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Three-dimensional non-Abelian Bloch oscillations
and higher-order topological states
Naiqiao Pan 1,2, Tian Chen 1,2✉, Tingting Ji1, Xiaoxue Tong1 & Xiangdong Zhang 1✉

Recently, higher-order topological insulators (HOTIs) have been introduced, and were shown to

host topological corner states under the theoretical framework of Benalcazar-Bernevig-Hughes.

Here we unveil some topological effects in HOTIs by studying the three-dimensional (3D) non-

Abelian Bloch oscillations (BOs). In HOTIs, BOs with a multiplied period occur when a force

with a special direction is applied due to the effect of the non-Abelian Berry curvature. Along the

direction of the oscillations we find a higher-order topological state that goes beyond the

theoretical framework of multipole moments. The emergence of such a higher-order topological

state coincides with the appearance of the 3D non-Abelian BOs. That is, the 3D non-Abelian

BOs can be used as a tool to probe higher-order topological states. These phenomena are

observed experimentally with designed electric circuit networks. Our work opens up a way to

detect topological phases theoretically and experimentally.
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Topological phases exhibit some most striking phenomena
in modern physics1,2. Constructing new topological phases
is very important in various physical systems because of

their potential applications3–5. For example, constructing non-
Abelian topological states is the basis of topological quantum
computing6,7. Topological phases can be characterized by dif-
ferent topological invariants8–10. Based on the bulk-boundary
correspondence principle, the conventional topological phase is
always featured by the boundary states with one-dimensional
lower than the bulk that hosts them.

Recently, a novel class of the symmetry-protected higher-order
topological insulator (HOTI) that possesses lower dimensional
boundary states has been proposed11 and realized in many sys-
tems, including mechanics12, microwaves13, acoustics14–16,
photonics17–22, solid materials23, and electrical circuits24,25.
Comparing with conventional topological insulators of bulk
dipole moments that lead to surface states, it is found that the
unique boundary properties of HOTIs can be characterized by
higher bulk multipole moments. For example, both of a quad-
rupole insulator in two dimensions and an octupole insulator in
three dimensions manifests corner-bound states that are topolo-
gically protected, which can be discussed under the theoretical
framework of Benalcazar-Bernevig-Hughes (BBH).

On the other hand, Bloch oscillations (BOs), in which a
wavepacket undergoes a periodic motion in a lattice when
subjected to a force26–42, have emerged as a powerful tool for
the detection of geometric and topological properties in syn-
thetic lattice systems43. This is because BOs are intrinsically
related to the geometric and topological properties of the
underlying band structure44. Recently, two-dimensional (2D)
non-Abelian BOs have been proposed theoretically in 2D
HOTIs through the interplay of non-Abelian Berry curvature
and quantized Wilson loops45. Meanwhile, topologically pro-
tected edge states emerge on the open boundaries parallel to the
body diagonals. The question is whether or not some new
phenomena can occur in three-dimensional (3D) HOTIs
through the interplay of non-Abelian Berry curvature and
quantized Wilson loops.

In this work, we unveil some topological effects in the 3D
HOTIs by studying 3D non-Abelian BOs. It is identified that a
type of multiple BOs takes place along the diagonal of the body
for the applied force, which is attributed to the finite non-
Abelian Berry curvature of the degenerate band structure.
Accompanied with these BOs there is a synchronized inter-
band beating which is captured by the Wilson loop and can be
topologically protected by winding numbers. Furthermore,
higher-order boundary states appear at the symmetry axes
associated with the topological BOs. Such edge states are loca-
lized on the one-dimensional boundary of the 3D system and
cannot be characterized by the bulk octupole moments intro-
duced by BBH. Furthermore, the wavepacket dynamics in the
3D HOTI model with an external force is realized theoretically
and experimentally in a specially designed circuit network. The
multiplying period of the topological BOs and the higher-order
boundary states are also observed. Our results enrich the con-
nection between topological BOs and non-Abelian systems, and
expand the direction of exploring higher-order boundary states.
Using the designed circuit network, our work paves the way for
the experimental detection of wavepacket dynamics in complex
lattice systems.

Results
The theory of topological BOs in 3D HOTIs. We consider a 3D
lattice model consisting of cubic stacked unit cells, with each unit
cell consisting of 8 lattice sites, as shown in Fig. 1a, b. These lattice

sites are distributed in space at equal intervals δ. As a result, the
lattice constant takes l= 2δ. The intracell and intercell hopping
amplitudes are J1 and J2 respectively in all of the three spatial
directions. In the discussion below, these 8 lattices in every unit
cell have different spatial positions. Notice that if we ignore the
geometric shape of the unit cell by setting the lattice sites in the
center of the unit cell, the model is equivalent to the well-known
BBH model11. Taking l= 1, the model is represented by a
Hamiltonian of the form:

