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Time-dependent Gutzwiller simulation of
Floquet topological superconductivity
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Periodically driven systems provide a novel route to control the topology of quantum materials. In
particular, Floquet theory allows an effective band description of periodically-driven systems through
the Floquet Hamiltonian. Here, we study the time evolution of d-wave superconductors irradiated with
intense circularly-polarized laser light. We consider the Floquet t—J model with time-periodic
interactions, and investigate its mean-field dynamics by formulating the time-dependent Gutzwiller
approximation. We observe the development of the id,, ~wave pairing amplitude along with the original
dxz_yz—wave order upon gradual increasing of the field amplitude. We further numerically construct the
Floguet Hamiltonian for the steady state, with which we identify the system as the fully-gapped d + id
superconducting phase with a nonzero Chern number. We explore the low-frequency regime where
the perturbative approaches in the previous studies break down, and find that the topological gap of an

experimentally-accessible size can be achieved at much lower laser intensities.

Topological superconductors host robust gapless excitations at the
boundary or vortex cores due to the topological structure of the super-
conducting gap function'™. In particular, Majorana fermions that emerge in
topological superconductors provide a platform for fault-tolerant quantum
computation’. Theoretical proposals for creating a topological super-
conductor include topological insulators in the proximity of s-wave
superconductors’ and semiconductors with spin-orbit coupling in the
proximity of s-wave superconductors’. Despite intense experimental efforts
to confirm topological superconductivity and Majorana fermions in those
setups, their existence is still elusive®. Hence, seeking an alternative platform
for topological superconductivity remains an important issue.

Periodically driven systems provide a novel route to control the topology
of quantum materials. In particular, Floquet theory allows an effective band
description of periodically-driven systems through the Floquet Hamiltonian.
Thus the dynamical control of quantum phases has recently been studied
actively, called “Floquet engineering™ . A canonical example of Flouget
engineering of a topological phase is the quantum anomalous Hall state that
emerges in graphene irradiated by circularly-polarized light (CPL)"*". In
graphene, CPL induces an effective complex hopping for the next-nearest
neighbor in the Floquet Hamiltonian, which takes the same form as in the
Haldane model for the quantum anomalous Hall state™®.

Applying the concept of Floquet engineering to topological super-
conductors, Floquet topological superconductivity has been explored"’**. For
example, a honeycomb lattice with s-wave pairing interaction is predicted to
exhibit topological superconductivity under the irradiation of CPL'"**, where

CPL induces a mass term to gapless excitations around point nodes, leading to
topological superconductivity. A similar strategy for Floquet topological
superconductivity was also pursued for cuprate superconductors. Specifically,
a d-wave superconductor on a square lattice was shown to support CPL-
induced topological superconductivity when strong spin-orbit coupling
(SOC) is present”. All these approaches to Floquet topological super-
conductivity essentially rely on the presence of additional internal degrees of
freedom supporting nontrivial geometry (i.e. sublattice in the honeycomb
lattice or spins with SOC) for turning the systems into topological phases.
Recently, it was revealed that d-wave superconductors exhibit Floquet
topological superconductivity purely from the many-body effect without
invoking the internal degrees of freedom™. To incorporate strong correla-
tion effects, they derive the Floquet ¢~/ Hamiltonian using the Schrieffer-
Wolff transformation” ™ and the high-frequency expansion (HFE)'**"*.
Time-reversal symmetry breaking terms appear from the interaction terms
in the Floquet #~] model and induce topological d,._,. + id,, pairing upon
amean field treatment (see Fig. 1). This approach enables us to broaden the
class of candidate materials for the Floquet topological superconductivity.
However, experimental implementation of the above theoretical
proposals is still challenging because of the required field intensity of
~100 MV/cm®"*. This stringent requirement essentially stems from the
fact that the HFE has been employed in these previous studies. The field-
induced effective coupling in the HFE typically scales with the amplitude of
the vector potential, A o E/w, which implies that a strong electric field E is
necessary for alarge driving frequency w. Also, driving in the low frequency
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Fig. 1 | Schematics of Floquet topological superconductivity. Illuminating cir-
cularly polarized light to cuprate superconductors gives rise to topological super-
conductivity of d,>_,» + id, -wave pairing from many body effects.

regime below the electronic band gap is desirable to avoid heating of the
system and achieve a coherent control. Thus it is essential to develop a
theoretical framework that is applicable to the low frequency regime.

In this paper, we study Floquet topological superconductivity at low
frequencies by performing a time-dependent Gutzwiller simulation. We
formulate the time-dependent Gutzwiller approximation based on the
action principle combined with the mean-field approximation. Specifically,
to simulate the time evolution of the many-body state in a tractable way, we
apply the Gutzwiller approximation to the Lagrangian formalism to deduce
a time-dependent Schrodinger equation with a mean field approximation
for pairing amplitudes and bond orders. The time-dependent simulation
shows that the d,._,-wave superconductor evolves into the topological
d,>_, + id, -wave superconductor under the CPL driving, both in the high
and low frequency regimes. We further analyze the obtained time-periodic
superconducting state in terms of the Floquet Hamiltonian, revealing the
full-gap nature and the nontrivial winding of the gap function. We find that
the topological gap of the order of 3 K emerges for an electric field of
~10 MV/cm, which will be feasible for experimental measurements.

