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Time-dependent Gutzwiller simulation of
Floquet topological superconductivity
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Periodically driven systems provide a novel route to control the topology of quantum materials. In
particular, Floquet theory allows an effective band description of periodically-driven systems through
the Floquet Hamiltonian. Here, we study the time evolution of d-wave superconductors irradiatedwith
intense circularly-polarized laser light. We consider the Floquet t–J model with time-periodic
interactions, and investigate its mean-field dynamics by formulating the time-dependent Gutzwiller
approximation.We observe the development of the idxy-wave pairing amplitude alongwith the original
dx2�y2-wave order upon gradual increasing of the field amplitude. We further numerically construct the
Floquet Hamiltonian for the steady state, with which we identify the system as the fully-gapped d+ id
superconducting phase with a nonzero Chern number. We explore the low-frequency regime where
theperturbative approaches in theprevious studies breakdown, and find that the topological gapof an
experimentally-accessible size can be achieved at much lower laser intensities.

Topological superconductors host robust gapless excitations at the
boundary or vortex cores due to the topological structure of the super-
conducting gap function1–4. In particular,Majorana fermions that emerge in
topological superconductors provide a platform for fault-tolerant quantum
computation5. Theoretical proposals for creating a topological super-
conductor include topological insulators in the proximity of s-wave
superconductors6 and semiconductors with spin-orbit coupling in the
proximity of s-wave superconductors7. Despite intense experimental efforts
to confirm topological superconductivity and Majorana fermions in those
setups, their existence is still elusive8. Hence, seeking an alternative platform
for topological superconductivity remains an important issue.

Periodically driven systemsprovideanovel route to control the topology
of quantum materials. In particular, Floquet theory allows an effective band
description of periodically-driven systems through the Floquet Hamiltonian.
Thus the dynamical control of quantum phases has recently been studied
actively, called “Floquet engineering”9–13. A canonical example of Flouqet
engineering of a topological phase is the quantum anomalous Hall state that
emerges in graphene irradiated by circularly-polarized light (CPL)14–17. In
graphene, CPL induces an effective complex hopping for the next-nearest
neighbor in the Floquet Hamiltonian, which takes the same form as in the
Haldane model for the quantum anomalous Hall state18.

Applying the concept of Floquet engineering to topological super-
conductors, Floquet topological superconductivity has been explored19–25. For
example, a honeycomb lattice with s-wave pairing interaction is predicted to
exhibit topological superconductivity under the irradiation of CPL19,23, where

CPL induces amass termtogapless excitations aroundpointnodes, leading to
topological superconductivity. A similar strategy for Floquet topological
superconductivitywas alsopursued for cuprate superconductors. Specifically,
a d-wave superconductor on a square lattice was shown to support CPL-
induced topological superconductivity when strong spin-orbit coupling
(SOC) is present21. All these approaches to Floquet topological super-
conductivity essentially rely on the presence of additional internal degrees of
freedom supporting nontrivial geometry (i.e. sublattice in the honeycomb
lattice or spins with SOC) for turning the systems into topological phases.

Recently, it was revealed that d-wave superconductors exhibit Floquet
topological superconductivity purely from the many-body effect without
invoking the internal degrees of freedom26. To incorporate strong correla-
tion effects, they derive the Floquet t–J Hamiltonian using the Schrieffer-
Wolff transformation27–30 and the high-frequency expansion (HFE)10,31,32.
Time-reversal symmetry breaking terms appear from the interaction terms
in the Floquet t–Jmodel and induce topological dx2�y2 þ idxy pairing upon
amean field treatment (see Fig. 1). This approach enables us to broaden the
class of candidate materials for the Floquet topological superconductivity.

However, experimental implementation of the above theoretical
proposals is still challenging because of the required field intensity of
~100MV/cm21,26. This stringent requirement essentially stems from the
fact that the HFE has been employed in these previous studies. The field-
induced effective coupling in theHFE typically scaleswith the amplitude of
the vector potential, A∝ E/ω, which implies that a strong electric field E is
necessary for a large driving frequencyω. Also, driving in the low frequency
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regime below the electronic band gap is desirable to avoid heating of the
system and achieve a coherent control. Thus it is essential to develop a
theoretical framework that is applicable to the low frequency regime.

In this paper, we study Floquet topological superconductivity at low
frequencies by performing a time-dependent Gutzwiller simulation. We
formulate the time-dependent Gutzwiller approximation based on the
action principle combined with the mean-field approximation. Specifically,
to simulate the time evolution of themany-body state in a tractable way, we
apply the Gutzwiller approximation to the Lagrangian formalism to deduce
a time-dependent Schrödinger equation with a mean field approximation
for pairing amplitudes and bond orders. The time-dependent simulation
shows that the dx2�y2 -wave superconductor evolves into the topological
dx2�y2 þ idxy-wave superconductor under theCPLdriving, both in the high
and low frequency regimes. We further analyze the obtained time-periodic
superconducting state in terms of the Floquet Hamiltonian, revealing the
full-gap nature and the nontrivial winding of the gap function.We find that
the topological gap of the order of 3 K emerges for an electric field of
~10MV/cm, which will be feasible for experimental measurements.

Results
Formalism
In this section,wederiveaneffective low-energyBogoliubov-deGennes (BdG)
Hamiltonian in the presence of the CPL, employing time-periodic Schrieffer-
Wolff transformation (a canonical transformation) with Gutzwiller ansatz26.

We consider a periodically-drivenHubbardmodel defined on a square
lattice, having in mind a cuprate superconductor. The time-dependent
Hamiltonian is given by

ĤHubðtÞ ¼ �
X
ijσ

tije
�iAðtÞ�Rij ĉyiσ ĉjσ þ U

X
i

n̂i"n̂i#; ð1Þ

where ĉiσ is an electron annihilation operator at site iwith spin σ = ↑, ↓, and
n̂iσ ¼ ĉyiσ ĉiσ is the spin-density operator.Herewe set ℏ = e = 1 for simplicity.
The latter term is the on-site Coulomb repulsion terms with the Hubbard
interaction U, while the former term is the hopping terms with modulated
hopping amplitude tije

�iAðtÞ�Rij , where tij is the hopping amplitude between
site i and site j.We introduceRij =Ri−Rj, whereRi is the location of the i-th
site. Here we consider CPL, for which the vector potential A(t) is given by

AðtÞ ¼ 1
2
ðA0e

�iωt þ A�
0e

iωtÞ; ð2Þ

A0 ¼
E
iω

1

i

� �
: ð3Þ

To deduce low-energy dynamics of the driven Hubbard model, we
consider the Lagrangian of this system,

