrate that these models perform
significantly better than a naive approach that uses the prevalence
measured during a previous assessment as the predicted prevalence.
Moreover, even the models that rely on secondary information show
only a satisfactory explanatory power. Having trained and validated
the proposed models on historical data, we then further show that
they can be used to predict the current prevalence of insufficient
food consumption and of crisis or above food-based coping by com-
paring the data being collected in near real time by WFP during a
recent two-month period with the corresponding predicted levels.
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Fig. 5 | Explanation of a single prediction of insufficient food consumption and of crisis or above food-based coping. Waterfall plots* show how

SHAP values are used to explain the predicted prevalence f(x) on 1 August 2021 in Mali (aggregating first-level administrative unit predictions) as the
sum of a baseline E(f(x)) and each variable's contribution, highlighting in red positive contributions and in blue negative ones. Prevalence and variable
contributions are expressed as percentages. Next to each variable's name (defined in Methods), its value-averaged weighting by population over all
first-level administrative units in the country is shown. The boxes contain the actual values measured through the near-real time monitoring system for
the same day. a, The prevalence of people with insufficient food consumption. b, People using crisis or above-crisis food-based coping. The corresponding

sub-national plots are reported in Supplementary Figs. 34-51.

Finally, we show that despite the nonlinear tree-based model struc-
ture, it is possible to provide interpretable explanations of predicted
figures and of what causes changes over time, even if the models do
not have an intrinsic dynamic component.

Despite the encouraging results, several limitations apply. First
of all, the proposed models are trained and validated combining
together sub-national data from a number of different countries.
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Having such rich variety of data made it possible to build a global
model that can be used to estimate the food security situation in
any area in the world. However, this also means that the models
learned patterns in the data that correspond to what is most com-
monly observed across the different countries, limiting the dis-
covery of less-frequent patterns specific to local contexts. These
latter patterns would be more easily discovered by training separate
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Food inflation 2.740 3.310

Headline inflation 1.520 1.590
Three-month mean NDVI anomaly 1.022 1.039
Exchange rate % change 0.078 0.120
Average NDVI 0.749 0.749

Average one-month rainfall anomaly 125.779 147.621
Change in fatalities (vac) 0.022 0.047

Fig. 6 | Explanation of changes in predicted trends between two dates. A SHAP values-based method was developed to explain why the models are
predicting changes in prevalence between two dates. We explain the change in predicted trend for the prevalence of people with insufficient food
consumption (left) and of people using crisis or above-crisis food-based coping (right) between 15 August and 15 September 2021 in Indonesia. On the
top plots, we can see the predicted trends in blue, with the light blue area around them the corresponding 99% confidence interval. The middle plots show
each independent variable's contribution to the change: positive contributions (deterioration) are shown in red, negative contributions (improvements)

in blue and variables that did not change value between the two dates are shown in grey. Variables are ordered by importance (in terms of absolute value
of their contribution). All prevalence and SHAP value differences are expressed as percentages. The tables in the bottom report the values of the models’
independent variables at the two considered dates. The corresponding sub-national plots are reported in Supplementary Figs. 84-151.

models each based on historical data from a specific country only.
This would, however, require the availability of large enough sam-
ples for each individual country, which is currently not available for
anumber of countries. Hence the reason for the proposed approach.
However, it should be noted that predictions generated by the pro-
posed models should be used with caution and further validated
when relative to areas and countries that are not represented in
the historical data used to train and test the models, as discussed
in previous studies’. In this sense, one of the challenges faced in
the model development was the unequal availability of food con-
sumption and food-based coping data across different countries. To
ensure as much as possible a balanced geographical representation,
we resorted to sampling and kept only a subset of the available data
for the most data-rich countries, while also ensuring enough data
were included to properly train the models. Future works should
explore country-specific models for data-rich countries and how
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these could be used to complement the current approach through,
for example, ensemble modelling.