Results

Formalism

In this section, we derive an effective low-energy Bogoliubov-de Gennes (BdG)

Hamiltonian in the presence of the CPL, employing time-periodic Schrieffer-

Wolff transformation (a canonical transformation) with Gutzwiller ansatz™.
We consider a periodically-driven Hubbard model defined on a square

lattice, having in mind a cuprate superconductor. The time-dependent

Hamiltonian is given by

Higan(t) = = >_ tye 02,6, + U Y gy )
ijo i
where ¢, is an electron annihilation operator at site i with spin o= 1, |, and
;s = €;,C;, is the spin-density operator. Here we set /2 = e = 1 for simplicity.
The latter term is the on-site Coulomb repulsion terms with the Hubbard
interaction U, while the former term is the hopping terms with modulated
hopping amplitude tijef’A(t) Ri, where t;; is the hopping amplitude between
site i and site j. We introduce R;; = R; — R;, where R; is the location of the i-th
site. Here we consider CPL, for which the vector potential A(t) is given by

1 )
A(D) = 5 (Age™

£

+ Afe, (2)

To deduce low-energy dynamics of the driven Hubbard model, we
consider the Lagrangian of this system,

L= (¥()I(d, — Hyup ())I¥(1)), 4)
where |W(2)) is a state vector of the many-body system.

First, we perform the time-periodic Schrieffer—Wolff transformation
where the transformed state vector is represented as PGe’S(t) [¥(t)), with the
unitary  transformation 5"  and the Gutzwiller projection
13G =1L - n,T #1;, ). Here S( t) should be chosen such that the transformed
Hamiltonian, g (1) = PG(e’S(”H ¢80 — e‘S(t)(za e ’S(‘)))Pc,becomes
diagonal in the charge sector (ehmmatmg charge excitations), and thus
commutes with P, (For a similar method for the Hubbard model not based on
the Schrieffer-Wolff transformation but with a generalized projection opera-
tor, see Refs. 33,34). Then the transformed state vector only takes the con-
figurations that have no doubly-occupied site. By adopting the Gutzwiller
ansatz where e°®|¥(¢)) is chosen to be the BCS wave function
|‘I’Bcs(t)> = [T () + vk(t)ézT Eik¢)|0) , here we approximate the original
Lagrangian L by L, as

28, 7‘)

(Dl S OPeN (i3, — Hygyp(1)e™ P 1¥(1))
(E()leSOPPeSO¥(1))
_ <\PBCS(t)|pGiatPG|\FBCS(t)> ()
<\}IBCS(t)|i)Gi)G|\PBCS(t)>
_ (¥pes(DIPHew ()P ¥pcs(1))
(Paes(DIPGPGYpes (D)

L; =

We conduct the Schrieffer-Wolff transformation up to the second-
order of the hopping and obtain™

Hgy()=—> 1 £(PGEL e, PG

ijo

1 ~ ~ A A 1. .-

+ ZJ: TP {s, S nin]} Py ©)
izk N 1 ;

+ Z { z}k(t)PG |:(Czao'aa Cku’) : Sj 2 800 &ur2 :|PG +hec. }

ijkao’

where Sj is a spin operator. The coupling constants are given by

(m) — i

0= e, (7)

z 4™y ()

(1) = t L,
T(0) ;U_W (8)
P = Zﬂtwwm 9
W LU —nw) T ©)

mn

Here, t( )

amplitude £,
expansion as

2n/w . EIR;|\ .
(m) — 7/ dtt e—zA(f)-Rg-Hmwt — tijk77m< |wt]|)ezm®g (10)

is the m-th Fourier component of the modulated hopping
—HAR; \whose explicit form is obtained by the Jacobi-Anger

with the m- th Bessel function 7 ,,(x) and 0 defined as the polar angle of Rj;,
ie,R; |(cos 0;,sin ©; ) In the absence of the external field, Eq. (6) is
known as the t-] model™. The first term is the hole hopping term in the
configurations that have no doubly-occupied site. The second term is

S;-S; and the density-density

composed of Heisenberg interaction §;-S;
interaction 7;71;. The third term, representing an interaction of the form
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Y oo [(cm oo/ Ckar) - S 18,y Ei,éka n;], is the so-called three-site term. This
Hamiltonian is known to yield singlet (d-wave) Cooper pairing in
equilibrium, so that here we assume the singlet pairing as well. A remarkable
point here is that the three-site terms in the present case break time-reversal
symmetry, due to the circular polarization of the hght field. When we
consider the spin part of the three-site terms 3" ¢} 0,,¢; S where i-j is
a next-nearest neighbor bond and j-k is a nearest nelghbor bond the three-
site  terms generate  pairing amplitude on each bond as
Zm,cjoa”/cko . S (CLC]THC]TCk 1)~ The pairing amplitudes (¢ @ i JT> and
(Cpck ¢) correspond to dy,-wave components and d,. _ »-wave components
of pairing amplitudes respectively. When the coefficients of the three-site
terms I'(¢) in Eq. (6) become complex due to the CPL, the next-nearest
neighbor pairing amplitude (c ¢ T) becomes complex, embodying the id,,-
wave component of the pairing amphtude (as shown i in Fig. 2). The same
applies to the density part of the three-site term ¢ wckanj. These terms
have already been shown to induce topological superconductivity by
performing the HFE of Eq. (6) in Ref. 26. The time-periodic Schrieffer-Wolff
expansion is a perturbative expansion in condition f, < U meanwhile there
is no resonance between w and U (i.e. tgjm) <« U — nw). For the detailed
derivation, see Schrieffer-Wolff transformation subsection in Methods.
Second, we perform the Gutzwiller approximation™****”’, which
replaces the Gutzwiller projection P; with c-numbers renormalizing each
term in the Hamiltonian and effectively incorporates the reduction of
double occupancies. We perform the Gutzwiller approximation to the
second term of Eq. (5) and derive an effective Hamiltonian H cas

<\IIBCS(t)|PGHSW(t)PG|\PBCS(t)>
<\FBCS(t)|ﬁGIBG|‘PBCS(t)>

=~ <\PBCS(t)|I:IG(t)|\yBCS(t)>

= (f1g).