L ¼ ΨðtÞ�
∣ði∂t � ĤHubðtÞÞ∣ΨðtÞ

�
; ð4Þ

where ∣ΨðtÞi is a state vector of the many-body system.
First, we perform the time-periodic Schrieffer–Wolff transformation28,29,

where the transformed state vector is represented as P̂Ge
iŜðtÞ∣ΨðtÞi, with the

unitary transformation eiŜðtÞ and the Gutzwiller projection
P̂G ¼ Qið1� n̂i"n̂i#Þ. Here ŜðtÞ should be chosen such that the transformed
Hamiltonian, ĤSWðtÞ � P̂GðeiŜðtÞĤHube

�iŜðtÞ � eiŜðtÞði∂te�iŜðtÞÞÞP̂G, becomes
diagonal in the charge sector (eliminating charge excitations), and thus
commuteswith P̂G (For a similarmethod for theHubbardmodelnotbasedon
the Schrieffer-Wolff transformation but with a generalized projection opera-
tor, see Refs. 33,34). Then the transformed state vector only takes the con-
figurations that have no doubly-occupied site. By adopting the Gutzwiller
ansatz where eiŜðtÞ∣ΨðtÞi is chosen to be the BCS wave function
∣ΨBCSðtÞ

� ¼QkðukðtÞ þ vkðtÞ̂cyk" ĉy�k#Þ∣0i, herewe approximate theoriginal
Lagrangian L by LG, as

LG ¼ ΨðtÞ�
∣e�iŜðtÞP̂Ge

iŜðtÞði∂t � ĤHubðtÞÞe�iŜðtÞP̂Ge
iŜðtÞ∣ΨðtÞ�

ΨðtÞ�
∣e�iŜðtÞP̂GP̂GeiŜðtÞ∣ΨðtÞ

�
¼ ΨBCSðtÞ
�

∣P̂Gi∂t P̂G∣ΨBCSðtÞ
�

ΨBCSðtÞ
�

∣P̂GP̂G∣ΨBCSðtÞ
�

� ΨBCSðtÞ
�

∣P̂GĤSWðtÞP̂G∣ΨBCSðtÞ
�

ΨBCSðtÞ
�

∣P̂GP̂G∣ΨBCSðtÞ
� :

ð5Þ

We conduct the Schrieffer-Wolff transformation up to the second-
order of the hopping and obtain26

ĤSWðtÞ ¼ �
X
ijσ

~tijðtÞP̂Gĉ
y
iσ ĉjσ P̂G

þ 1
2

X
ij

~JijðtÞP̂G Ŝi � Ŝj �
1
4
n̂in̂j

� �
P̂G

þ
Xi≠k
ijkσσ 0

~ΓijkðtÞP̂G ð̂cyiσσσσ 0 ĉkσ 0 Þ � Ŝj �
1
2
δσσ 0 ĉ

y
iσ ĉkσ n̂j

� �
P̂G þ h:c:

� 	
;

ð6Þ

where Ŝj is a spin operator. The coupling constants are given by

~tijðtÞ ¼
X
m

tðmÞ
ij e�imωt ; ð7Þ

~JijðtÞ ¼
X
mn

4e�imωt

U � nω
tðm�nÞ
ij tðnÞji ; ð8Þ

~ΓijkðtÞ ¼
X
mn

e�imωt

2ðU � nωÞ t
ðm�nÞ
ij tðnÞjk : ð9Þ

Here, tðmÞ
ij is the m-th Fourier component of the modulated hopping

amplitude tije
�iAðtÞ�Rij , whose explicit form is obtained by the Jacobi-Anger

expansion as

tðmÞ
ij ¼ ω

2π

Z 2π=ω

0
dt tije

�iAðtÞ�Rijþimωt ¼ tijJ �m

EjRijj
ω

� �
eimΘij ð10Þ

with them-th Bessel functionJ mðxÞ andΘijdefined as the polar angle ofRij,
i.e.,Rij ¼ jRijjðcosΘij; sinΘijÞ. In the absence of the external field, Eq. (6) is
known as the t–J model35. The first term is the hole hopping term in the
configurations that have no doubly-occupied site. The second term is
composed of Heisenberg interaction Ŝi � Ŝj and the density-density
interaction n̂in̂j. The third term, representing an interaction of the form

Fig. 1 | Schematics of Floquet topological superconductivity. Illuminating cir-
cularly polarized light to cuprate superconductors gives rise to topological super-
conductivity of dx2�y2 þ idxy-wave pairing from many body effects.
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P
σσ 0 ½ð̂cyiσσσσ 0 ĉkσ 0 Þ � Ŝj � 1

2 δσσ 0 ĉ
y
iσ ĉkσnj�, is the so-called three-site term. This

Hamiltonian is known to yield singlet (d-wave) Cooper pairing in
equilibrium, so that here we assume the singlet pairing as well. A remarkable
point here is that the three-site terms in the present case break time-reversal
symmetry, due to the circular polarization of the light field. When we
consider the spin part of the three-site terms

P
σσ 0 ĉ

y
iσσσσ0 ĉkσ 0 � Ŝj where i-j is

a next-nearest neighbor bond and j-k is a nearest neighbor bond, the three-
site terms generate pairing amplitude on each bond asP

σσ 0 ĉ
y
iσσσσ 0 ĉkσ0 � Ŝj ∼ ĥcyi# ĉyj"iĥcj" ĉk#i. The pairing amplitudes ĥcyi#ĉyj"i and

ĥcj" ĉk#i correspond to dxy-wave components and dx2�y2 -wave components
of pairing amplitudes respectively. When the coefficients of the three-site
terms ~ΓðtÞ in Eq. (6) become complex due to the CPL, the next-nearest
neighbor pairing amplitude ĥcyi# ĉyj"i becomes complex, embodying the idxy-
wave component of the pairing amplitude (as shown in Fig. 2). The same
applies to the density part of the three-site term

P
σ ĉ

y
iσ ĉkσ n̂j. These terms

have already been shown to induce topological superconductivity by
performing theHFEof Eq. (6) inRef. 26. The time-periodic Schrieffer-Wolff
expansion is a perturbative expansion in condition t0≪Umeanwhile there
is no resonance between ω and U (i.e. tðmÞ

ij ≪U � nω). For the detailed
derivation, see Schrieffer-Wolff transformation subsection in Methods.

