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Anomaly detection speed-up by quantum
restricted Boltzmann machines
Lorenzo Moro 1,2 & Enrico Prati 2,3✉

Quantum machine learning promises to revolutionize traditional machine learning by effi-

ciently addressing hard tasks for classical computation. While claims of quantum speed-up

have been announced for gate-based quantum computers and photon-based boson samplers,

demonstration of an advantage by adiabatic quantum annealers (AQAs) is open. Here we

quantify the computational cost and the performance of restricted Boltzmann machines

(RBMs), a widely investigated machine learning model, by classical and quantum annealing.

Despite the lower computational complexity of the quantum RBM being lost due to physical

implementation overheads, a quantum speed-up may arise as a reduction by orders of

magnitude of the computational time. By employing real-world cybersecurity datasets, we

observe that the negative phase on sufficiently challenging tasks is computed up to 64 times

faster by AQAs during the exploitation phase. Therefore, although a quantum speed-up

highly depends on the problem’s characteristics, it emerges in existing hardware on real-

world data.
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In the last decade, machine learning (ML) techniques have
become essential to find patterns in big data and to mine
valuable information. Over the past half-century, the rapid

progression of computing power has allowed the spawn of novel
ML methods from simple linear algebraic data analysis techni-
ques to sophisticated deep learning neural networks with billions
of synaptic weights. Today, many state-of-the-art models require
a significant amount of computational capacity to be trained and
processed, with artificial intelligence and deep learning solutions
at the top. Groundbreaking neural network models, such as GPT-
31 and AlphaFold2, require a massive amount of resources. Still,
the computational power demand and the need for new
approaches to process and undermine information faster from
ever more extensive datasets are rapidly increasing.

In such a framework, applying quantum computing to ML3–7

is a promising approach to train and exploit models, potentially
in a fraction of the time and cost, without the need for power-
consuming high-performance computing and data centers.
However, the advantage offered by quantum computers can be
quantified differently, depending on whether the focus is on
increasing some ML metrics, such as either the classification
score, or the precision, or the accuracy—by addressing classically
intractable systems, or by reducing the training and query times,
respectively. Indeed, quantum computers promise to accelerate
ML algorithms from physics to chemistry8–11, biology12,13,
finance14,15, and material science16, allowing unprecedented
opportunities in almost any industry.

Although many algorithms have proven a theoretical advan-
tage over classical computation17–26, quantum computers are
currently in an early stage of technological development, limited
by hardware engineering constraints.

Several quantum computer technologies and computational
architecture paradigms exist, each characterized by different
trade-offs in terms of the number of qubits, fidelity, and speed of
quantum operations. The lack of sufficient resources to imple-
ment error-correction techniques implies noisy gates and de-
cohering qubits, which in turn strongly affect the capability of
such devices to provide an edge in real-world applications.
Indeed, it is unclear which applications could provide a true
advantage over classical computers, given the current noisy
quantum devices.

Considering the current development of quantum computer
hardware, adiabatic quantum annealers (AQAs)—suitable to
physically implement quantum annealing—offer a viable path to
demonstrate a quantum speed-up in today’s ML applications. In
fact, AQA currently provides a higher number of qubits com-
pared to any other gate-model quantum architectures, being able
to address much larger datasets and problems. Although AQA is
not a general-purpose quantum computer, it has many applica-
tions designed to solve combinatorial optimization problems,
including chemistry and materials27–29, scheduling3,30,31,
ML32–34, and finance14,15,35. Among all the quantum ML models
that could exhibit a speed-up, restricted Boltzmann machines36