Hereafter, (---) represents the expectation value in terms of BCS
wavefunction [¥pes(£)). As described in Gutzwiller approximation sub-
section in the Methods, we obtain the effective Hamiltonian H (t),

(11)

HG(t) =- Zf tz/(t)AjoA}U -

ijo

izk 2
O - ;
{Z fiz LDl + h'f}

ijko

+3 Z ],](t){ -8 - i fa}}
+{Z;f

ijkoo’

(12)

A 1 B
) {(C""’” o) 85 = 5 0005 oo } +he. }

J

Fig. 2 | Schematic picture of the id,,-wave component of the pairing amplitude
Aidxy that arises from three-site terms. Through the virtual hopping process from
the site k to the site i via the site j, the id,,-wave component Aidw (magenta) is
induced from the original d,._.-wave order (orange).

whered =1 — %>, < iy + n,¢> is the hole doping rate, f= (1 — 6)/2, and
f =1 — f.Similarly, we perform Gutzwiller approximation to the first term
of Eq. (5) and obtain

<\PBCS(t)|PGiat13G|‘PBCS(t)>
<\PBCS(t)|pGpG|\PBCS(t)>

For details of derivation, see Gutzwiller approximation subsection in
Methods.

Third, we derive the BAG Hamiltonian from the time-dependent
Gutzwiller Hamiltonian in Eq. (12). For order parameters, we consider two
SU(2)-symmetric orders, ie., the bond order amplitude x.(f) and the
superconducting pairing amplitude A(%),

>~ (Wpes(0)i0,[Wpes (1)) (13)

1 o o
x.(H) = N Z<CZTCHTT + leci+r¢>7 (14)

1
A (D) = NZ<@‘¢E;‘+TL - EiLEi+1T>7 (15)
1
where 7= mx + nyrepresents a bond connecting two sites that are distant by
ma in the x direction and na in the y direction, with a being the lattice
constant. By applying the mean-field approximation to each term in Eq. (12)
and performing a Fourier transformation, we arrive at the effective BAG
Hamiltonian in the momentum-space representation as

. + :
. Ckt
Hpgo() =) ( ) Hik, r)( ) : (16)
k ka¢ —k¢
with
t F.(t
'H(k, t) _ ( 81:{( ) k( ) ) (17)
Fi(t) —e_x(®)
Here, matrix elements are given by
d —imwt ((m) ik-R
ek(t):—fze e
t(m—n)t(")e—imwt 6f N
T 7 ik-(R+R/) (1 _
— Re Z, W {?e (1 51'_1/) (18)
mntt
¢ ik-R, ¢ ik-R,
O 1O 1301 _ gy, + 06— o)1 b
4’
—imwtt(m—n)t(’j) 4 eimwtt(_*fl"+")t(_—n)
Fk(t) — _2 Z T T 7 T
mntt’ 2(U - nw) (19)
[3(1 —0)0, .+ 863+ )]A (t)cosk-R,.

_ Finally, we obtain the effective Lagrangian as Lg =~ (Wpcs(1)(i0,—
HBdG(t))|‘I’BCS(t)>. By using the action principle with Suj(t), §vi(t) as
variants, we end up with the time-dependent Schrédinger equation,

i0, ¥ (1) = H(k, ) ¥ (1), (20)
where T//) () = (v (1), uk(t))T. We solve this Schrodinger equation (20), by
computing the order parameters x, and A, in Egs. (14) and (15)
consecutively.

Time evolution of superconducting pairing amplitudes

In this section, we show the results of the time evolution generated by Eq.
(20). We consider hopping amplitudes, bond order amplitudes, and
superconducting pairing amplitudes up to next-nearest neighbors.
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Throughout this paper, we set the next-nearest-neighbor hopping
ty = —0.2t,, the onsite interaction U=12f, and the hole doping level
&=0.2, with #, being the nearest-neighbor hopping amplitude. As for the
other doping levels and onsite interaction, see Figs. S1-S3 in Supplemen-
tary Note 1.

We show the time evolution of superconducting pairing amplitudes A,
for w = 5.8t, in Figs. 3b, c. The time profile of the driving field amplitude is
shown in Fig. 3a, and the convention for the superconducting pairing
amplitudes is depicted in Fig. 3g. As shown in Fig. 3a, we increase the electric
field amplitude linearly until wt/27 = 200 and keep it constant after that. We
adopted this time profile of E rather than just quenching the field, to connect
the initial state to the dynamically-stabilized topological phase while miti-
gating damping oscillations in the order parameters. We show four super-
conducting pairing amplitudes: Apj g5, Ay, Ao,y and Aj_y;y in Fig. 3
(Other components can be obtained from the relationship Ay, ;= Ay,
for singlet pairing). We perform simulations with the initial state in the
d,>_,»-wave superconducting state which is the ground state of Eq. (16) in
the absence of the field. Namely, as shown in Figs. 3b, ¢, we set positive Ay g
and negative Ao ;) with the same magnitude while the others are zero, with
which the d,._,-wave component given by (ReAy; g — ReAyg ;1)/2 has a
nonzero value.