Second, we perform the Gutzwiller approximation33,34,36,37, which
replaces the Gutzwiller projection P̂G with c-numbers renormalizing each
term in the Hamiltonian and effectively incorporates the reduction of
double occupancies. We perform the Gutzwiller approximation to the
second term of Eq. (5) and derive an effective Hamiltonian ĤG as

ΨBCSðtÞ
�

∣P̂GĤSWðtÞP̂G∣ΨBCSðtÞ
�

ΨBCSðtÞ
�

∣P̂GP̂G∣ΨBCSðtÞ
� ’ ΨBCSðtÞ

�
∣ĤGðtÞ∣ΨBCSðtÞ

�
� ĤG

� �
:

ð11Þ

Hereafter, � � �h i represents the expectation value in terms of BCS
wavefunction ∣ΨBCSðtÞ

�
. As described in Gutzwiller approximation sub-

section in the Methods, we obtain the effective Hamiltonian ĤGðtÞ,

ĤGðtÞ ¼ �
X
ijσ

δ
�f
~tijðtÞ̂cyiσ ĉjσ �

Xi≠k
ijkσ

δf 2

�f
2
~ΓijkðtÞ̂cyiσ ĉkσ þ h:c:

2
4

3
5

þ 1
2

X
ij

1
�f
2
~JijðtÞ Ŝi � Ŝj �

1
4
δ2n̂in̂j

� �

þ
X
ijkσσ 0

δ

�f
2
~ΓijkðtÞ ð̂cyiσσσσ 0 ĉkσ 0 Þ � Ŝj �

1
2
δδσσ 0 ĉ

y
iσ ĉkσ n̂j

� �
þ h:c:

8<
:

9=
;;

ð12Þ

where δ ¼ 1� 1
N

P
i n̂i" þ n̂i#
D E

is the hole doping rate, f = (1− δ)/2, and
�f ¼ 1� f . Similarly, we performGutzwiller approximation to thefirst term
of Eq. (5) and obtain

ΨBCSðtÞ
�

∣P̂Gi∂t P̂G∣ΨBCSðtÞ
�

ΨBCSðtÞ
�

∣P̂GP̂G∣ΨBCSðtÞ
� ’ ΨBCSðtÞ

�
∣i∂t ∣ΨBCSðtÞ

�
: ð13Þ

For details of derivation, see Gutzwiller approximation subsection in
Methods.

Third, we derive the BdG Hamiltonian from the time-dependent
Gutzwiller Hamiltonian in Eq. (12). For order parameters, we consider two
SU(2)-symmetric orders, i.e., the bond order amplitude χτ(t) and the
superconducting pairing amplitude Δτ(t),

χτðtÞ ¼
1
N

X
i

ĉyi" ĉiþτ" þ ĉyi# ĉiþτ#
D E

; ð14Þ

ΔτðtÞ ¼
1
N

X
i

ĉi" ĉiþτ# � ĉi#ĉiþτ"
D E

; ð15Þ

where τ =mx+ ny represents abondconnecting two sites that aredistant by
ma in the x direction and na in the y direction, with a being the lattice
constant. By applying themean-field approximation to each term inEq. (12)
and performing a Fourier transformation, we arrive at the effective BdG
Hamiltonian in the momentum-space representation as

ĤBdGðtÞ ¼
X
k

ĉk"

ĉy�k#

 !y

Hðk; tÞ
ĉk"

ĉy�k#

 !
; ð16Þ

with

Hðk; tÞ ¼ εkðtÞ FkðtÞ
F�
kðtÞ �ε�kðtÞ

� �
: ð17Þ

Here, matrix elements are given by

εkðtÞ ¼ � δ
�f

X
mτ

e�imωt tðmÞ
τ eik�Rτ

� Re
X
mnττ0

tðm�nÞ
τ tðnÞτ0 e

�imωt

U � nω
δf
�f
eik�ðRτþRτ0 Þð1� δτ;�τ0 Þ

�

þ χτðtÞeik�Rτ0 þ χτ0 ðtÞeik�Rτ

4�f
2 ½3ð1� δÞδτ;�τ0 þ δð3� δÞ�

)
;

ð18Þ

FkðtÞ ¼
1

2�f
2

X
mnττ0

e�imωt tðm�nÞ
τ tðnÞτ0 þ eimωt tð�mþnÞ

�τ0 tð�nÞ
�τ

2ðU � nωÞ
× ½3ð1� δÞδτ;�τ0 þ δð3þ δÞ�Δτ0 ðtÞ cos k � Rτ :

ð19Þ

Finally, we obtain the effective Lagrangian as LG ’ ΨBCSðtÞ
�

∣ði∂t�
ĤBdGðtÞÞ∣ΨBCSðtÞ

�
. By using the action principle with δu�kðtÞ; δv�kðtÞ as

variants, we end up with the time-dependent Schrödinger equation,

i∂t ψ
!

kðtÞ ¼ Hðk; tÞ ψ!kðtÞ; ð20Þ

where ψ
!

kðtÞ ¼ ðvkðtÞ; ukðtÞÞT.We solve this Schrödinger equation (20), by
computing the order parameters χτ and Δτ in Eqs. (14) and (15)
consecutively.

Time evolution of superconducting pairing amplitudes
In this section, we show the results of the time evolution generated by Eq.
(20). We consider hopping amplitudes, bond order amplitudes, and
superconducting pairing amplitudes up to next-nearest neighbors.

Fig. 2 | Schematic picture of the idxy-wave component of the pairing amplitude
Δidxy

that arises from three-site terms. Through the virtual hopping process from
the site k to the site i via the site j, the idxy-wave component Δidxy

(magenta) is
induced from the original dx2�y2 -wave order (orange).
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Throughout this paper, we set the next-nearest-neighbor hopping
t00 ¼ �0:2t0, the onsite interaction U = 12t0, and the hole doping level
δ = 0.2, with t0 being the nearest-neighbor hopping amplitude. As for the
other doping levels and onsite interaction, see Figs. S1-S3 in Supplemen-
tary Note 1.

We show the time evolution of superconducting pairing amplitudesΔτ

for ω = 5.8t0 in Figs. 3b, c. The time profile of the driving field amplitude is
shown in Fig. 3a, and the convention for the superconducting pairing
amplitudes is depicted in Fig. 3g.As shown inFig. 3a,we increase the electric
field amplitude linearly untilωt/2π = 200 and keep it constant after that.We
adopted this time profile ofE rather than just quenching thefield, to connect
the initial state to the dynamically-stabilized topological phase while miti-
gating damping oscillations in the order parameters. We show four super-
conducting pairing amplitudes: Δ[1,0],Δ[1,1],Δ[0,1] and Δ[−1,1] in Fig. 3
(Other components can be obtained from the relationship Δ[x, y] =Δ[−x, −y]

for singlet pairing). We perform simulations with the initial state in the
dx2�y2 -wave superconducting state which is the ground state of Eq. (16) in
the absence of thefield.Namely, as shown in Figs. 3b, c, we set positiveΔ[1, 0]

and negative Δ[0,1] with the samemagnitude while the others are zero, with
which the dx2�y2 -wave component given by ðReΔ½1;0� � ReΔ½0;1�Þ=2 has a
nonzero value.