In regard to the secondary information feeding the proposed
models, in this study, we resort to data on the three main driv-
ers of food insecurity: economic shocks, extreme weather events
and conflict. Undoubtedly, further information could be included
to enrich the models, such as data on displacements, natural haz-
ards, animal and crop diseases and epidemic outbreaks''. However,
the limited availability of relevant data on a global scale and on
a multi-annual time frame restricts the possibilities of expansion
to additional independent variables. Given that the time frame
covered by the historical data used to train and test the mod-
els includes the COVID-19 pandemic, one might expect that we
would need to include this information in the models, for exam-
ple, in the form of case load or death incidence. This is, however,
not the approach we adopted, because the objective was to build a
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general model for food insecurity, not specific to the current situ-
ation. Our assumption is that the effects of this pandemic on the
food security situation are already indirectly taken into account
by some of the independent variables included in the models,
namely those accounting for staple food prices in local markets and
macro-economic indicators, which were heavily affected by the pan-
demic’*. Further investigation should, however, be the subject of
future work.

Some challenges and limitations also apply to the secondary
data that have been incorporated in the models to build the inde-
pendent variables. First, the different data sources do not have the
same time resolution and update frequency, which range from
annual estimates to daily measures, as further detailed in Methods.
This means that when generating predictions on a regular basis
to nowcast the situation, most variables will not update daily,
and therefore, to see notable changes, longer time intervals need
to be considered. Secondly, spatial resolution also varies across
the different data sources. Whereas population density, rainfall,
vegetation and conflict-related fatalities data are available at the
first-level administrative unit resolution, macro-economic indi-
cators and prevalence of under-nourishment are national figures,
leading to all sub-national areas being assigned the same value.
This could be seen as a limitation, but it also allows provision to
each first-level administrative unit of some national characteriza-
tion, which would otherwise be lost in a global model trained with
sub-national-level data only. Let us consider, for example, two bor-
dering areas belonging to two different countries, such as Venezuela
and Brazil. Given their geographical proximity, they might be highly
similar with respect to vegetation and precipitation, but, concur-
rently, they would be highly different in terms of the economic
situation, possibly resulting in profound differences in the food
security situation.

From a modelling perspective, a limitation of this study is that it
proposes one modelling framework only and does not provide com-
parison with other models, such as linear regression and decision
trees. XGboost was selected due to its well-documented excellent
performance on a wide range of problems*>***. Additional models
might, however, be explored in future work.

Finally, while SHAP values are used in this work only to under-
stand how each prediction is obtained by the proposed model,
some limitations of this method are worth mentioning to avoid its
misuse by decision-makers. For instance, it is important to stress
how explaining individual predictions is different from understand-
ing driving factors**. Moreover, while SHAP values have been fre-
quently used by the machine learning community in recent years,
their adoption is not unanimous, and some limitations on their use
as explanatory tools have been pointed out™.

Having carefully taken into account the challenges and limi-
tations highlighted above, the proposed models have the poten-
tial to be used to provide unique information to humanitarian
decision-makers when no primary data are available. Predictions
should certainly be handled with caution and never considered as
ultimate truth. When indicating some level of deterioration, they
should serve as triggers for rapid assessments and more in-depth
analysis of the situation, rather than being used to prompt imme-
diate decision-making. In this regard, the proposed methods give
decision-makers more insights into how the model predicted a
certain figure or changes in the predicted trends, allowing for a
deeper understanding of the situation. Finally, it should be noted
that to ensure continued validity of the proposed models, it is
essential to perform regular re-trainings whenever a considerable
amount of new primary data is collected and available. This will
allow improvement of the model’s explanatory power thanks to
the increased volume and variety of data the training is performed
on, and to eventually learn new emerging patterns, hence remain-
ing representative of the current situation.
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Methods

Target indicators. The two target indicators of the proposed predictive models—
the prevalence of people with insufficient food consumption and the prevalence of
people using crisis or above-crisis food-based coping—are calculated on the basis
of two household-level indicators: the FCS* and the rCSI”, respectively.