Once we turn on the electric field, the phases of the superconducting
pairing amplitudes start to rotate, as shown in Figs. 3b, c. To make it easier to
see the relative phases between different A’s, we perform a phase rotation with
the phase 0(t) of the pairing amplitude Ay, o) (ie., Ay, 01() = [Ap, 01(t)|e“’“"). In
Figs. 3d, e, we plot the pairing amplitudes with the phase rotation, Re[A,¢~™]
and Im[Ae~"]. Figures 3h, i are the blowups of shaded areas of Figs. 3d, e,
which corresponds to the approximate steady state under the driving. Here,
the d,._»-wave component is given by (Re[A; ge —i0] — Re[A[Oylle*"a]) /2
and remalns finite in the presence of the driving field.

Now let us look at the id,,-wave component of the pairing amplitude.
We define the id,,,-wave component of superconducting pairing amplitudes
as Aidxy = (Im[A[_M]e*"@] — Im[A[M]e*"G]) /2, which indeed belongs to
the same irreducible reprenentation of Cy, as the d,,, pairing. Figure 3f shows
the time evolution of Dy » and Fig. 3j is its blowup of the shaded area.While

Qg is zero in the initial state without the CPL, Dy, becomes finite once

the CPL is applied, clearly indicating that the CPL irradiation induces id,,-

wave component of the pairing amplitude leading to topological
superconductivity.

Next, to study the magnitude of the id,,-wave pairing amplitude in the
steady state, we compute the time average of Ay, over wt/2m € [240, 400],

denoted as Aidxy' We show a color plot of Ay asa function of the driving

amplitude E and the frequency w in Fig. 4a. Note that for w = 4t,, 6t,, Eqs.
(18) and (19) contain divergent terms with the denominator U — nw for
U = 12t,, with which the effective Hamiltonian becomes ill-defined because
of breaking down of the Schrieffer-Wolff transformation. We avoided those
parameters in plotting Fig. 4a. For comparison, we show the id,,-wave
component A}jlf} * obtained from the high-frequency expansion of Hgy, in

ImA[1 1]) /2, where

is the superconducting pairing amplitude in the ground state of the
Floquet Hamiltonian obtained by applying the HFE to Eq. (6)*°. Figures 4a,b
show that the id,-wave components obtained in the present approach are
generally consistent with the HFE in the high-frequency region of w > 5t.

Fig. 4b Specifically, we compute Agff = (ImA%{F&]

HFE
AT

The present time-dependent Gutzwiller approach does not rely
on the HFE and is also applicable to the low-frequency region in
contrast to the HFE approach. Here we fix Ea/w=1 and compare
Dy, with AHFE as functions of w in Fig. 4c. Dy, and ALFE show
similar behav10rs in the high-frequency region w > 5to, wh11e they are
significantly different in the low-frequency region w < 2t,. A, ia,, even
shows a sign change around w ~ t, as opposed to AHFE This topo-
logical phase transition can also be seen in Fig. 4d, a color plot of
Ald as a function of E and w in the low-frequency region. Specifi-
cally, the topological phase transition clearly occurs around
E=1.05tp/a. In this way, the present method can capture detailed
behaviors of the Floquet topological superconductivity even in the
low-frequency region where the HFE is not applicable. In particular,
topological phase transitions can be induced by changing the field
strength of CPL in the low-frequency region.

Floquet theory analysis

The Floquet theory is a useful tool to describe periodically driven
systems via an effective static Hamiltonian (Floquet Hamiltonian).
The topological properties of the steady state in the CPL driven

Ao — Apy
Apa = Al —
—0.2F ——— P
_ 02 )
9 — 0.0 =S = = /A W/ W WA\
o ——
: x1012(j)
2 L L s L s L L .0
3
-1
0 -3‘0 l(‘)() L')‘() 2(‘)() '2-11() 3(‘)() 3-:)() 400 385 3;?0 3?%7 3?127'« 389
wt/2m wt/2m

Fig. 3 | Time evolution of superconducting pairing amplitudes obtained from
time-dependent Gutzwiller simulation. a Time profile of the driving field of
circularly-polarized light (CPL). The electric field increases linearly up to E = 5.4t¢/a
until w#/27r =200 and is constant after that. b, ¢ Real and imaginary parts of

the pairing amplitudes A,. (d, ) real and imaginary parts of the pairing
amplitudes with the phase rotation Ae . 6 is selected to keep Ay, o to be

real (ie., Ap o) = |Ap1, ole®). f The id,~wave component of the pairing amplitude
Dig - D, = (Im[A(_, ;¢ ] — Im[Ay, ;;e~])/2 corresponds to the id,, pairing

amplitude. Aidxy emerges under the CPL driving and the topological super-
conductivity is realized. h, i, j Blowup of shaded areas in (d, e, f). Im[A_, e ] and
Im[A[Ll]e’ie] become different and nonzero Aidn’ appears in the steady state under
the CPL driving. g Notations for the superconducting pairing amplitudes on the
bonds and their color codes for (b-e, h, i). We adopted the parameter set: the driving
frequency w = 5.8, the next nearest neighbor hopping t; = —0.2t, the onsite
interaction U = 12¢; and the hole doping level § = 0.2, where t, is the nearest
neighbor hopping amplitude and a is the lattice constant.
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Fig. 4 | Driving field dependence of the id,,-wave component of the pairing
amplitude. a The time average of the id,,-wave component of the pairing amplitude
A,d in the steady state obtained from the time-dependent Gutzwiller simulation.
We plot A, id, s a function of the electric field E and the frequency w in the high-
frequency reglon b The id,,-wave component of the pairing amplitude obtained
from the high-frequency expan510n AMFE We plot AHFE as a function E and w with
the formula in Ref. 26. A,d and AHFE SilOW qualltatlvely similar behavior in the