Once we turn on the electric field, the phases of the superconducting
pairing amplitudes start to rotate, as shown in Figs. 3b, c. Tomake it easier to
see the relativephasesbetweendifferentΔτ’s,weperformaphase rotationwith
the phase θ(t) of the pairing amplitudeΔ[1, 0] (i.e.,Δ[1, 0](t) = ∣Δ[1, 0](t)∣eiθ(t)). In
Figs. 3d, e, we plot the pairing amplitudes with the phase rotation, Re½Δτe

�iθ�
and Im½Δτe

�iθ�. Figures 3h, i are the blowups of shaded areas of Figs. 3d, e,
which corresponds to the approximate steady state under the driving. Here,
the dx2�y2 -wave component is given by ðRe½Δ½1;0�e

�iθ� � Re½Δ½0;1�e
�iθ�Þ=2

and remains finite in the presence of the driving field.
Now let us look at the idxy-wave component of the pairing amplitude.

We define the idxy-wave component of superconducting pairing amplitudes
as Δidxy

� ðIm½Δ½�1;1�e
�iθ� � Im½Δ½1;1�e

�iθ�Þ=2, which indeed belongs to

the same irreducible reprenentationofC4v as thedxypairing. Figure 3f shows
the time evolution ofΔidxy

, and Fig. 3j is its blowup of the shaded area.While

Δidxy
is zero in the initial state without the CPL, Δidxy

becomes finite once

the CPL is applied, clearly indicating that the CPL irradiation induces idxy-

wave component of the pairing amplitude leading to topological
superconductivity.

Next, to study themagnitude of the idxy-wave pairing amplitude in the
steady state, we compute the time average of Δidxy

over ωt/2π∈ [240, 400],

denoted as Δidxy
. We show a color plot of Δidxy

as a function of the driving

amplitude E and the frequency ω in Fig. 4a. Note that for ω = 4t0, 6t0, Eqs.
(18) and (19) contain divergent terms with the denominator U− nω for
U = 12t0, with which the effective Hamiltonian becomes ill-defined because
of breaking down of the Schrieffer-Wolff transformation.We avoided those
parameters in plotting Fig. 4a. For comparison, we show the idxy-wave
component ΔHFE

idxy
obtained from the high-frequency expansion of ĤSW in

Fig. 4b Specifically, we compute ΔHFE
idxy

� ðImΔHFE
½�1;1� � ImΔHFE

½1;1�Þ=2, where
ΔHFE
τ is the superconducting pairing amplitude in the ground state of the

FloquetHamiltonianobtainedbyapplying theHFE toEq. (6)26. Figures4a, b
show that the idxy-wave components obtained in the present approach are
generally consistent with the HFE in the high-frequency region of ω > 5t0.

The present time-dependent Gutzwiller approach does not rely
on the HFE and is also applicable to the low-frequency region in
contrast to the HFE approach. Here we fix Ea/ω = 1 and compare
Δidxy

with ΔHFE
idxy

as functions of ω in Fig. 4c. Δidxy
and ΔHFE

idxy
show

similar behaviors in the high-frequency region ω > 5t0, while they are
significantly different in the low-frequency region ω < 2t0. Δidxy

even
shows a sign change around ω ~ t0 as opposed to ΔHFE

idxy
. This topo-

logical phase transition can also be seen in Fig. 4d, a color plot of
Δidxy

as a function of E and ω in the low-frequency region. Specifi-
cally, the topological phase transition clearly occurs around
E = 1.05t0/a. In this way, the present method can capture detailed
behaviors of the Floquet topological superconductivity even in the
low-frequency region where the HFE is not applicable. In particular,
topological phase transitions can be induced by changing the field
strength of CPL in the low-frequency region.

Floquet theory analysis
The Floquet theory is a useful tool to describe periodically driven
systems via an effective static Hamiltonian (Floquet Hamiltonian).
The topological properties of the steady state in the CPL driven

Fig. 3 | Time evolution of superconducting pairing amplitudes obtained from
time-dependent Gutzwiller simulation. a Time profile of the driving field of
circularly-polarized light (CPL). The electric field increases linearly up to E = 5.4t0/a
until ωt/2π = 200 and is constant after that. b, c Real and imaginary parts of
the pairing amplitudes Δτ. (d, e) real and imaginary parts of the pairing
amplitudes with the phase rotation Δτe

−iθ. θ is selected to keep Δ[1, 0]e
−iθ to be

real (i.e., Δ[1, 0] = ∣Δ[1, 0]∣eiθ). f The idxy-wave component of the pairing amplitude
Δidxy

. Δidxy
¼ ðIm½Δ½�1;1�e

�iθ� � Im½Δ½1;1�e
�iθ�Þ=2 corresponds to the idxy pairing

amplitude. Δidxy
emerges under the CPL driving and the topological super-

conductivity is realized. h, i, j Blowup of shaded areas in (d, e, f). Im½Δ½�1;1�e
�iθ� and

Im½Δ½1;1�e
�iθ� become different and nonzero Δidxy

appears in the steady state under
the CPL driving. g Notations for the superconducting pairing amplitudes on the
bonds and their color codes for (b–e,h, i).We adopted the parameter set: the driving
frequency ω = 5.8t0, the next nearest neighbor hopping t00 ¼ �0:2t0, the onsite
interaction U = 12t0 and the hole doping level δ = 0.2, where t0 is the nearest
neighbor hopping amplitude and a is the lattice constant.
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system are characterized by the Chern number of the Floquet
Hamiltonian. In this section, we show the Floquet bands and Chern
numbers obtained in the present method.

Floquet Hamiltonian. The Floquet Hamiltonian is defined as HFðkÞ �
i
T log T fexp½�i

R t0þT
t0

Hðk; tÞdt�g for a time-periodicHamiltonianHðk; tÞ
of a period T. As can be seen from Figs. 3b, c, h, i, ĤBdGðtÞ is not time-
periodic due to the phase rotation of Δτ over a period, while Δτe

−iθ

becomes (approximately) time-periodic. In the following, we derive the
Floquet Hamiltonian using this phase rotation for Δτ.