HðkÞ ¼ ∑
6

i¼1
diðkÞΓ0i; ð1Þ

where the operators Γ'i= – σ2 ⊗ Γ'i for i= 1, 2, 3, 4, 5, and Γ'6= –
σ1 ⊗ I4. Here, Γ1= σ0 ⊗ σ1, Γ2= σ0 ⊗ σ2, Γ3= σ1 ⊗ σ3, Γ4= – σ2
⊗ σ3, Γ5= σ3 ⊗ σ3, I4= σ0 ⊗ σ0, and σi are Pauli matrices. The
coefficients are expressed as d1(k) = (J1 – J2) sin(ky/2), d2(k) = –
(J1+ J2) cos(ky/2), d3(k) = (J1 – J2) sin(kx/2), d4(k) = – (J1+ J2)
cos(kx/2), d5(k) = (J1 – J2) sin(kz/2), and d6(k) = – (J1+ J2)
cos(kz/2). The first Brillouin zone of the model with high-
symmetry points highlighted is shown in Fig. 1c, the directions of
the momentums kx, ky, and kz are also marked. Four paths along
the body diagonal directions of the BZ are illustrated as L1: kx =
ky = kz, L2: –kx = ky = kz, L3: kx= –ky = kz, and L4: kx = ky= –kz,
respectively. By solving the eigenfunction of the model H | ψ〉 =
E | ψ〉, we find that the model has two fourfold degenerate
energy bands EðkÞ ¼ ± εðkÞ ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðJ21 þ J22Þ þ 2J1J2ðcosðkxÞþ

p
cosðkyÞ þ cosðkzÞÞ, which is shown in Fig. 1d. The fourfold

Fig. 1 Schematics and dynamics of the non-Abelian topological Bloch
oscillations. a Tight binding model for the 3D higher-order topological
insulator. Blue lines represent the intercell hopping amplitude of J2 and
dashed lines represent hopping terms with negative signs. The lattice
constant is l. b One unit cell of the model where the sites are separated at
an interval δ, with δ= 0.5 l. Red lines represent the intracell hopping
amplitude of J1. c The first Brillouin zone with high-symmetry points
highlighted. Black dashed lines along the body diagonals mark the four
paths L1 ~ L4 exhibiting topological Bloch oscillations (BOs). d Band
structure of the model. Each band is fourfold degenerate. e Band occupation
dynamics along the L1 path with an initial distribution η(0)= (1, 0, 0, 0)T.
Here J2= 0.1J1 and the applied force satisfies Fx= Fy= Fz= –0.2J1. f Real-
space wavepacket trajectory of topological BOs indicated by the red curve.
The black arrow indicates the direction of the applied force F and the green
double arrow shows the direction of the Hall drift. The trajectories of the
first and second BOs coincide.
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degeneracy of the energy bands comes from the three non-
commuting mirror symmetries with respect to the x, y, and z
directions, namely Mx= σ1 ⊗ σ1 ⊗ σ3, My= σ1 ⊗ σ0 ⊗ σ1, and
Mz= σ1 ⊗ σ3 ⊗ σ3, respectively.

We consider a wavepacket obtained as a superposition of the
lowest four bands jψ1

ki, jψ2
ki, jψ3

ki, and jψ4
ki (the full expressions

of the bands are given in Supplementary note 1), and centered
at k, namely,jψkðtÞi ¼ η1ðtÞjψ1

ki þ η2ðtÞjψ2
ki þ η3ðtÞjψ3

ki þ η4ðtÞj
ψ4
ki, with a distribution η= (η1, η2, η3, η4)T, where ∑njηnj2 ¼ 1.

To study the dynamics of the wavepacket under the paths L1 ~ L4,
we focus on the evolution of the state distribution according to:46

dη/dt= –iε(k)η+ iF·Aη, where A is the non-Abelian Berry
connection whose matrix elements can be expressed as Aαβ

i ¼
ihψα

kj∂ki jψ
β
ki with α, β= 1, 2, 3, 4, and F= (Fx, Fy, Fz) is the

applied force, which is homogeneous and constant that makes the
momentum change linearly in time, dk/dt= F. We start with an
initial state jψkð0Þi ¼ jψ1

Γi, which means k0= Γ and η(0)= (1, 0,
0, 0)T. The applied force satisfies Fx= Fy= Fz so that the moment
moves along path L1 in reciprocal space. Figure 1e displays the
evolution of the four band occupations as a function of time.
Here, TB in the abscissa is the fundamental period of Bloch
oscillations, namely TB ¼ jGF j=jFj, with GF being the smallest
reciprocal vector parallel to F. Along the body diagonals, there is
TB ¼ 2π=jFxj (we take the lattice constant as 1). We can see that
in the first BO, the occupation of the first band jη1j2 decreases
while jη2j2 and jη4j2 increase over time. In the second BO, jη1j2
increases while jη2j2 and jη4j2 decrease. Note that the occupation
of the third band jη3j2 is always 0. After two BOs, the band
occupations are brought back to their initial positions.

In fact, such dynamics of the wavepacket are topologically
protected, which can be illustrated with a Wilson line matrix. The
evolution of wavepacket can be formally solved as
ηðtÞ ¼ expð�i

R t
0εðkÞdtÞWηð0Þ, where the Wilson line matrix W

is defined as W ¼ P expðiR kt
k0
A � dkÞ. Here, P represents that the

integral is path-ordered starting from k0 to the momentum at
time t (kt). The Wilson line matrix intuitively exhibits the
evolution of the degenerate bands under a specific path. The
diagonal elements of this Wilson line matrix are the Berry
connections of the individual bands, which produce the Berry
phase when it is integrated along a closed path. The off-diagonal
elements are the inter-band Berry connections which can bring
about the inter-band transitions43. When a force is applied along
one of the body diagonal of the crystal, the Wilson line matrix
under a closed path Li (i= 1, 2, 3, 4) can be expressed as
WCi