A o o

(©) 0.02

0.00

T

—0.02 |
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wity(= Eafty)
Aﬂ,dzy

0.002
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—0.002
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Eajt,

high-frequency region. ¢ Comparison of w dependence of A;; and AHFE with fixing
Ea/w=1. In the low-frequency region, the difference between A, id,) and AH”
becomes significant, while they show a qualitative agreement in the high- frequency
region. Ardx,, shows a sign change around w = t, that is not captured by high-
frequency expansion. d (E, w) dependence of A;; in the low-frequency region. The
sign change appears around E = 1.05ty/a, indicating a topological phase transition
by increasing the electric field of the circularly-polarized light.

system are characterized by the Chern number of the Floquet
Hamiltonian. In this section, we show the Floquet bands and Chern
numbers obtained in the present method.

Floquet Hamiltonian. The Floquet Hamiltonian is defined as Hp(k) =
4 +1log T {exp[—i |, fotT ‘H(k, t)dt]} for a time-periodic Hamiltonian H(k, t)
of a period T. As can be seen from Figs. 3b, ¢, h, i, HBdG(t) is not time-
periodic due to the phase rotation of A, over a period, while A.e™*
becomes (approximately) time-periodic. In the following, we derive the
Floquet Hamiltonian using this phase rotation for A,.

In the present system, once the system arrives at the steady state, the
superconducting pairing amplitudes satisfy

A(t+T) = A(1)e”, e2y)

as can be seen from Figs. 3b, ¢ We can remove this phase rotation by a gauge
transformation q/ =ty v, with — eT = a/2, where 1[/ « becomes time-
periodic. Here, 7, is a Pauli z matrix acting on the Nambu space.
Correspondingly, the Hamiltonian becomes time-periodic within this gauge
and enables us to define the Floquet Hamiltonian as

Hp(k) = %log [e—““/zﬁz (T, 0)] 7 (22)

where U(T, 0) is the original time evolution operator. For detailed deriva-
tion, see Time-periodic Hamiltonian and Floquet Hamiltonian subsection
in Methods.

Floquet band and Chern number. We compute the Floquet Hamilto-
nian for H(k, t) in Eq. (20) with the above method and obtain the asso-
ciated Floquet bands. We then compute the Berry curvature and the
Chern number for the Floquet bands by using the Fukui-Hatsugai-Suzuki
method™. Note that the results below do not take into account the
occupation of the Floquet band.

Figure 5 shows the obtained Floquet bands, the phases of gap functions
F(k) of the Floquet Hamiltonian, and the Berry curvature. The results for the

system without driving fields are shown in Figs. 5a, d, g. Figure 5d indicates
that the gap function has the conventional d.._.-wave symmetry with
nodal lines. The black curve in Fig. 5d indicates the Fermi surface in the
normal state. The point nodes appear at the crossing points of nodal lines
and the Fermi surface as seen in Fig. 5a.

Next, let us look at the results for the systems with the CPL drivings. We
study two cases of CPL driving. One is in the high-frequency regime with the
driving frequency w = 5.8t, and the field amplitude E = 5.4ty/a, shown in
Figs. 5b, e, h. The other is in the low-frequency regime with w = 1.03f, and
E =0.96t/a, shown in Figs. 5¢, f, i. With the CPL drivings, we find that the
point nodes are gapped out in the Floquet band structures in both cases in
Figs. 5b, c. We show the phase of gap functions obtained from the Floquet
Hamiltonians with the CPL drivings in Figs. 5e, f. We remark that the
Floquet Hamiltonian H(k) and the gap function depend on the initial
time t, of the time evolution operator U(t, + T, to) (while the eigenvalues are
independent). Although the gap function shown in Figs. 5e, f breaks the C,
symmetry, the C,-breaking component rotates with #,, so that the Floquet
state preserves C, symmetry in time average.

In these cases, the black curves correspond to the k points where the
diagonal (normal) component of the Floquet Hamiltonian is zero (Fermi
energy in the equilibrium cases) or w/2 (Floquet Brillouin zone boundary).
In the high-frequency case (w = 5.8ty, E = 5.4ty/a), the black curve in Fig. 5e
almost coincides with the Fermi surface in the equilibrium case [Fig. 5d].
Due to the emergence of the id,,-wave component of the pairing amplitude,
the phase of the gap function rotates twice in the counterclockwise direction
along the black curve [Fig. 5e]. As a consequence, a negative Berry curvature
appears around the area where the point node was originally located
[Fig. 5h]. In the low-frequency case (w = 1.03t,, E = 0.96ty/a), Fig. 5f shows
additional black curves in addition to the one corresponding to the Fermi
surface in the equilibrium. These additional black curves correspond to
band crossings arising from the folding of copies of Floquet bands (photon-
dressed states) onto the Floquet Brillouin zone. If we focus on the black
curve from the original Fermi surface, the phase of F(k) rotates twice in the
clockwise direction along the black curve in Fig. 5f. Correspondingly, a
positive Berry curvature appears around the gapped node in Fig. 5i. As can
be seen from Figs. 5h, i, the Berry curvature B(k) satisfies the relation
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Fig. 5 | Topological properties of Floquet energy bands for a d-wave super-
conductor without the circularly-polarized light (CPL) driving, with CPL driving
of high-frequency, and with CPL driving of low-frequency. a-c Energy dispersion
of Floquet bands with blowups around the point nodes. Without driving, point
nodes exist in the nodal line direction (a). Those nodes are gapped out in both cases
of the high-frequency CPL driving (b) and low-frequency CPL driving (c). d—f Color
plot of phases of the gap functions F(k) in the Floquet Hamiltonian. The values of the
phases of F(k) are represented in color bars. The black curves indicate the k points
where the diagonal (normal) component of the Floquet Hamiltonian is zero.