In the present system, once the system arrives at the steady state, the
superconducting pairing amplitudes satisfy

Δτðt þ TÞ ¼ ΔτðtÞeiα; ð21Þ

as can be seen fromFigs. 3b, c.We can remove this phase rotation by a gauge
transformation ψ

!0
k � eiϵtτz ψ!k with− ϵT≡ α/2, where ψ

!0
k becomes time-

periodic. Here, τz is a Pauli z matrix acting on the Nambu space.
Correspondingly, theHamiltonianbecomes time-periodicwithin this gauge
and enables us to define the Floquet Hamiltonian as

HFðkÞ �
i
T
log e�iðα=2ÞτzUðT; 0Þ
h i

; ð22Þ

where U(T, 0) is the original time evolution operator. For detailed deriva-
tion, see Time-periodic Hamiltonian and Floquet Hamiltonian subsection
in Methods.

Floquet band and Chern number. We compute the Floquet Hamilto-
nian for Hðk; tÞ in Eq. (20) with the above method and obtain the asso-
ciated Floquet bands. We then compute the Berry curvature and the
Chern number for the Floquet bands by using the Fukui-Hatsugai-Suzuki
method38. Note that the results below do not take into account the
occupation of the Floquet band.

Figure 5 shows the obtained Floquet bands, the phases of gap functions
F(k) of the FloquetHamiltonian, and theBerry curvature. The results for the

system without driving fields are shown in Figs. 5a, d, g. Figure 5d indicates
that the gap function has the conventional dx2�y2 -wave symmetry with
nodal lines. The black curve in Fig. 5d indicates the Fermi surface in the
normal state. The point nodes appear at the crossing points of nodal lines
and the Fermi surface as seen in Fig. 5a.

Next, let us look at the results for the systemswith theCPLdrivings.We
study two cases ofCPLdriving.One is in thehigh-frequency regimewith the
driving frequency ω = 5.8t0 and the field amplitude E = 5.4t0/a, shown in
Figs. 5b, e, h. The other is in the low-frequency regime with ω = 1.03t0 and
E = 0.96t0/a, shown in Figs. 5c, f, i. With the CPL drivings, we find that the
point nodes are gapped out in the Floquet band structures in both cases in
Figs. 5b, c. We show the phase of gap functions obtained from the Floquet
Hamiltonians with the CPL drivings in Figs. 5e, f. We remark that the
Floquet Hamiltonian HðkÞ and the gap function depend on the initial
time t0 of the time evolutionoperatorU(t0+ T, t0) (while the eigenvalues are
independent). Although the gap function shown in Figs. 5e, f breaks the C4

symmetry, the C4-breaking component rotates with t0, so that the Floquet
state preserves C4 symmetry in time average.

In these cases, the black curves correspond to the k points where the
diagonal (normal) component of the Floquet Hamiltonian is zero (Fermi
energy in the equilibrium cases) or ω/2 (Floquet Brillouin zone boundary).
In the high-frequency case (ω = 5.8t0, E = 5.4t0/a), the black curve in Fig. 5e
almost coincides with the Fermi surface in the equilibrium case [Fig. 5d].
Due to the emergence of the idxy-wave component of the pairing amplitude,
the phase of the gap function rotates twice in the counterclockwise direction
along the black curve [Fig. 5e]. As a consequence, a negative Berry curvature
appears around the area where the point node was originally located
[Fig. 5h]. In the low-frequency case (ω = 1.03t0, E = 0.96t0/a), Fig. 5f shows
additional black curves in addition to the one corresponding to the Fermi
surface in the equilibrium. These additional black curves correspond to
band crossings arising from the folding of copies of Floquet bands (photon-
dressed states) onto the Floquet Brillouin zone. If we focus on the black
curve from the original Fermi surface, the phase of F(k) rotates twice in the
clockwise direction along the black curve in Fig. 5f. Correspondingly, a
positive Berry curvature appears around the gapped node in Fig. 5i. As can
be seen from Figs. 5h, i, the Berry curvature B(k) satisfies the relation

Fig. 4 | Driving field dependence of the idxy-wave component of the pairing
amplitude. aThe time average of the idxy-wave component of the pairing amplitude
Δidxy

in the steady state obtained from the time-dependent Gutzwiller simulation.
We plot Δidxy

as a function of the electric field E and the frequency ω in the high-
frequency region. b The idxy-wave component of the pairing amplitude obtained
from the high-frequency expansion ΔHFE

idxy
. We plot ΔHFE

idxy
as a function E and ω with

the formula in Ref. 26. Δidxy
and ΔHFE

idxy
show qualitatively similar behavior in the

high-frequency region. cComparison ofω dependence ofΔidxy
andΔHFE

idxy
with fixing

Ea/ω = 1. In the low-frequency region, the difference between Δidxy
and ΔHFE

idxy
becomes significant, while they show a qualitative agreement in the high-frequency
region. Δidxy

shows a sign change around ω = t0 that is not captured by high-
frequency expansion. d (E, ω) dependence of Δidxy

in the low-frequency region. The
sign change appears around E = 1.05t0/a, indicating a topological phase transition
by increasing the electric field of the circularly-polarized light.
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B(k) = B(− k), which indicates that the time-reversal symmetry is broken
while the inversion symmetry is preserved, as is consistentwith thedx2�y2 þ
idxy pairing.

Furthermore, the sign of the Berry curvature coincides with the
sign of the idxy-wave component of the pairing amplitude Δidxy

in
Fig. 4. This clearly indicates that the CPL induced Berry curvature
originates from the gap opening at the point node with the idxy-wave
component Δidxy

. Specifically, the electronic structure of the original
point node is described by a gapless Dirac fermion. Once the mass
gap is introduced by Δidxy

to the Dirac fermion, the Berry curvature of
the sign of the mass Δidxy

emerges.
We show the phase diagram of Floquet topological superconductivity

by computing Chern numbers of the Floquet bands in Fig. 6. We show the
phase diagrams for the high-frequency region in Fig. 6a and the low-
frequency region in Fig. 6b. The location of topological phases in Fig. 6 is
generally consistent with the sign of the idxy-wave component of the pairing
amplitude Δidxy

in Fig. 4. Again, we avoid ω = 4t0, 6t0 in plotting Fig. 6
because of the ill-defined effective Hamiltonian with the divergent
denominator U− nω in Eqs. (18) and (19). We note that there are some
regionswithC ≠ ± 2 showing jumpsof theChernnumber in Fig. 6. Theyare
mainly due to the Berry curvature around the additional black curves in
Fig. 5i. Since theyappear from the folding of copiesof Floquetbands,usually
the occupation of energy states does not change abruptly across the energy
gap (See Occupation of Floquet band subsection in Methods for detail).
Namely, although those Floquet bandshave largeChernnumbers, the states
in the both lower and upper bands around those minigaps are equally
occupied and their contributions to the expectation value of the (thermal)
Hall response in state ∣ΨðtÞ� cancel out. Therefore, Berry curvature around
the original point node gives a dominant contribution to the (thermal) Hall
response when the electron occupation is not far from the equilibrium one.