¼ expðiðπ=2ÞwiMiÞ, where Mi is a 4×4 matrix depending on
the specific path (see Supplementary note 1 for the concrete
expression), while wi= ±1 is the novel winding number under the
path Li, which is defined as

wi ¼
i
4π

Z
Li

dk � Tr½Q�1ðkÞDi∂kQðkÞ� ð2Þ

where QðkÞ ¼ i∑5
i¼1 diðkÞΓi � d6ðkÞI4, and Di is a 4×4 matrix

depending on the path we choose (see Supplementary note 1 for
details). Under the protection of a 2π/3 rotation symmetry
with the symmetry axis parallel to the specific path, Eq. (2) can
be simplified as wi ¼ 1

π

R 2π
0 dk d1∂kd2�d2∂kd1

j~dj2
, where ~dðkÞ ¼

ðd1ðkÞ; d2ðkÞÞ (see Supplementary note 1 for details). As a
result, the quantity wi counts the number of times that the
vector ~dðkÞ winds around the origin over the closed path Li.
For the d(k) provided in Eq. (1), wi = sign(J21– J22)= ± 1.
Thus, the winding number wi is a topological invariant relating

to the band transitions protected by the crystalline
symmetries. More demonstrations are also given in Supple-
mentary note 1.

Based on the above results, we can further obtain that
W2

Ci
¼ �I, which means the wavepacket is brought back to

itself when the momentum k moves two reciprocal vectors along
the path Li. This is because the sign before the identity matrix and
the trivial dynamical phase caused by the degeneracy of the bands
do not influence the internal band-occupation dynamics. Such
periodic dynamics of the wavepacket captured by the Wilson loop
are topologically protected by winding numbers.

The phenomenon can also be verified by studying the real-
space motion of the wavepacket. We consider the evolution of
the real-space wavepacket jψi with an applied force F. The
evolution of the wavepacket can be obtained as the solution of
the Schrödinger equation i∂ψ=∂t ¼ HBψ, as
jψðtÞi ¼ e�iHBtjψð0Þi, where HB=H+ F·r. In a more common
way, we describe the motion of the wavepacket using the
semiclassical equation46 dr=dt ¼ ∂kεðkÞ � dk=dt ´ ηyBη, where
B ¼ ∇k ´A� iA ´A denotes the non-Abelian Berry curvature.
Note that the Hamiltonian H(k) is diagonalized with fourfold
degenerated conduction and valence bands. As studied in
Ref. 47, the projection operators of conduction and valence
bands can be expressed by a unit vector lying on a unit five-
sphere S5, which is suitable for a 3D BBH model with specific
parameters. In this way, the gauge group of the intra-band
Berry connection and Berry curvature for BBH model
corresponds to SO(5). Figure 1f displays the evolution of the
center of mass of the wavepacket according to the semiclassical
equation, with the applied force satisfying Fx= Fy= Fz= –0.4J1
and the initial distribution being ηð0Þ ¼ ð1; 0; 0; 0ÞT . It can be
seen that the wavepacket experiences a transverse Hall drift
perpendicular to F after each BO, thus bringing the center of
mass position back to its initial point after two BOs. This means
that the evolution of the wavepacket has a period of 2TB. Such a
behavior is synchronized and tightly connected with the band-
population dynamics as shown in Fig. 1e. In the Methods
section, we elucidate the synchronization with the help of the
projected position operators under an atomic limit with J2= 0,
and illustrate that such synchronization can only occur along
the body diagonal directions and not in directions of other
symmetry axes of this model. In fact, the periodic motion of the
wavepacket can be directly obtained by analyzing the semi-
classical equation. More discussions are given in Supplementary
Note 2. The above results are focused on initial state jψ1

Γi.
Evolution results under other initial states are provided in
Supplementary Note 3. It should be added that the zero
occupation of the third band in Fig. 1e is a combined effect of
the external force and the band structure. While along other
directions, this occupation is not vanishing, which is shown in
Supplementary note 4.

Experimental observation of 3D topological BOs in electric
circuits. As one of the most fundamental phenomena in solid-
state physics, BOs were observed firstly in semiconductor
superlattices26,27. In the following decades, BOs have been
observed in various physical systems, including ultracold
atoms28,29, Bose-Einstein condensates30,31, and some classical
wave systems32–42. However, the experimental observation of the
non-Abelian topological BOs keeps a challenge due to the strong
anisotropy of the HOTI model. Recently, based on the similarity
between circuit Laplacian and lattice Hamiltonian, simulating
topological states with electric circuits has attracted lots of
interest48–62. Compared with other classical platforms, circuit
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networks possess remarkable advantages of being versatile and
reconfigurable. Consequently, many extremely complex topolo-
gical states are also fulfilled in circuit networks. In the following,
we discuss experimental observation of 3D topological BOs with
electric circuits.