Without driving (d), the gap function is real and has nodal lines. The black curve
coincides with the Fermi surface in the normal state. In the high-frequency driving
case (e), the phase winds twice in the counterclockwise direction along the black
curve. In the low frequency driving case (f), the phase winds twice in the clockwise
direction along the black curve. Additional black curves arise from the folding of the
Floquet bands. g-i Color plot of Berry curvatures of the Floquet bands with and
without the CPL driving. The values of the Berry curvature are represented in color
bars. The driving frequency w and the field amplitude E are chosen as

w = 5.8ty, E = 5.4ty/a for (b, e, h) and w = 1.03¢,, E = 0.96ty/a for (c, f, i).

B(k)=B(—
while the inversion symmetry is preserved, as is consistent with the d
id,, pairing.

Furthermore, the sign of the Berry curvature coincides with the
sign of the id,,-wave component of the pairing amplitude g in
Fig. 4. This clearly indicates that the CPL induced Berry curvature
originates from the gap opening at the point node with the id,,-wave
component A, | iq, - Specifically, the electronic structure of the orlglnal
point node is dyescrlbed bed by a gapless Dirac fermion. Once the mass
gap is introduced by A,d to the Dirac fermion, the Berry curvature of
the sign of the mass A:d emerges.

We show the phase dlagram of Floquet topological superconductivity
by computing Chern numbers of the Floquet bands in Fig. 6. We show the
phase diagrams for the high-frequency region in Fig. 6a and the low-
frequency region in Fig. 6b. The location of topological phases in Fig. 6 is
generally consistent with the sign of the id.,-wave component of the pairing
amplitude A;; ia, in Fig. 4. Again, we avoid w = 4t, 6t in plotting Fig. 6
because of the ill-defined effective Hamiltonian with the divergent
denominator U — nw in Egs. (18) and (19). We note that there are some
regions with C # + 2 showing jumps of the Chern number in Fig. 6. They are
mainly due to the Berry curvature around the additional black curves in
Fig. 5i. Since they appear from the folding of copies of Floquet bands, usually
the occupation of energy states does not change abruptly across the energy
gap (See Occupation of Floquet band subsection in Methods for detail).
Namely, although those Floquet bands have large Chern numbers, the states
in the both lower and upper bands around those minigaps are equally
occupied and their contributions to the expectation value of the (thermal)
Hall response in state |‘I’(t)> cancel out. Therefore, Berry curvature around
the original point node gives a dominant contribution to the (thermal) Hall
response when the electron occupation is not far from the equilibrium one.

k), which indicates that the time-reversal symmetry is broken
2 _y2 +
iy

Discussion

We have demonstrated the emergence of topological superconductivity even
at low frequencies. To discuss the experimental feasibility, let us turn our
attention to evaluating the size of topological gaps and the required mag-
nitude of electric fields and frequencies. The low-frequency region shown in
Fig. 6b corresponds to iw ~ 0.4 — 0.5 eV, E~ 8 — 17 MV/cm for the typical
cuprates with £, ~ 0.4 €V, a ~ 3 A. One of the advantages of the present time-
dependent Gutzwiller approach in the low-frequency regime is that it does
not require the large electric fields as large as 100 MV/cm as mentioned in
previous research’”, due to the effective coupling through the vector
potential A & E/w. The size of the topological gap appearing in Fig. 5¢ is
approximately 0.03 times that of the original d,._ . -wave superconducting
gap (the gap function at the Fermi surface in the antinodal direction).
Therefore, assuming that T, of cuprate is 89 K*, experimental observation of
the topological gap can be achieved at around 3 K. While the magnitude of
the topological gap is smaller than that indicated in Ref. 26, the gap described
in that reference scales as  O(E*). At E ~ 10 MV/cm, the magnitude of the
topological gap obtained by the present method is overwhelmingly larger. In
addition, as for the impurity effect, since the present d + id-wave super-
conductivity is based on the d,._ »-wave superconductivity in the undriven
cuprates, we consider that the suppression of the topological super-
conductivity by the impurities will be qualitatively the same as that for the
original d-wave superconductivity in cuprate superconductors.