Discussion
Wehavedemonstrated the emergence of topological superconductivity even
at low frequencies. To discuss the experimental feasibility, let us turn our
attention to evaluating the size of topological gaps and the required mag-
nitude of electric fields and frequencies. The low-frequency region shown in
Fig. 6b corresponds to ℏω≃ 0.4− 0.5 eV, E≃ 8− 17MV/cm for the typical
cuprateswith t0≃ 0.4 eV,a≃ 3Å.Oneof the advantages of thepresent time-
dependent Gutzwiller approach in the low-frequency regime is that it does
not require the large electric fields as large as 100 MV/cm as mentioned in
previous research21,26, due to the effective coupling through the vector
potential A∝ E/ω. The size of the topological gap appearing in Fig. 5c is
approximately 0.03 times that of the original dx2�y2 -wave superconducting
gap (the gap function at the Fermi surface in the antinodal direction).
Therefore, assuming thatTc of cuprate is 89K

39, experimental observation of
the topological gap can be achieved at around 3 K. While the magnitude of
the topological gap is smaller than that indicated inRef. 26, the gapdescribed
in that reference scales as∝O(E4). At E ~ 10MV/cm, the magnitude of the
topological gap obtained by the presentmethod is overwhelmingly larger. In
addition, as for the impurity effect, since the present d+ id-wave super-
conductivity is based on the dx2�y2 -wave superconductivity in the undriven
cuprates, we consider that the suppression of the topological super-
conductivity by the impurities will be qualitatively the same as that for the
original d-wave superconductivity in cuprate superconductors.

Several experimental methods are considered for probing the Floquet
topological superconductivity demonstrated in this paper. The first is the
measurement of the optical conductivity which directly observes the
topological gap. Several studies have already investigated the optical con-
ductivity of cuprate superconductors40,41. The irradiation of CPL opens the
gap at the Dirac nodes in cuprate superconductors. Therefore, during CPL
irradiation, optical absorption at frequencies below the topological gap is

Fig. 5 | Topological properties of Floquet energy bands for a d-wave super-
conductor without the circularly-polarized light (CPL) driving, withCPL driving
of high-frequency, and with CPL driving of low-frequency. a–c Energy dispersion
of Floquet bands with blowups around the point nodes. Without driving, point
nodes exist in the nodal line direction (a). Those nodes are gapped out in both cases
of the high-frequency CPL driving (b) and low-frequency CPL driving (c). d–fColor
plot of phases of the gap functions F(k) in the FloquetHamiltonian. The values of the
phases of F(k) are represented in color bars. The black curves indicate the k points
where the diagonal (normal) component of the Floquet Hamiltonian is zero.

Without driving (d), the gap function is real and has nodal lines. The black curve
coincides with the Fermi surface in the normal state. In the high-frequency driving
case (e), the phase winds twice in the counterclockwise direction along the black
curve. In the low frequency driving case (f), the phase winds twice in the clockwise
direction along the black curve. Additional black curves arise from the folding of the
Floquet bands. g–i Color plot of Berry curvatures of the Floquet bands with and
without the CPL driving. The values of the Berry curvature are represented in color
bars. The driving frequency ω and the field amplitude E are chosen as
ω = 5.8t0, E = 5.4t0/a for (b, e, h) and ω = 1.03t0, E = 0.96t0/a for (c, f, i).
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expected to be suppressed. The second is to detect the Higgs mode asso-
ciated with the idxy-wave component of the superconducting pairing
amplitudes. The dx2�y2 -wave superconductivity transforms into
dx2�y2 þ idxy-wave superconductivity under CPL irradiation. The Higgs
mode of d-wave superconductivity in cuprate superconductors was inves-
tigated using terahertz pump and optical probe techniques42,43. Thus,
observing the Higgs mode of the additional idxy-wave component would
provide evidence of Floquet topological superconductivity. Another
approach involves measuring the Hall response. CPL irradiation breaks
time-reversal symmetry and induces afiniteBerry curvature.The realization
of aQAHI in graphene throughCPL irradiationwas recently observedusing
a laser-triggered photoconductive switch17. Similar methods may capture
the Hall response in the present system.

Methods
Schrieffer-Wolff transformation
In this section, we derive Eq. (6). For clarity, we rewrite each term in ĤHub as

�
X
ijσ

tije
�iAðtÞ�Rij ĉyiσ ĉjσ ¼ �½T̂�1ðtÞ þ T̂0ðtÞ þ T̂þ1ðtÞ�; ð23Þ

U
X
i

n̂i"n̂i# ¼ UD̂; ð24Þ

where T̂dðtÞ is the kinetic energy operator that changes the double occu-
pancy by d: ½D̂; T̂dðtÞ� ¼ dT̂dðtÞ with D̂ being the double occupancy
operator. The explicit form of T̂dðtÞ is given by

T̂0ðtÞ ¼
X
ijσ

tije
�iA�Rij ð1� n̂i�σ Þ̂cyiσ ĉjσ ð1� n̂j�σÞ þ n̂i�σ ĉ

y
iσ ĉjσ n̂j�σ

h i
; ð25Þ

T̂�1ðtÞ ¼
X
ijσ

tije
�iA�Rij ð1� n̂i�σ Þ̂cyiσ ĉjσ n̂j�σ ¼ T̂

y
þ1ðtÞ; ð26Þ

where �" �#; �# �".
In order to obtain the transformed Hamiltonian ĤSWðtÞ ¼

eiŜðtÞĤHubðtÞe�iŜðtÞ � eiŜðtÞði∂te�iŜðtÞÞ with no charge excitations (i.e.
½D̂; ĤSWðtÞ� ¼ 0), let us determine ŜðtÞ order by order in terms of the
hopping amplitude. We can write down the first-order term of the trans-
formed Hamiltonian as