Figure 2a illustrates the schematic diagram for the designed
circuit corresponding to the lattice model in Fig. 1a with an
applied force. Here, the red and blue lines represent the intracell
and intercell hopping, respectively. Each yellow dot corresponds
to an effective lattice site in the lattice model, and its internal

structure is shown in Fig. 2b. We use the voltages at nodes
to simulate the real-space state in the lattice model. Since
the components of the electronic state are complex and the circuit
voltages are real, we use a circuit state jϕðtÞÞ ¼
ðV1þ

ðtÞ;V2þ
ðtÞ; � � � ;Vnþ

ðtÞ;V1�
ðtÞ;V2�

ðtÞ; � � � ;Vn�
ðtÞÞT , which

is combined of voltages of 2n nodes, to correspond to the real-
space wavepacket with n sites. Here, Vaþ

and Va�
are the voltages

at two nodes for the a-th site (a= 1, …, n), which are marked by
the black and the white dots in Fig. 2b, respectively. These two

Fig. 2 Observation of the topological Bloch oscillations on electric circuits. a A schematic diagram of the designed circuit for the 3D higher-order
topological insulator model with an applied force. b The internal structure of a circuit site with two nodes and their grounding parts. c The structure of the
negative impedance converter with current inversion. d, e Connections between different sites for positive and negative hopping terms, respectively.
f–h Simulation (red solid line) and experimental results (green dotted lines with error bars) for the center of mass of the circuit wavepacket in x, y, and z
directions, respectively. The circuit is constructed for a lattice model with a finite size of 3 × 3 × 3 unit cells and an applied force of Fx= Fy= Fz= –0.4J1.
Here J2= 0.1J1 and J1, J2 are the intracell and intercell hopping amplitudes, respectively. The error bars are obtained from the average with data from 10
groups. i Simulation (red solid line) and experimental results (green dots) of real-space wavepacket trajectory. j Experimental results of Band occupation
dynamics in momentum space.
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circuit nodes are connected through a negative impedance
converter with current inversion (INIC) to realize the on-site
potential. The structure of an INIC is illustrated in Fig. 2c, and its
properties and functions are described in Ref. 51.

To simulate the hopping of the sites, two pairs of nodes are
cross-connected via two INICs, the directions of which depend
on the signs of the hopping amplitudes between the corre-
sponding sites, as illustrated in Fig. 2d, e. Here, the effective
resistances of the INICs are inversely proportional to corre-
sponding parameters (on-site potentials and hopping ampli-
tudes). Moreover, each node is grounded through a capacitor
(Ca±

) parallel with an INIC or a normal resistor (Ra ±
), as shown

in Fig. 2b. More specific settings of the circuit are given in the
Methods section. With the above settings, the evolution
of circuit state jϕðtÞÞ can be expressed as a Schrödinger-
like equation, i∂tjϕðtÞÞ ¼ HejϕðtÞÞ, where He is the circuit

Hamiltonian and has a form of He ¼ i
� O �HB

0

HB
0 O

�
, with

HB' corresponding to the real-space Hamiltonian HB for the 3D
lattice model. We define a circuit wavepacket jψðtÞÞ, which is a
recombination of the circuit state, as jψðtÞÞ ¼
ðv1ðtÞ; v2ðtÞ; � � � ; vnðtÞÞT , where vaðtÞ ¼ VaþðtÞ � iVa�ðtÞ. It can
be confirmed that jψðtÞÞ ¼ e�iHB

0tjψð0ÞÞ, which corresponds to
the evolution of the real-space wavepacket in the lattice model.
A detailed demonstration is given in Methods section.

Now we numerically simulate the behavior of topological
BOs to verify the effectiveness of our design. We construct a
circuit system consisting of 216 pairs of nodes, which
corresponds to an open-boundary lattice model consisting of
3×3×3 unit cells with an applied force of Fx= Fy= Fz= –0.4J1.
Our system is small but still capable of demonstrating the
topological BO phenomenon discussed above (see Supplemen-
tary Note 5 for details). Here, the grounding capacitances are all
taken as C0= 1 µF. The effective resistances of the INICs
corresponding to intracell and intercell hopping are set as 1 kΩ
and 10 kΩ to realize the hopping amplitudes of J2= 0.1J1,
respectively. The effective resistance of the INIC between the
node pair is set as 1/µ to realize the corresponding on-site
potential of µ. Furthermore, grounding INICs and resistors are
also set appropriately. Under these parameter settings, the BO
period for the circuit network is TB ¼ 2π=jFxj ¼ 2πC0RJ1

=0:4 �
15:7ms theoretically. Here, RJ1

represents the effective resistance
for intracell hopping, which is 1 kΩ.

To illustrate the BOs in our circuit system, we perform time-
domain simulations of voltage dynamics using LTspice software.
Figure 2f–h displays the evolution for the center of mass of the
circuit wavepacket projected on three spatial directions of x, y,
and z, respectively, marked by the red solid lines. Here, the
abscissa is the actual evolution time of the simulated voltages, in
milliseconds, and the ordinate is the spatial coordinate to the
initial position. We set the initial state to be the same as jψ1

Γi in all
unit cells.

As shown in Fig. 2f–h, the center of mass along the x
direction firstly goes through a rise and fall, and reaches a local
minimum at about 16.1 ms, as well as in y and z directions,
with the coordinates being (–0.124, 0.254, –0.124). This
indicates that the wavepacket completes an oscillation along
the applied force F, with the transverse displacement reaching
the maximum. Then, the center of mass experiences another
rise and fall in three directions, and reaches a local minimum
which basically coincides with the origin, at about 30.9 ms. This
reflects another oscillation with an opposite transverse drift
bringing the center of mass back to its initial position. The
spatial trajectory of the center of mass shown by the red curve

in Fig. 2i also illustrates this process, where the trajectories of
the two BOs basically coincide. The simulated results clearly
show that the period-two topological BOs take place in our
circuit for the 3D HOTI system, with the period being
~30.9 ms, which is consistent with the theoretical result as
2TB= 31.4 ms.