Several experimental methods are considered for probing the Floquet
topological superconductivity demonstrated in this paper. The first is the
measurement of the optical conductivity which directly observes the
topological gap. Several studies have already investigated the optical con-
ductivity of cuprate superconductors***'. The irradiation of CPL opens the
gap at the Dirac nodes in cuprate superconductors. Therefore, during CPL
irradiation, optical absorption at frequencies below the topological gap is
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Fig. 6 | Phase diagram of Floquet topological (a)
superconductors with the CPL driving. The color
plot of Chern number as a function of frequencies w
and electric field amplitudes E (a) in the high-
frequency region and (b) in the low-frequency
region. The values of the Chern numbers are

w‘/fu

represented in color bars. The overall feature of the
phase diagram is consistent with the sign of the id,-

wave component of the pairing amplitude Aidx)'
Jumps of the Chern number appear due to the
folding of the Floquet bands in the low-frequency

region.
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expected to be suppressed. The second is to detect the Higgs mode asso-
ciated with the id,,-wave component of the superconducting pairing
amplitudes. The d,._.-wave superconductivity transforms into
dy>_y» + id,,-wave superconductivity under CPL irradiation. The Higgs
mode of d-wave superconductivity in cuprate superconductors was inves-
tigated using terahertz pump and optical probe techniques*>*. Thus,
observing the Higgs mode of the additional id,,-wave component would
provide evidence of Floquet topological superconductivity. Another
approach involves measuring the Hall response. CPL irradiation breaks
time-reversal symmetry and induces a finite Berry curvature. The realization
of a QAHI in graphene through CPL irradiation was recently observed using
a laser-triggered photoconductive switch'”. Similar methods may capture
the Hall response in the present system.

Methods
Schrieffer-Wolff transformation
In this section, we derive Eq. (6). For clarity, we rewrite each term in Hyy, as

=Y e MORE e = [T () + To() + T, (1),

ijo

(23)

where T (1) is the kinetic energy operator that changes the double occu-
pancy by d: [D, T (t)] = dT,(t) with D being the double occupancy
operator. The explicit form of T ,(¢) is given by

N AR At oA
To() = Z te AR, [(1 — ig)Ei iy (1 — F1j5) + nmcmc]anﬂ} » o (25)

ijo

i At A A A F
l(t) = Zt j€ ARv(l - ntu) Ta CigMjg = T+1(t)7 (26)
ijo
where 1+ =, | =1.
In order to obtain the transformed Hamiltonian Hgy () =
eSO (t)e“s(t) - e’s(t)(za ¢80 with no charge excitations (i.e.

[D, st(t)] =0), let us determine S(¢) order by order in terms of the
hopping amplitude. We can write down the first-order term of the trans-
formed Hamiltonian as

()

Aoy = [T, + T+ 7,1+ 18", ub) — 9,8, 27)

where the superscript (n) for S(t) and st(t) denotes the order of the

hopping amplitude, and we have chosen S(O)(t) = 0. In order to satisfy

(D, H(slv)v(t)] =0,50() = S(Jii(t) —+ S(j)l(t) have to be chosen such that

~7,,7iu8" —3,8% =0, (28)

with which the transformed Hamiltonian is given as H (Si,:,(t) =— TO (£). The

. . RO
solution of the above operator equation for g N )1 (t) is given as the same form

as T, ,(t) but with $;j+1(£) instead of tije‘i“‘(’)‘Rv’, where
(m) g imwt
Sj,01(0) = Z = (29)
for the time-periodic hopping amplitude.
In a similar manner, the second-order term can be obtained as
B () = — 5 1800, Ty (0] + he. (30)

We obtain Eq. (6) by inserting Egs. (25), (26), and (29) to the above
expression. In the present method, we perform the Schrieffer-Wolff trans-
formation up to the second-order of hopping. This generates three-site term
which induces topological superconductivity. Moreover, if terms of fourth
order in Schrieffer-Wolff transformation are considered, scalar spin chir-
ality terms scalar spin chirality terms develop, which also induce topological
superconductivity™.

We note that the expression for S +1(t) should be slightly mod-
ified when the field amplitude A, becomes time-dependent****, while
the correction is negligible when the change of the amplitude is slow
enough. The generalized expression for Eq. (29) is given as

Szj,tl(t) = — / dt t(m)(AO(t/))eii(UiiO*)(t—t/)—imwt’. 31)
By expanding tgjm) in the Taylor series around ¢ = ¢, we obtain
ity (A1) Ap - 9 1"
0 0 %4, i
si,1(8) = Z Usme w . | emimer, (32)
o Fmw)®

.The correction term is smaller by a (dimensionless) factor of
~|Ayla/U, and is indeed negligible for the present calculation.

Gutzwiller approximation

In this section, we describe the detailed derivation of Eqs. (12) and (13). First,
we evaluate the denominator of Eq. (11) by site diagonal expectation values,
which gives’™

<\I/BCS|13G13G|\PBCS> = WM@})N%J(})WU})W

FANS N N NN
i unun” _ (f5 HF f

SNV
where § = 1 — § 7, (;, + ;) is the hole doping rate, f= (1 — 8)/2 is the
probability to have a singly-occupied site in the Gutzwiller wave function
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Fig. 7 | Occupation probabilities of the lower
Floquet band in the Brillouin zone after the
simulation with the circularly-polarized light
(CPL) driving. Occupation probabilities of the
lower Floquet band with CPL driving of (a) high
frequency (w = 5.8ty, E = 5.4tp/a) and (b) low fre-
quency (w = 1.03ty, E = 0.96ty/a), where w is the
frequency, E is the electric field amplitude, t, is the
next nearest neighbor hopping amplitude, and a is
the lattice constant. Berry curvatures of Floquet
bands for each situation are (c, d). These are the
reproduction of Figs. 5h, i for comparison.
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PG|\PBCS>, andf = 1 — f. Here we have used n! ~ (/e)" on the second line.
We evaluate the expected value of each term in Eq. (6) in a similar manner.
For the hopping term, we obtain

(pethtnte)
N <(1 g )l (1 — )> il f;;‘{;{f;;{f i (34)
Z; <Ejaejl7><pG>7
while for the Heisenberg interaction we have
(b8, -$pg ) ~ fl (8,-8)(b) (35)