The FCS is calculated by asking each household how often, during the past
seven days, it has consumed items from the different food groups: main staples,
pulses, vegetables, fruit, meat and fish, milk, sugar, oil and condiments. Each
consumption frequency is then weighted according to its relative nutritional
importance to obtain the FCS= ) wx,, where w, is the weight of food group i,
and x; is the frequency of its consumption by the household, that is, the number
of days for which the food group was consumed during the past seven days.
Once the food-consumption score is calculated, each household is then assigned
a food-consumption group (poor, borderline or acceptable) based on standard
thresholds, which can, however, be adapted based on specific consumption
behaviours in the country of interest. Food group weights and thresholds are
detailed in ref. **.

To compute the rCSI, households are asked if and how often during the
past seven days they had to adopt the following coping behaviours: relying on
less-preferred or less-expensive food, borrowing food from relatives or friends,
limiting portion sizes, restricting adults’ consumption for small children to eat and
reducing the number of meals eaten in a day. Coping strategy frequencies are then
weighted according to their severity to obtain the rCSI, as detailed in ref. *.

The available historical data for the two indicators have statistical
representativeness at the spatial resolution of first-level administrative units
and have been collected through both face-to-face and mobile phone surveys,
including those from WEFP’s near-real time monitoring systems. Because the
mode of questionnaire administration can have serious effects on data quality*,
post-stratification weighting schemes are applied by WFP to surveys collected
in a remote fashion to mitigate sampling and modality bias, as detailed in ref. *'.
The prevalence of people with insufficient food consumption and the prevalence
of people using crisis or above-crisis food-based coping are then obtained as
the weighted prevalence of households in the sample with, respectively, poor or
borderline food consumption and with rCSI>19 (ref. **).

The insufficient food-consumption data span units across 78 countries from
2006 to July 2021, and the crisis or above food-based coping data units across 41
countries from 2013 to July 2021, with more than 200,000 observations for each
indicator. This large volume of data is, however, not equally representative of all
covered geographical areas: countries where a WEP’s near-real time monitoring
system is in place are over-represented because these systems provide data on a
daily basis, whereas in the remaining countries, data collection is performed only
a few times per year. Therefore, to avoid training the models on an unbalanced
dataset, sampling is performed by randomly selecting, for each first-level
administrative unit, five observations per month only. The final dataset used
to train and test the models where the prevalence from previous assessments is
not included as an independent variable is composed of 37,926 observations for
food consumption and 35,894 for food-based coping. For the models where the
prevalence from a previous assessment is instead included, the size is further
reduced because only observations preceded by a previous one can be used,
resulting in 24,510 observations for food consumption and 12,570 for food-based
coping. The breakdown by country of all of the above-mentioned numbers is
reported in Supplementary Table 1.

Feature definition and selection. The initial set of considered features is
composed of variables related to food insecurity and its main drivers: economic
shocks, extreme weather events and conflict'’. Because the goal of the models is to
provide interpretable insights to decision-makers, the guiding principle for feature
definition was expert opinion. To include as much variety as possible in terms of
potential drivers, a manual, expert-guided, minimal feature selection process was
performed, as detailed below. Let us note that such an approach is not expected to
remove all multi-collinearity, but a tree-based method (XGboost) that is robust to
multi-collinearity® was subsequently used.

Food prices. To capture variations in cereal and tuber prices, we resort to the

Alert for Price Spikes (ALPS) indicator*’. This metric is based on a trend analysis
of monthly price data: the idea is to compare the long-term seasonal trend of a
commodity’s price time series in a market with the last observed price in the same
market, providing an indication of the intensity of the difference between the
current market price and the historical trend. The higher the difference, the more
severe the alert. Price data and the corresponding ALPS calculations are publicly
available through WFP’s Economic Explorer platform®. If more than one market
is present within a geographical area, the average ALPS value is considered. If no
market is instead monitored in a given area, the national average is considered.
From these data, we build a set of three features by taking into account the
minimum, maximum and average ALPS value within a three-month window. The
length of the window was selected as the shortest time period that minimizes the
number of missing values in the training and test set. A one-month lag is applied
to ensure data availability when deploying the model in real time. Because the
three defined features are different variants of the same indicator, and they display
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high levels of positive correlation (Spearman’s correlation coefficients p>0.85

for all three combinations), only one was selected as independent variable for the
models. The selected variable is the maximum ALPS value, being the one with the
highest correlation with the target indicators (correlations were computed using
the training data only).