Ĥ
ð1Þ
SW ¼ �½T̂�1 þ T̂0 þ T̂þ1� þ ½iŜð1Þ;UD̂� � ∂t Ŝ

ð1Þ
; ð27Þ

where the superscript (n) for ŜðtÞ and ĤSWðtÞ denotes the order of the

hopping amplitude, and we have chosen Ŝ
ð0ÞðtÞ ¼ 0. In order to satisfy

½D̂; Ĥð1Þ
SWðtÞ� ¼ 0, Sð1ÞðtÞ ¼ Sð1Þþ1ðtÞ þ Sð1Þ�1ðtÞ have to be chosen such that

�T̂ ± 1 ∓ iUŜ
ð1Þ
± 1 � ∂t Ŝ

ð1Þ
± 1 ¼ 0; ð28Þ

withwhich the transformedHamiltonian is givenas Ĥ
ð1Þ
SWðtÞ ¼ �T̂0ðtÞ. The

solution of the above operator equation for Ŝ
ð1Þ
± 1ðtÞ is given as the same form

as T̂ ± 1ðtÞ but with sij,±1(t) instead of tije
�iAðtÞ�Rij , where

sij;± 1ðtÞ ¼ ±
X
m

itðmÞ
ij e�imωt

U∓mω
ð29Þ

for the time-periodic hopping amplitude.
In a similar manner, the second-order term can be obtained as

Ĥ
ð2Þ
SWðtÞ ¼ � 1

2
½iŜð1Þþ1ðtÞ; T̂�1ðtÞ� þ h:c: ð30Þ

We obtain Eq. (6) by inserting Eqs. (25), (26), and (29) to the above
expression. In the present method, we perform the Schrieffer-Wolff trans-
formation up to the second-order of hopping. This generates three-site term
which induces topological superconductivity. Moreover, if terms of fourth
order in Schrieffer-Wolff transformation are considered, scalar spin chir-
ality terms scalar spin chirality terms develop, which also induce topological
superconductivity26.

We note that the expression for Ŝ
ð1Þ
± 1ðtÞ should be slightly mod-

ified when the field amplitude A0 becomes time-dependent44,45, while
the correction is negligible when the change of the amplitude is slow
enough. The generalized expression for Eq. (29) is given as

sij;± 1ðtÞ ¼ �
X
m

Z t

�1
dt0tðmÞ

ij ðA0ðt0ÞÞe∓iðU∓i0þÞðt�t0Þ�imωt0 : ð31Þ

By expanding tðmÞ
ij in the Taylor series around t0 ¼ t, we obtain

sij;± 1ðtÞ ¼
X
m

±
itðmÞ
ij ðA0ðtÞÞ
U∓mω

�
_A0 � ∂A0

tðmÞ
ij

ðU∓mωÞ2 þ . . .

" #
e�imωt : ð32Þ

The correction term is smaller by a (dimensionless) factor of
∼ j _A0ja=U , and is indeed negligible for the present calculation.

Gutzwiller approximation
In this section,wedescribe thedetailedderivationofEqs. (12) and (13). First,
we evaluate the denominator of Eq. (11) by site diagonal expectation values,
which gives35,36

ΨBCS

�
∣P̂GP̂G∣ΨBCS

� ’ N!
ðNδÞ!ðNf Þ!ðNf Þ! ð�f�f Þ

Nδð f�f ÞNf ð f�f ÞNf

∼ ð�f�f ÞNδ ð f�f ÞNf ð f�f ÞNf
δNδ f Nf f Nf

¼ ð�f 2δ�1ÞNδ�f
2Nf

;
ð33Þ

where δ ¼ 1� 1
N

P
ihn̂i" þ n̂i#i is the hole doping rate, f = (1− δ)/2 is the

probability to have a singly-occupied site in the Gutzwiller wave function

Fig. 6 | Phase diagram of Floquet topological
superconductors with the CPL driving. The color
plot of Chern number as a function of frequencies ω
and electric field amplitudes E (a) in the high-
frequency region and (b) in the low-frequency
region. The values of the Chern numbers are
represented in color bars. The overall feature of the
phase diagram is consistent with the sign of the idxy-
wave component of the pairing amplitude Δidxy

.
Jumps of the Chern number appear due to the
folding of the Floquet bands in the low-frequency
region.
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P̂G∣ΨBCS

�
, and�f ¼ 1� f . Here we have used n! ~ (n/e)n on the second line.

We evaluate the expected value of each term in Eq. (6) in a similar manner.
For the hopping term, we obtain

P̂Gĉ
y
iσ ĉjσ P̂G

D E

∼ ð1� n̂i�σ Þ̂cyiσ ĉjσ ð1� n̂j�σ Þ
D E ð�f�f ÞNδ�1ð f�f ÞNf�1ð f�f ÞNf

δNδ�1f Nf�1f Nf

¼ δ
�f

ĉyiσ ĉjσ
D E

P̂G

� �
;

ð34Þ

while for the Heisenberg interaction we have

P̂GŜi � ŜjP̂G

D E
∼

1
�f
2 Ŝi � Ŝj
D E

P̂G

� �
: ð35Þ

The spin part of the three-site term, P̂G ð̂cyiσσσσ 0 ĉkσ 0 Þ � Ŝj
h i

P̂G with i ≠ k
is evaluated as

P̂G ð̂cyiσσσσ 0 ĉkσ 0 Þ � ŜjP̂G

D E
∼

δ

�f
2 ð̂cyiσσσσ 0 ĉkσ 0 Þ � Ŝj
D E

P̂G

� �
: ð36Þ

As for the density operator, there is arbitrariness in whether to
renormalize this as an operator or to replace it as the density at each site. In
the present case, in which δ has a finite value, the variational Monte Carlo
calculation shows that the density-density term has a few effects in contrast
to the half-filling case,which allowsus to replace P̂Gn̂iP̂G

� �
with1− δ46.We

thus discard the second order fluctuations ðn̂iσ � f Þð1� n̂i�σ � �f Þ around
the expected value of the density in the Hamiltonian here, like P̂Gn̂iP̂G ’
n̂iδ þ 2f 2 with n̂i ¼ n̂i" þ n̂i#

26. Then the remaining terms in the

Hamiltonian can be evaluated as

P̂Gn̂in̂jP̂G

D E
’ δ2

�f 2
n̂in̂j
D E

P̂G

� �þ 2δf 2

�f 2
n̂i þ n̂j
D E

P̂G

� �þ const:; ð37Þ

P̂Gĉ
y
iσ ĉkσ n̂jP̂G

D E
’ δ2

�f 2
ĉyiσ ĉkσ n̂j
D E

P̂G

� �þ 2δf 2

�f 2
ĉyiσ ĉkσ
D E

P̂G

� � ð38Þ

with i ≠ k. In this way, we obtain the effective Hamiltonian Eq (12).
Evaluation of the first term of Eq. (5) incurs additional calculation of

the derivative of the variational parameters. Using the relation

ð _uk þ _vk ĉ
y
k"ĉ

y
�k#Þ∣0i

¼ _uk
uk

ĉk"ĉ
y
k" þ

_vk
vk

ĉyk"ĉk"