The spin part of the three-site term, P, [(51 055 Creg) Sj} P with i # k
is evaluated as

(Peté,0usti) - §Pc) ~ Jf<(e,-2awfekg/)-é,-><ﬁc>- (36)

As for the density operator, there is arbitrariness in whether to
renormalize this as an operator or to replace it as the density at each site. In
the present case, in which & has a finite value, the variational Monte Carlo
calculation shows that the density-density term has a few effects in contrast
to the half-filling case, which allows us to replace <136f1i136> with 1 — 8*. We
thus discard the second order fluctuations (#1;, — f)(1 — #;;, — f) around
the expected value of the density in the Hamiltonian here, like P;#2,P; ~
7,6 +2f* with #, = i, 4+ ;. Then the remaining terms in the

Hamiltonian can be evaluated as

<136ﬁiﬁj136> ~ %j <;z,.ﬁj><13c> + 2;—{2 <f: i ><PG> +oonst,  (37)
(et uipo) = j‘f— (eh ) (B) + 2}‘3—{ (da)bs)  (39)

with i # k. In this way, we obtain the effective Hamiltonian Eq (12).
Evaluation of the first term of Eq. (5) incurs additional calculation of
the derivative of the variational parameters. Using the relation

. ot ot
(i + vkcLTc7k¢)|0)

: ; 39)
R T B P\ A st (
= <u—k Crpry T v—kcchkT) (uy + VkaTC—k¢)|O>’
we can rewrite the time derivative in an operator form as
. AT AT PSRN
atl\PBCS> = Z(”k’ + vk'ck’TC,k’L) H (uk + VkaTCikl)l())
K kK
(40)

_ Z’LHL(V**"*)ZC c ok (R—R)
U
k

Vk

[¥hcs):

with which the first term of Eq. (5) is written as

<\PBCS|pE3iaAtPG|\IjBCS>
(WpesI PP Wacs)

Sl (s .

i#j

e, +Z<Pcnl¢>}:| . (41)
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The expectation value <PGE,TT Cir > / <ISG> can be evaluated within the
Gutzwiller approximation as

<p G6:T¢Ej¢> /o) Y 2< ﬁw)g@nﬁ@
(Pa) /5 P
N (]?2/8)N6_1]?2Nf_1<(1 - ’A"u)&;ﬁn(l - hj¢)> (42)
/8 7

(j; ?)< i€ n> = <21‘T¢Ej¢>~

Note that both doubly-occupied and singly-occupied configurations at
site j are allowed as the initial configuration due to the absence of the
projection operator. The other expectation value can also be evaluated in the
same way as ( Pyt ) /(Pg) ~ < 1T>’ with which Eq. (13) follows.

Time-periodic Hamiltonian and Floquet Hamiltonian

In this section, we describe how to obtain the time-periodic BAG Hamil-
tonian and the associated Floquet Hamiltonian (22). The superconducting
pairing amplitude of each bond 7 can be computed from the gap equation,

0 0
AT(t):2ZI_//>;Z(_l O)chosk‘RT.
k

This implies that the pairing amplitude is transformed as A () —
A (t) = A (t)ez’e’ under the unitary transformation
1;/ K 1// =iy ¥ ,» which keeps the relative phase of the pairing
amplitudes intact. When the pairing amplitudes satisfy A,(t + T) = A (D)€",
the transformed amplitude becomes time-periodic

(43)

At + T) = AL(t)e™ T = A/ () (44)
with — €T=a/2. Namely, under this condition the transformed BdG
Hamiltonian H’(k, t) = ™= H(k, t)e "'™= — 7, becomes time-periodic,

and we can define the corresponding Floquet Hamiltonian,

; ty+T
Hp(k, ty) Eflog T exp —i/ H (k,t)dt | |,
tO

where the time evolution of its eigenstates are expressed as the time-periodic
wave function multiplied by a plane wave factor. Using the relation for the
transformed time evolution operator, U'(t,t) = e U(t, t')e " %, we
can compute the Floquet Hamiltonian as

(45)

Hylk, t,) = %log U'ty + T, ty) (46)

Uty + T,ty) 1= Ot D=U(ty + T, t,)e . (47)

By setting #, = 0, we arrive at Eq. (22) with Tp);(to) = T;/)k(to).

Occupation of Floquet band

Figures 7a, b show the occupation probabilities of the lower Floquet band
after the time evolution with the CPL driving. For comparison, we replot
the Berry curvature in Figs. 5h, i as Figs. 7¢, d. In the high-frequency case
(w = 5.8ty, E = 5.4tp/a), the lower Floquet band is almost fully occupied
except for the regions where the point nodes were originally located. The
lack of occupancy in these regions is attributed to the choice of our initial
state in which the energy gap closes. These unoccupied regions should be
filled when the scattering processes neglected in the present mean-field
treatment are taken into account. In the low-frequency case
(w =5.8t0, E=5.4tp/a), other unoccupied regions arise due to the

foldings of copies of the Floquet band. When the external electric field is
turned on slowly as in the present case, the occupation of Floquet bands
is almost determined by the original distribution function in the absence
of the external field. In those cases, the boundaries of the occupied and
unoccupied areas of the Floquet bands appear at the position of band
crossings arising from band folding in the Floquet Brillouin zone as seen
in Fig. 7. In general, the occupation of Floquet bands strongly depends
on the time profile of the electric field and presence or absence of
scatterings.
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