Furthermore, we fabricate the corresponding circuit. A
photograph image of the circuit sample is presented in
Supplementary Note 6. We use the operational amplifier
LT1013 and three surface-mounted device resistors to con-
struct the INIC. All capacitors and resistors are manually
selected within a tolerance of 1% to the theoretical values. More
details about the experimental settings are given in Supple-
mentary Note 6. The experimental results for the evolution of
the wavepacket center of mass in three directions are shown by
green dotted lines with error bars in Fig. 2f–h. The results are
averaged by 10 repeated measurements. The spatial trajectory
of the center of mass is also shown by the green dots in Fig. 2i.
As can be seen, the center of mass experiences one BO in
around 15.8 ms, bringing it to the position of (–0.102, 0.247,
–0.079). Then it goes through another BO that brings it back to
(–0.013, 0.057, 0.061) at about 30.8 ms. The experimental
results match with the simulations well. We also notice that
there is a slight deviation between the experimental and
simulated results, which is a result of the voltages’ dissipation
caused by the disorder of circuit components and some other
circuit losses. The detailed discussion is given in Supplemen-
tary Note 7.

The evolution of the band occupations can also be obtained by
converting the real-space wavepacket into the momentum space
through an inverse Fourier transform and calculating the
occupations of the four degenerate bands jψ1

kÞ; jψ2
kÞ; jψ3

kÞ and
jψ4

kÞ. Figure 2j shows the experimental results for the evolution of
the band occupations jη01j2; jη02j2; jη03j2, and jη04j2. As can be
seen, the evolution corresponds to the theoretical prediction in
Fig. 1e, ignoring a certain degree of attenuation. In all, the period-
two topological BOs in 3D HOTI systems are successfully
demonstrated through our designed circuit.

Higher-order boundary states. In addition to the period-
multiplied topological BOs, we also discover that higher-order
boundary states exist in the 3D HOTI system with specific
edges. We consider a system with edges along the body diag-
onals of the original cubic lattice given in Fig. 1a, as shown in
Fig. 3a. Here, the left part of Fig. 3a shows a schematic diagram
of the original cubic stacked structure, with the blue lines
indicating the directions of the open boundaries, and the right
part of Fig. 3a illustrates the system with new boundaries. The
complete structure of the unit cell is maintained on the
boundaries, which is represented by the gray small cube in
Fig. 3a. Furthermore, the intercell and intracell hopping
amplitudes are the same as those given in Fig. 1a, b. We take x’,
y’, and z’ as the new spatial directions, where ẑ0 ¼ x̂ þ ŷ þ ẑ is
along the body diagonal while the x’ and y’ directions are the
same as the previous x and y directions, respectively. If the
periodic boundary conditions are taken along the z’ direction,
the calculated dispersion relations of the model are shown in
Fig. 3, c. Here, 6 unit cells in both x’ and y’ directions are taken.
Note that an extension of this mixed-boundary model has the
same 2π/3 rotation symmetry as the periodic system (see Sup-
plementary Note 8).

When J1 > J2, there is no surface or hinge state in the
complete band gap, indicating that this model is trivial, as
shown in Fig. 3b. In contrast, when J1 < J2, the surface and hinge
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states can be observed in the band gap, as shown in Fig. 3c. For
the surface states represented by blue bands in Fig. 3c, the
electron density localizes at the surfaces of the model, except for
the hinges, which is one dimension lower than the system (see
Supplementary Note 9). As to the hinge states represented by
red bands in Fig. 3c, it can be observed that the electron density
concentrated along the hinges of the model but keeping the bulk
and surfaces insulating, one example of which is shown in
Fig. 3d. Such hinge states are two dimensions lower than the
system, which are so called “higher-order” boundary states. We
note that this kind of higher order boundary states does not
exist in the 2D counterpart, since the edges along which the
topological BOs take place are one dimension lower than the 2D
system. Compared to the higher-order topological states
exhibited in the initial BBH model, whose topological invariant
is a bulk octupole moment captured by nested Wilson loops, the
body diagonal edge states correspond to a vanishing nested
Wilson loop invariant but are also topologically protected,
which is indicated by the winding number wi who changes the

sign when J1= J2. In Supplementary Note 10, we explain such a
phenomenon and give a proof of the topologically protected
edge states.

To verify the higher-order boundary states, we also fabricate
a corresponding circuit network consisting of 3 × 3 × 3 unit cells
with edges along the body diagonal. Compared to the
parameters used in the circuits for topological BOs, the
resistances of the INICs for intracell and intercell hopping
are now set as 10 kΩ and 1 kΩ to realize the non-trivial
hopping amplitudes of J1= 0.1J2, and the connections of
different sites are the same to those in Fig. 2d, e. Meanwhile,
the real and imaginary nodes of the same site no longer need to
be connected through an INIC, since we do not need an
external force. Other parameters of the circuit components are
also adjusted to appropriate values as needed. More details of
the circuit structure and theoretical demonstration are given in
Supplementary Note 11.