� �
ðuk þ vk ĉ

y
k"ĉ

y
�k#Þ∣0i;

ð39Þ

we can rewrite the time derivative in an operator form as

∂t ∣ΨBCS

� ¼ P
k0
ð _uk0 þ _vk0 ĉ

y
k0"ĉ

y
�k0#Þ

Q
k≠k0

ðuk þ vk ĉ
y
k"ĉ

y
�k#Þ∣0i

¼ P
k

_uk
uk
þ _vk

vk
� _uk

uk


 �P
ij
ĉyi"ĉj"e

�ik�ðRi�RjÞ
" #

∣ΨBCS

�
;

ð40Þ

with which the first term of Eq. (5) is written as

ΨBCS

�
∣P̂Gi∂t P̂G∣ΨBCS

�
ΨBCS

�
∣P̂GP̂G∣ΨBCS

�
¼i
X
k

_uk
uk

þ _vk
vk

� _uk
uk

� � X
i≠j

P̂Gĉ
y
i" ĉj"

D E
P̂G

� � eik�Rij þ
X
i

P̂Gn̂i"
D E

P̂G

� �
8<
:

9=
;

2
4

3
5:

ð41Þ

Fig. 7 | Occupation probabilities of the lower
Floquet band in the Brillouin zone after the
simulation with the circularly-polarized light
(CPL) driving. Occupation probabilities of the
lower Floquet band with CPL driving of (a) high
frequency (ω = 5.8t0, E = 5.4t0/a) and (b) low fre-
quency (ω = 1.03t0, E = 0.96t0/a), where ω is the
frequency, E is the electric field amplitude, t0 is the
next nearest neighbor hopping amplitude, and a is
the lattice constant. Berry curvatures of Floquet
bands for each situation are (c, d). These are the
reproduction of Figs. 5h, i for comparison.
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The expectation value P̂Gĉ
y
i" ĉj"

D E
= P̂G

� �
can be evaluated within the

Gutzwiller approximation as

P̂Gĉ
y
i" ĉj"

D E
P̂G

� � ’
ð�f 2=δÞNδ�f

2Nf�2 ð1� n̂i#Þ̂cyi" ĉj"n̂j#
D E

ð�f 2=δÞNδ�f
2Nf

þ
ð�f 2=δÞNδ�1�f

2Nf�1 ð1� n̂i#Þ̂cyi" ĉj"ð1� n̂j#Þ
D E

ð�f 2=δÞNδ�f
2Nf

¼ f
�f
þ δ
�f

� �
ĉyi"ĉj"
D E

¼ ĉyi" ĉj"
D E

:

ð42Þ

Note that both doubly-occupied and singly-occupied configurations at
site j are allowed as the initial configuration due to the absence of the
projection operator. The other expectation value can also be evaluated in the
same way as P̂Gn̂i"

D E
= P̂G

� � ’ n̂i"
D E

, with which Eq. (13) follows.

Time-periodic Hamiltonian and Floquet Hamiltonian
In this section, we describe how to obtain the time-periodic BdG Hamil-
tonian and the associated Floquet Hamiltonian (22). The superconducting
pairing amplitude of each bond τ can be computed from the gap equation,

ΔτðtÞ ¼ 2
X
k

ψ!y
k

0 0

�1 0

� �
ψ!k cos k � Rτ : ð43Þ

This implies that the pairing amplitude is transformed as ΔτðtÞ !
Δ0
τðtÞ ¼ ΔτðtÞe2iϵt under the unitary transformation
ψ!k ! ψ!0

k � eiϵtτz ψ!k , which keeps the relative phase of the pairing
amplitudes intact. When the pairing amplitudes satisfy Δτ(t+ T) =Δτ(t)e

iα,
the transformed amplitude becomes time-periodic

Δ0
τðt þ TÞ ¼ Δ0

τðtÞeiαþ2iϵT ¼ Δ0
τðtÞ ð44Þ

with− ϵT = α/2. Namely, under this condition the transformed BdG
Hamiltonian H0ðk; tÞ � eiϵtτzHðk; tÞe�iϵtτz � ϵτz becomes time-periodic,
and we can define the corresponding Floquet Hamiltonian,

HFðk; t0Þ �
i
T
log T exp �i

Z t0þT

t0

H0ðk; tÞdt
 !" #

; ð45Þ

where the time evolution of its eigenstates are expressed as the time-periodic
wave function multiplied by a plane wave factor. Using the relation for the
transformed time evolution operator, U 0ðt; t0Þ ¼ eiϵtτzUðt; t0Þe�iϵt0τz , we
can compute the Floquet Hamiltonian as

HFðk; t0Þ :¼
i
T
logU 0ðt0 þ T; t0Þ ð46Þ

U 0ðt0 þ T; t0Þ :¼ eiϵðt0þTÞτzUðt0 þ T; t0Þe�iϵt0τz : ð47Þ

By setting t0 = 0, we arrive at Eq. (22) with ψ!0
kðt0Þ ¼ ψ!kðt0Þ.

Occupation of Floquet band
Figures 7a, b show the occupation probabilities of the lower Floquet band
after the time evolution with the CPL driving. For comparison, we replot
the Berry curvature in Figs. 5h, i as Figs. 7c, d. In the high-frequency case
(ω = 5.8t0, E = 5.4t0/a), the lower Floquet band is almost fully occupied
except for the regions where the point nodes were originally located. The
lack of occupancy in these regions is attributed to the choice of our initial
state in which the energy gap closes. These unoccupied regions should be
filled when the scattering processes neglected in the present mean-field
treatment are taken into account. In the low-frequency case
(ω = 5.8t0, E = 5.4t0/a), other unoccupied regions arise due to the

foldings of copies of the Floquet band. When the external electric field is
turned on slowly as in the present case, the occupation of Floquet bands
is almost determined by the original distribution function in the absence
of the external field. In those cases, the boundaries of the occupied and
unoccupied areas of the Floquet bands appear at the position of band
crossings arising from band folding in the Floquet Brillouin zone as seen
in Fig. 7. In general, the occupation of Floquet bands strongly depends
on the time profile of the electric field and presence or absence of
scatterings.

Data availability
Data are available upon reasonable request.

Code availability
Code is available upon reasonable request.
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