Macro-economic indicators. The following four macro-economic features are
considered: most-recent available annual GDP per capita in a four-year time
window, most-recent available monthly headline and food inflation rates in a
six-month time window (applying a one-month lag) and percentage variation
between the average value of the currency exchange rate during the past three
months and the average value during the previous three, to capture main changes
in the situation. The three-month window was selected for consistency with the
food price features, and the same applies to the following features too. Being

all country-level indicators, the same national value is assigned to all first-level
administrative units within a country. Data are obtained from Trading Economics,
a website providing publicly available economic and financial indicators,
including historical data, for 196 countries*. For countries where unofficial
currency exchange rate is collected by WFP, these values are used instead of
official ones”, because they provide a more reliable representation of the country’s
economic situation.

Weather. An initial set of five weather features is built by taking: (1) the average
rainfall and normalized difference vegetation index (NDVI) during a 12-month
time window, which allows characterization of each first-level administrative
unit’s climate; (2) rainfall and NDVI anomalies with respect to historical averages.
For rainfall, two anomalies have been defined by WEP: the ratio between the
amount of rainfall during the past one month or three months and the historical
average of the amount of rainfall in the same period of the year. For NDVI, a
single anomaly is defined based on the past ten days, because vegetation already
integrates the effects of previous rainfall. All three anomalies are provided for
each ten-day window of the year, and we take their average during a three-month
window as for previous features, applying a ten-day lag. Data are obtained from
WEP’s Seasonal Explorer platform®, which provides open rainfall and NDVT time
series for a near-global set of administrative units, computed, respectively, from
the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)*
and the Moderate Resolution Imaging Spectroradiometer (MODIS)* data. In this
case, similar to food prices, the defined features are different variants of the same
two indicators, and a correlation analysis was performed to reduce their number.
Between the two averages during a 12-month time window (p =0.93), the average
NDVI was selected as the most correlated with the target indicators. Similarly,
between the two rainfall anomalies (p =0.82), the one-month anomaly was
selected. Finally, the NDVI anomaly was also selected given its low correlation with
the other four variables (p <0.4 in all cases).

Conflict. Conflict data are obtained from the Armed Conflict Location and

Event Data Project, a publicly available repository of reported conflict events and
related fatalities across most areas of the world’'. The date, latitude and longitude
of each event is reported, allowing it to match to the corresponding first-level
administrative unit. To capture deterioration or improvements in the conflict
situation, we define the conflict features as the difference between the number

of reported fatalities during the past three months and the three months prior,
applying a 14-day lag. Only fatalities reported in events involving organized
violence (that is ‘battles, ‘violence against civilians’ and ‘explosions/remote
violence’) are considered™, and a total of seven features is obtained by considering
these three categories separately and in combination. Again, a correlation analysis
was performed in the same fashion as for the previous cases, and only the ‘violence
against civilians’ feature was selected as an independent variable for the models.

Prevalence of under-nourishment. The most-recent available prevalence of
under-nourishment in a four-year time window is considered. This is a national
yearly indicator publicly available in the Food and Agriculture Organization
Corporate Statistical Database (FAOSTAT)>. Being a country-level indicator, the
same national value is assigned to all first-level administrative units within

a country.

Population density. Yearly population density is also considered and obtained
from the Center for International Earth Science Information Network (CIESIN)
raster files’* by averaging all pixel values within each first-level administrative
unit. Estimates for years not covered by the dataset are obtained through linear
interpolation.