Now we excite the voltages at the nodes to observe the
evolution of state on the outermost two sites of the cell located on
the hinge at t= 0 ms, which is shown in Fig. 3e(i). The
experimental results of the circuit wavepacket at t= 100 ms and
160 ms are displayed in Fig. 3e(ii) and 3e(iii). It can be seen that
the electronic density of the state indicated by the circuit voltages
diffuses along the z’ direction within a finite time. Regardless of a
small amount of voltage signals diffusing to the surface sites due
to the influence of circuit disorders, most voltage signals occupy
the outermost sites of the unit cells on hinge all the time, which
indicates that the one-dimensional hinge state is a mode isolated
from the bulk. The experimental result is a good demonstration of
the existence of high-order boundary states, which is consistent
with the theoretical expectations.

Discussion
We have demonstrated a type of period-multiplied BOs that takes
place in the 3D HOTI model. Under an applied force along the
body diagonals, the degenerate bands experience periodic inter-
band transitions captured by Wilson loops, which are topologically
protected by winding numbers. The corresponding dynamics of the
real space center of mass of the wavepacket has also been observed,
which is attributed to the finite non-Abelian Berry curvature of the
degenerate band structure. Furthermore, higher-order boundary
states have been shown to be exist on specific boundaries, which
cannot be characterized under the framework of multipole
moments. However, the emergence of such a higher-order topo-
logical state coincides with the appearance of the 3D non-Abelian
BOs. This means that the higher-order topological states can be
probed by 3D non-Abelian BOs. With the help of a specific
designed circuit network which exactly maps the lattice model, we
have successfully demonstrated the above theories. The period-
multiplied topological BOs have not only been observed experi-
mentally in the 3D circuit lattices through the time-dependent
evolution of the voltages, but also the higher-order boundary states
have been verified in the circuit system.

Preceding our work, ref. 47. has identified 1D, 2D, and 3D
topological invariants for characterizing higher order topological
insulators and demonstrate the existence of gapless spectra of
Wilson loops and surface-states along the body diagonal direc-
tions of the Brillouin zone of BBH models, which deserves
attention. Besides, related works on topological classification
through crystal symmetries and Wilson loops63–65 are also wor-
thy of note. Meanwhile, it is worth studying that exploring
higher-order topological states through different mechanisms, for
example, systems with defect modes66,67.

Fig. 3 Higher-order boundary states. a The system with edges along
the body diagonal of the 3D higher-order topological insulator model.
Here, the new spatial directions satisfy ẑ0 ¼ x̂þ ŷ þ ẑ, x̂0 ¼ x̂, and ŷ0 ¼ ŷ.
b Band structure of the system with periodic boundary conditions along
the z’ direction and finite sizes of 6 unit cells in x and y directions. It
satisfies that J2= 0.2J1, which is in a trivial phase. J1, J2 are the intracell
and intercell hopping amplitudes, respectively. c Band structure of the
system with J1= 0.2J2, which is in a non-trivial phase. d An example of
the higher-order boundary states which locates on the hinge of the
model. e Experimental results that verify the boundary states with an
electric circuit. The density of states indicated by the voltages at
t= 0ms, 100 ms, and 160ms is displayed, which diffuses along the z’
direction.
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The above investigations only focus on the case of 3D HOTIs.
In fact, the research methods can also be extended to systems
larger than three dimensions. It has been confirmed that the
higher-dimensional systems possess some properties that their
lower-dimensional counterparts do not support, such as four-
dimensional quantum Hall effect68,69, Yang monopoles70, 2D
Weyl surfaces in five-dimensional systems71 and so on. If the
non-Abelian gauge potentials are introduced into these high-
dimensional systems, what novel phenomena will occur is very
worth exploring. In addition, our studies also imply novel ways to
control electrical signals, and may have potential applications in
the field of electronic signal control.

Methods
Synchronization between real-space motion and band-
population dynamics. Here, we give an elucidation on the
synchronization between real-space and band-population
dynamics with the atomic limit J2= 0, where we study the time
dynamics of a single unit cell. The lowest energy eigenstates are
given as

jψ1i ¼ ð0; 1=
ffiffiffi
6

p
; 1=

ffiffiffi
6

p
;�1=

ffiffiffi
6

p
; 0; 0; 0; 1=

ffiffiffi
2

p
ÞT ;

jψ2i ¼ ð�1=
ffiffiffi
6

p
; 0;�1=

ffiffiffi
6

p
;�1=

ffiffiffi
6

p
; 0; 0; 1=

ffiffiffi
2

p
; 0ÞT ;

jψ3i ¼ ð1=
ffiffiffi
6

p
;�1=

ffiffiffi
6

p
; 0;�1=

ffiffiffi
6

p
; 0; 1=

ffiffiffi
2

p
; 0; 0ÞT ;

jψ4i ¼ ð�1=
ffiffiffi
6

p
;�1=

ffiffiffi
6

p
; 1=

ffiffiffi
6

p
; 0; 1=

ffiffiffi
2

p
; 0; 0; 0ÞT :

ð3Þ

By setting the spatial origin at the plaquette center, we can
construct the position operator r̂ ¼ ∑iðri � r0Þjriihrij,whose
components on three directions are the matrices

x̂ ¼ diagð�1=2;�1=2; 1=2; 1=2;�1=2;�1=2; 1=2; 1=2Þδ;
ŷ ¼ diagð1=2;�1=2; 1=2;�1=2; 1=2;�1=2; 1=2;�1=2Þδ;
ẑ ¼ diagð�1=2; 1=2; 1=2;�1=2; 1=2;�1=2;�1=2; 1=2Þδ:

ð4Þ

Then we construct the projected position operators r̂P;i ¼
P̂r̂iP̂ ¼ ∑4

α;β¼1 jψαihψα ĵrijψβihψβj for i= x, y, z, with

P̂ ¼ ∑4
α¼1 jψαihψαj. Notice that there is ½̂ri; r̂j�≠0 when i ≠ j.