(RBMs), generative models based on neural networks, are widely
investigated. Indeed, they can be efficiently trained on quantum
annealers31,37,38 and be employed for several ML tasks from data
reduction39 and feature extraction36, to classification40,41 and
collaborative filtering42. Despite the high potential of the repre-
sentative power, the adoption of RBMs is limited since they
require a demanding computational training process, such as
contrastive divergence (CD) and persistent contrastive divergence
(PCD)43. In fact, the classical algorithm requires performing a
thermalization cycle to sample states from an RBM, with a
computational complexity that scales as O(k ⋅N), where k is the
number of thermalization steps and N are the number of RBM
units38. Moreover, the classical procedure only approximates the

correct model distribution, therefore intrinsically affecting the
overall performance. On the other hand, the advent of com-
mercial AQAs promises to address those problems, avoiding long
thermalization cycles and sampling correctly distributed states by
querying the QPU in principle once. If the computational cost of
initializing the quantum computer is neglected, the quantum
algorithm computational complexity to obtain a single sample
scales as O(1).

Although AQAs offer a fundamentally different way to train
and query the model, providing an asymptotically faster way to
sample states and perform better than conventional methods, we
are currently limited by the dimension of problems that can be
embedded in the quantum device. In particular, D-Wave quan-
tum annealers, the only commercial quantum annealers available
today, are physical devices restrained by technological and engi-
neering constraints. Sampling from a D-Wave quantum machine
has a computational complexity that depends on the number of
the involved physical qubits and the number of samples extracted,
making it non-trivial to forecast the advantage the quantum
computer would offer in the future. Today, the quantitative
answer to the question of what scaling edge and which range of
problem RBMs can provide on realistic, noisy finite-size quantum
devices still lacks.

In this work, we address those questions by separately com-
paring the time to sample states during the training (training
time) and querying the model after the training phase (exploi-
tation time) and the performance of both classical and quantum-
RBMs (QRBMs) on standardized cybersecurity datasets. In par-
ticular, we trained an RBM as a network intrusion detection
system44–47 (NIDS) on two real-world cybersecurity datasets
(NSL-KDD and CSE-CIC-IDS2018, respectively) to detect a
quantum speed-up of today’s hardware by employing a quantum
annealer and an equivalent model trained using the CD on
classical hardware. Specifically, we compare a single-core CPU, a
128-core processor, and a quantum chip with a single copy of the
model. RBM on classical computers48–51 and QRBM on an AQA
have already been trained on cybersecurity data52, providing a
proof of concept that a QA-based RBM can be trained on a 64-bit
binary dataset.

Data from the cybersecurity world have previously been used
for RBM training. Specifically, Aldwairi et al.50 conducted a study
where they trained an RBM using CD and PCD on the ISCX 2012
dataset. The results showed an accuracy rate of over 88%. Dixit
et al.53 trained an RBM on the D-Wave 2000Q employing it as
both a classifier and a generative model, showing a proof of
concept that a QA-based RBM can be trained on a 64-bit binary
dataset. Hybrid approaches were also employed by Li et al.54, who
trained 10% of the KDD-99 dataset by first reducing its dimen-
sionality using an autoencoder and then employing a deep belief
network for classification. Similarly, Salama et al.55 used a hybrid
approach, employing a deep belief network for dimensionality
reduction and a support vector machine for classification.

Previously, one of us has already shown the training of a fully
connected QRBM by embedding techniques37, also including
reverse annealing38, and quantum supervised learning in gate-
model quantum computers by both variational methods56, quan-
tum neural networks21, and quantum adversarial networks57. Here
we find that sampling from the D-Wave Advantage quantum
annealer returns a computational complexity that scales linearly
with the number of QRBM units and the number of samples
extracted, comparable with the classical algorithm. Still, the com-
putational advantage of the quantum device could result in a
reduction by orders of magnitude of the computational times. Such
a speed-up is problem dependent since the computational time
depends on the number of units, the number of Gibbs steps per-
formed, and the number of quantum samples extracted from the
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quantummachine. The reduction in the computational times could
be prominent today in all applications where datasets are massive,
with many features, or alternatively, the models need to be re-
trained to adapt to continuous changes, such as within the context
of cybersecurity applications and intrusion detection systems.