Previous value of the target indicator. Finally, the previously measured prevalence
of people with insufficient food consumption and of people using crisis or
above-crisis food-based coping are also considered, when available. For first-level
administrative units where WFP’s near-real time monitoring is in place, only data
collected before the start of the near-real time monitoring is used to build this
feature. This choice was made because the proposed models are meant to be used
in practice in situations where no near-real time monitoring is in place, and hence
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the last-available value would be from a face-to-face or mobile phone assessment
conducted in a specific and limited time window in the past.

Modelling approach. The proposed models predict the probability of having

a person with insufficient food consumption or using crisis or above-crisis
food-based coping in a given area at a given time. The objective function is
therefore a logistic curve. Gradient Boosted Decision Trees™ was identified as the
most suitable algorithm to perform the regressions, given its high performance,
flexibility and its capacity to handle complex and nonlinear relationships. The
XGboost implementation was used?’.

Four different models were developed: two for the prevalence of people with
insufficient food consumption and two for the prevalence of people using crisis or
above-crisis food-based coping. In each case, one includes the prevalence from a
previous assessment as independent variable, and one does not.

That is, in the first model, the dependent variable is the prevalence of people
with insufficient food consumption in a given first-level administrative area
a at a given date d, and the corresponding independent variables are: (1) the
last-available prevalence of people with insufficient food consumption in area a
at a time before d (and before the start of the near-real time monitoring, if this
is in place in area a); (2) the most-recent prevalence of under-nourishment (in a
four-year time window) available at date d for the country that area a is part of; (3)
the most-recent annual GDP per capita (in a four-year time window) available at
date d for the country that area a is part of; (4) the most-recent headline inflation
rate (in a six-month time window) available at date d for the country that area a
is part of; (5) the most-recent food inflation rate (in a six-month time window)
available at date d for the country that area a is part of; (6) the percentage variation
between the average value of the currency exchange rate during the three months
preceding date d and the average value during the previous three for the country
that area a is part of; (7) the maximum ALPS value in area a for the three months
before date d; (8) the average NDVI in area a during the 12 months before date d;
(9) the average one-month rainfall anomaly in area a for the three months before
date d; (10) the average NDVI anomaly in area a for the three months before
date d; (11) the difference between the number of reported fatalities in violence
against civilians events in area a during the three months preceding date d (minus
a 14-day lag) and the three months prior; (12) the most-recent population density
estimate for area a available at date d. The second model has the same dependent
variable and all the same independent variables except the first one (that is, the
last-available prevalence of insufficient food consumption). In the third model,
the prevalence of people using crisis or above-crisis food-based coping in a given
first-level administrative area a at a given date d is the dependent variable, and
the independent variables are the same as above, except the first variable, which
is instead the last-available prevalence of people using crisis or above-crisis
food-based coping in area a at a time before d (and before the start of the near-real
time monitoring, if this is in place in area a). Finally, in the fourth model, the
dependent variable is the same as in the third, and the independent variables are all
the variables (2) to (12).

For each model, the following procedure was performed. The data were
split into two parts following their temporal ordering: data until 31 May 2021
(corresponding to ~85% of the data) were used for training and validation, and
the remaining two months (~15% of the data) for testing. To tune the model
hyper parameters, a walk-forward validation approach was used: four folds were
created, each covering one month of data, from February through May 2021, and
for each fold, the training set was composed of all the older data up to the end of
the previous month. The tuned hyper parameters and the explored values are listed
in Supplementary Table 2. The chosen combination of hyper parameters is the
one leading to the smallest difference between the average R* on the folds used as
training set and the average R? on the folds used as validation. We opted for this
criterion to favour models where the performance on the test is the most similar
to the performance on the training set because large differences are often an
indication of overfitting. Once the hyper parameters are selected, N, =100 models
are fitted on samples with replacement of the training and validation set (that is,
bootstrapping), and the test set is used to evaluate the model’s performance. For
each observation in the test set, N, predictions are generated (one per bootstrapped
model), and the median value is then used to calculate the model performance
metrics, that is, the coefficient of determination R? and the mean absolute error
(MAE), which are reported in Table 1 and Fig. 1. Supplementary Figs. 152-155
show that convergence for both metrics is reached within 100 bootstraps.