Given an applied force F, the perturbative Hamiltonian governing
the dynamics reads

ĤF ¼F � r̂P ¼ ∑i¼x;y;zFir̂P;i

¼ δ

3

Fx � Fy þ Fz ð�Fy � FzÞ=2 ðFx � FzÞ=2 ðFx þ FyÞ=2
ð�Fy � FzÞ=2 Fx þ Fy � Fz ðFx � FyÞ=2 ð�Fx � FzÞ=2
ðFx � FzÞ=2 ðFx � FyÞ=2 �Fx � Fy � Fz ð�Fy þ FzÞ=2
ðFx þ FyÞ=2 ð�Fx � FzÞ=2 ð�Fy þ FzÞ=2 �Fx þ Fy þ Fz

0
BBB@

1
CCCA:

ð5Þ
Starting with the initial state jψkð0Þi ¼ η1ð0Þjψ1

kiþ
η2ð0Þjψ2

ki þ η3ð0Þjψ3
ki þ η4ð0Þjψ4

ki, the evolution results of the
wavepacket can be expressed as the solution of the Schrodinger’s
equation as jψkðtÞi ¼ UðtÞjψkð0Þi, where the evolution operator

reads UðtÞ ¼ e�iĤF t . Let us focus on the dynamics along path L1,
where Fx= Fy= Fz. The evolution operator can be expressed as

UC1
ðtÞ ¼ 1

3

2þ e�iδFxt 1� e�iδFxt 0 �1þ e�iδFxt

1� e�iδFxt 2þ e�iδFxt 0 1� e�iδFxt

0 0 3eiδFxt 0

�1þ e�iδFxt 1� e�iδFxt 0 2þ e�iδFxt

0
BBB@

1
CCCA:

ð6Þ

We can calculate the time-dependent coefficients ηiðtÞ as
η1ðtÞ ¼

1
3
½2η1ð0Þ þ η2ð0Þ � η4ð0Þ þ e�iδFxtðη1ð0Þ � η2ð0Þ þ η4ð0ÞÞ�;

η2ðtÞ ¼
1
3
½η1ð0Þ þ 2η2ð0Þ � η4ð0Þ þ e�iδFxtð�η1ð0Þ þ η2ð0Þ � η4ð0ÞÞ�;

η3ðtÞ ¼ eiδFxtη3ð0Þ;
η4ðtÞ ¼

1
3
½�η1ð0Þ þ η2ð0þ 2η4ð0ÞÞ þ e�iδFxtðη1ð0Þ � η2ð0Þ þ η4ð0ÞÞ�:

ð7Þ
It can be seen that the band populations can be expressed as

jηiðtÞj2 ¼ M2
i þ N2

i þ 2MiNi cosðδFxtÞ; ð8Þ
for i= 1, 2, 4, where Mi and Ni are constant coefficients
consisting of η1ð0Þ, η2ð0Þ, and η4ð0Þ. As a result, the band
populations jηiðtÞj2 experience cosine oscillations with a period
2π=ðδjFxjÞ except for jη3ðtÞj2, which remains unchanged. Mean-
while, the period for the BO along the body diagonal is
TB ¼ jGj=jFj ¼ π=ðδjFxjÞ, which is half of that for the band-
population dynamics. The synchronization along the other three
paths can also be demonstrated.

Furthermore, the perturbative Hamiltonian in Eq. (5) has four

levels read as EF;1 ¼ δffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ ffiffiffiffiffiffi

3Θ
pp

, EF;2 ¼ δffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � ffiffiffiffiffiffi

3Θ
pp

,

EF;3 ¼ � δffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � ffiffiffiffiffiffi

3Θ
pp

and EF;4 ¼ � δffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ ffiffiffiffiffiffi

3Θ
pp

, where

F2 ¼ ∑
i
F2
i and Θ ¼ ∑

i≠j
F2
i F

2
j for i, j= x, y, z. The interband

transitions occurs in the form of a Rabi oscillation between any
two of the levels with a period of TR ¼ 2π=ΔE, where ΔE can be
the difference between any two of the levels. Since there are four
levels, a period evolution can only exist when there is a common
multiple period TCM for all these Rabi periods. However, along
other symmetry axis, such TCM does not exist. Therefore, in this
3D system, topological BO phenomena can only occur along the
body diagonals.