We observed, by comparing the RBMs and QRBMs, that for
the real-world cybersecurity datasets like NSL-KDD and CSE-
CIC-IDS2018, sampling states for the negative phase are handled
up to 64 times faster by the AQA during the training than the
single-core times and 41 times faster than the 128 threads CPU.
Therefore, we detected a quantum speed-up in existing hardware
on real-world data, although it highly depends on the problem’s
characteristics.

Results
RBMs form a class of neural networks composed of units that can
assume binary values, forming a bipartite system coupled by real
weighted connections. The visible units represent the model
input/output, while the hidden units raise the RBM’s ability to
mimic the dataset’s structure. RBMs can be trained by both a
supervised58 or unsupervised learning algorithm36, depending on
the specific task. The training procedure consists of carefully
modifying the model weights to learn how to generate and
reconstruct the essential information encoded in the dataset.
Several training procedures exist, including the use of quantum
annealers, as shown in Fig. 1. The advantage of employing the
D-Wave adiabatic quantum machine to exploit RBMs could
emerge as an increase of performance metrics or as a reduction in
the computational times, such as the training time and the query
time. Reducing the training time is essential in all the applications
where the model needs to be re-trained periodically to adapt to
constantly changing environments59–63, while reducing the query

time is crucial for all applications that benefit from the faster
response possible, such as in some anomaly detection tasks64.

Evaluation of the computational times. To quantify the poten-
tial advantage of the D-Wave quantum annealer in reducing
computational time, we independently compared the times
required to estimate the negative phase by a classical RBM and a
QRBM implemented on the D-Wave quantum annealer. In such
analysis, we are neglecting the performances of the models on a
specific task, focusing on the computational times to estimate the
negative phase only, which depends on the size of the models, the
number of CD steps k, or the number of samples extracted by the
QPU only.

The only difference between the quantum and classical
approaches consists of the different methods to sample states
with the correct Boltzmann distribution from the model. Since
the computational time depends on the size of the model, we
selected 676 different RBMs by varying the number of visible (N)
and hidden (Nh) units. We measured the time required to
perform k CD steps to benchmark the classical RBM. Figure 2
displays the classical times it takes to execute k steps by using
either one thread or 128 threads of an AMD Ryzen Threadripper
3990X processor. The classical times highly depend on the size of
the model, growing linearly by increasing the number of involved
nodes and the number of CD steps.

To measure the sampling times from the QPU, we embedded
the same RBMs models on the D-Wave Advantage 4.1 machine
by running the minorminer65 algorithm, commonly employed to
map virtual qubits21 to physical qubits on the hardware.
Differently from refs. 34,66, we run minorminer three times per
machine to reduce the number of qubits involved and the qubit
chain lengths, as described in the Method section. As the graph

Fig. 1 Overview of the quantum and classical loop to train a restricted Boltzmann machine. a The purple shade shows the structure of the datasets used
in this work. The NSL-KDD and CSE-CIC-IDS2018 datasets contain MR records of NR miscellaneous data type features. The processed NSL-KDD and CSE-
CIC-IDS2018 dataset contain M= 125972 and M= 3040074 records, respectively, and N binary value column features. The last three bits of each record
are reserved for encoding the label. b The blue arrows show the quantum training loop, while the red arrows show the classical training loop. In the former,
the restricted Boltzmann machine (RBM) weights Θ are encoded in the quantum processor unit (QPU) and next, the s quantum samples are sampled from
the QPU to estimate the negative phase statistic. In the latter, the RBM weights are used to perform k Gibbs sampling steps. The samples are subsequently
used to estimate the negative phase. The positive phase statistic is calculated by loading a batch of elements sampled from the dataset in the visible units
(red dots) and updating the Nh hidden units (blue dots) accordingly. Once the positive and negative phases have been evaluated, the RBM weights are
updated, and the training loop continues until a maximum number of epochs is reached.
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representing the hardware has limited qubits and connections, we
therefore could embed just a fraction of the RBMs used to
benchmark the classical approach. For each QRBM, we sampled
10, 100, and 1000 samples from the quantum processor,
respectively. For a fair comparison, since we access the QPU by
cloud, we discarded the network latency time by recording the
QPU access time instead, corresponding to the execution time
during which the QPU is unavailable to any other quantum
machine job. Figure 3 shows the time required to sample states
from the D-Wave Advantage 4.1 QPU as the model size increases.
It shows the QPU access time measured to sample 10, 100, and
1000 states from the QPU. The QPU access time has a mild
dependency on the number of visible and hidden units, while it
strongly depends on the number of samples, so its value