SHAP values. SHAP (SHapley Additive exPlanations)* is a framework recently
proposed to interpret predictions made by often complex black box machine
learning algorithms. SHAP unifies other methods (Lime, DeepLift and so on), and
for tree-based models, it allows for writing a prediction as the sum of a baseline

29.

value and each feature’s contribution®:
M

y = f(x) =¢0+Z¢i(x) 1)
i=0

SHAP values for tree-based models such as XGboost have been shown to improve
on other local tree explanations, such as visualizing the decision tree, which is not
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feasible for tree ensembles, and on model-agnostic local explanations, which are
computationally expensive if explaining large datasets”. Moreover, SHAP local
explanations can be used as building blocks for global explanations, as shown in
Supplementary Fig. 1, where we take the mean absolute value of SHAP values
across all data points to build a global feature-importance ranking. In this study, we
use the Python open-source implementation of the TreeSHAP algorithm™.

Explaining the single prediction. SHAP values represent each feature’s contribution
towards the model prediction, and their absolute value can therefore be interpreted
as each feature’s importance. This method improves on widely used global
feature-importance methods such as split-based or gain-based measures, as it
allows computation of prediction-specific feature importance. As detailed in
previous sections, each of our four models actually consists of N, =100 different
models fitted on different samples (with replacement) of the training data, of
which we report the median prediction and confidence interval. To determine the
importance of a feature, we then take each feature’s median SHAP value across the
N, bootstrapped models. Convergence checks are reported in Supplementary
Figs. 156-157.

In this study, predictions are originally obtained at the spatial resolution of
first-level administrative units, but they can then be aggregated to display results
at the national level, too. To determine feature importance at the country level,
we average the SHAP values across all first-level administrative units in a country
by weighting each value according to the unit’s population. This can be easily
interpreted: a SHAP value corresponds to the change in prevalence with respect
to the baseline due to one feature. By performing a population-based weighted
average, we are computing the change in number of people due to that feature.
This operation then sums the number of people across all units and divides it by
the country population to return the change in national prevalence. The same
operation is also performed on the model baseline. Note that this also allows us to
combine predictions coming from areas with and without a previous value of the
target variable, even if the underlying models use slightly different sets of features.

Explaining trend changes. This method allows us to compute the
feature-importance ranking for a given area in a given day, explaining which
features were the most important and how they contributed to the final prediction.
However, predictions for the same area can produce a trend in time, which, in turn,
can show changes in prevalence due to changes in the input variables. We extend
the SHAP framework to explain which features are responsible in determining
changes in predicted trends.

Let us take two predictions y" and y? corresponding to the same area but two
different dates. Following equation (1), we can write the trend change y? —y" in
terms of the change y, in SHAP values relative to each of the M features:

M
_ in(xu,x‘z)
i=0

The features with largest associated SHAP value change are the ones that
determined the trend change. Moreover, the sign of the change y; also tells us
whether that feature has caused an increase or decrease in the prevalence, that is, a
deterioration or improvement in the food security situation.

Note that equation (2) is exact when considering a single model for a single
first-level administrative area but is only an approximation when considering
median SHAP values, as previously mentioned. It is also important to note that this
method can give apparently misleading indications due to nonlinear interactions
between features. For instance, a feature that does not change value between the
two dates can be the one with the largest SHAP value change (that is, determining
the trend change). This happens because other features change value, thus
changing its relative importance in the two predictions. One could overcome this
limitation by computing SHAP interaction values*, but the computation is not
feasible when dealing with our sample size, that is, 400 models (100 bootstrapped
iterations per model) and daily computations. Moreover, this would imply
dealing with an order of 50 (number of features squared, divided by 2) different
interactions, which would greatly undermine our effort to produce explainable
predictions for decision-makers.

M

ylZ _ ytl _ Z (¢i(x(2) _ ¢i(x&1))

i=0

(2)

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.
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