Correspondence between the designed circuit and the 3D
lattice model. Here, we give a detailed demonstration on the
circuit design, which corresponds to the time-dependent Schrö-
dinger equation for the real-space wavepacket. According to the
circuit structure given in Fig. 2a~e, where two circuit nodes are
used to simulate one lattice site, the evolution of the voltages at
each node a± can be written as a set of differential equations
through Kirchhoff’s current law, as

Ca±

dVa±

dt
þ Va±

Ra±

¼ ∑
b

Vb�
� Va±

Ra± b�

ð9Þ

where b includes all the sites connected to site a and a itself.
Here, the two terms on the left of the equations are the con-
tribution of the grounding capacitors and grounding resistors to
the currents flowing away from nodes a± to the ground,
respectively, and the terms on the right are the currents flowing
into nodes a± from other nodes. These differential equations
can be written in the form of a Schrödinger-like equation
i∂tjϕðtÞÞ ¼ HejϕðtÞÞ, where jϕðtÞÞ is the circuit state consisting of
voltages of 2n nodes, as

jϕðtÞÞ ¼ ðV1þ
ðtÞ;V2þ

ðtÞ; � � � ;Vnþ
ðtÞ;V1�

ðtÞ;V2�
ðtÞ; � � � ;Vn�

ðtÞÞT

ð10Þ
and the circuit Hamiltonian He are consisting of the circuit
components and can be written in the form of a partitioned
matrix, as
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where the diagonal elements are expressed as
Ya±

¼ iC�1
a±
ð�R�1

a±
�∑bR

�1
a± b�

Þ, and all the submatrices have a

size of n×n. Our goal is to construct the matrix He ¼

i
� O �HB

0

HB
0 O

�
through appropriate settings of the circuit

components, where HB' corresponds to the real-space Hamil-
tonian HB for the 3D lattice model.

We first determine the capacitances. We have
C�1
aþ
R�1
aþb�

¼ C�1
bþ
R�1
bþa�

, since HB is Hermitian. Then, according

to H12= –H21, we have C�1
aþ
R�1
aþb�

¼ �C�1
a�
R�1
a�bþ

¼ C�1
a�
R�1
bþa�

.
Here, the relationship Ra± b�

¼ �Rb�a±
is naturally established

due to the properties of INIC. Combining the above equations, we
can conclude that Caþ

¼ Cb�
is established for any nodes a and b.

Thus, we set all the capacitances to C0. Then, the effective
resistances of the INICs are determined so that each element in
the submatrix H21 corresponds to that in HB, that is,

Ra�bþ
¼ C�1

0 ðHab
B Þ�1

. Moreover, we choose appropriate ground-
ing resistances to construct the zero diagonal elements in H11 and
H22, which is Ra±

¼ �ð∑bR
�1
a± b�

Þ�1. Notice that the resistance

Ra±
might be positive or negative that should be fulfilled through

a normal resistor or an INIC with effective resistance of jRa±
j,

respectively.
To demonstrate the topological BOs, the circuit state evolves

as the solution of the Schrödinger-like equation, as
jϕðtÞÞ ¼ e�iHetjϕð0ÞÞ, where the initial state is set as
jϕð0ÞÞ ¼ ðReðjψð0ÞÞ;�Imðjψð0ÞÞÞT . Here, jψð0ÞÞ corresponds to
the initial lattice wavepacket jψð0Þi in real space and
jψr;μðt ¼ 0Þi ¼ jψ1

Γ;μi, where μ indicates the sublattice degree
of freedom in the unit cell. Considering the example we take in
the main text, the initial voltages are set to (0, 1, 1, –1, 0, 0, 0,
1.73) V for the real nodes in each unit cells and 0 V for the
imaginary nodes for convenience. The solution can be
calculated as

jϕðtÞÞ ¼ cosðHB
0tÞ � sinðHB

0tÞ
sinðHB

0tÞ cosðHB
0tÞ

� �
Reðjψð0ÞÞ
�Imðjψð0ÞÞ

� �

¼ cosðHB
0tÞReðjψð0ÞÞ þ sinðHB

0tÞImðjψð0ÞÞ
sinðHB

0tÞReðjψð0ÞÞ � cosðHB
0tÞImðjψð0ÞÞ

� �
:

ð12Þ

We define jψðtÞÞ as the projection of jϕðtÞÞ on ð 1 �i Þ � IN ,
namely

jψðtÞÞ ¼ ð 1 �i Þ � IN jϕðtÞÞ
¼ ðcosðHB

0tÞ � i sinðHB
0tÞÞðReðjψð0ÞÞ þ iImjψð0ÞÞÞ

¼ e�iHB
0tjψð0ÞÞ;

ð13Þ

which corresponds to the evolution results in the lattice model.
Notice that jψðtÞÞ can also be expressed as a recombination of

the circuit voltages, as

jψðtÞÞ ¼ ð 1 �i Þ � IN jϕðtÞÞ

¼

V1þðtÞ � iV1�ðtÞ
V2þðtÞ � iV2�ðtÞ

..

.

VnþðtÞ � iVn�ðtÞ

0
BBBB@

1
CCCCA ¼

v1ðtÞ
v2ðtÞ
..
.

vnðtÞ

0
BBBB@

1
CCCCA

ð14Þ

which demonstrates that one site in the lattice model can be
exactly formed by two circuit nodes.

It is worthy to note that since the circuit Hamiltonian satisfies
He ¼ σ2 � HB

0, it can be demonstrated that He satisfies the same
symmetries with HB'. That is, if HB' satisfies the symmetry Θ
under operator X, where XHB

0X�1 ¼ ΘðHB
0Þ, there exists Xe ¼

σ2 � X making XeHeX
�1
e ¼ ΘðHeÞ. Thus, our designed circuit is

an effective correspondence to the lattice model.
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