corresponds to 1.6 ⋅ 10−2 s, 3 ⋅ 10−2 s and 2 ⋅ 10−1 s, respectively.
Therefore, the quantum hardware may reduce the computational
time only in tasks that require both a high number of CD steps
and a limited number of quantum samples to be extracted. It is
worth noticing that if one wants to compare the speed-up of the
classical and quantum models on a specific task, we must choose
and fix the above quantities so that their performance metrics are
comparable, as empirically done in the following subsection.

Figure 4 shows a linear relation between the number of QRBMunits
N and the QPU access time. The three data points, corresponding to
sample 10, 100, and 1000 states from the QPU, were fitted by linear
functions ys=msx+ qs. We found angular coefficients m10=
5.15 ⋅ 10−6 ± 1.3 ⋅ 10−7, m100= 5.14 ⋅ 10−5 ± 1.3 ⋅ 10−6, and m1000=
5.14 ⋅ 10−4 ± 1.3 ⋅ 10−5. Therefore, the computational complexity to

Fig. 2 Time to compute k contrastive divergence steps as a function of the restricted Boltzmann machine size. Each contour plot has been obtained by
measuring 676 different restricted Boltzmann machines (RBMs) arranged evenly on a square lattice as a function of the number of visible and hidden units.
Each RBM has been evaluated 40,000/k times to reduce the variance. a Single-core times. The time to perform increases linearly with the number of
contrastive divergence steps performed. b Multi-core times on a 64c/128t machine. The high number of threads available decreases the dependency
between the time and hidden units.

Fig. 3 D-Wave quantum processor units access time for different numbers of samples extracted as a function of the number of the restricted
Boltzmann machine (RBM) size. The quantum processor unit (QPU) access time consists of a one-time initialization step to program the QPU and
multiple sampling times for the actual execution of the QPU. The QPU access time depends on the number of qubits involved and the number of samples
required. The contour plots highlight the region of visible and hidden units of currently embeddable RBMs on the D-Wave Advantage architecture.
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sample states from the quantum device scales asO(N ⋅ s), where s is the
number of samples extracted, which is comparable with the O(N ⋅ k)
trend of the classical algorithm. Although we are currently limited by
the size of the model that can be embedded in the QPU, we can
forecast the QPU access time to be 0.514 ± 0.013 μs per unit per
sample.

Speed-up on real-world cybersecurity datasets. Let us now
search for the signature of a speed-up on real-world datasets. To
detect a quantum potential advantage on today’s hardware
for real-world tasks, we trained both an RBM and a QRBM as
NIDSs. The goal is to detect an anomaly, i.e., an attack, from a
benign instance. Like other classification and clustering
problems, NIDS algorithms process training datasets. In the fol-
lowing, we consider the NSL-KDD67 and the CSE-CIC-
IDS201868 datasets. The former represents one of the most
widespread datasets in the NIDS domain, while the latter is a
modern cyber-defense dataset.

Since the QRBM units require binary input values, we
binarized the records of the two datasets to 85 binary features
for the NSL-KDD dataset and 156 for the CSE-CIC-IDS2018
dataset (see the Methods). The former dataset comes with
training and testing datasets with a ratio of roughly 80%:20%. The
latter has been split into training and testing datasets with the
same ratio. The two training datasets have been balanced by
under-sampling the most common class.

Despite being a generative model, RBMs can be used effectively
as classifiers encoding the label as part of the input state during
the training and reconstructing the label during the exploitation
phase. Here we reserved the last three bits for encoding the label.
A majority vote rule was performed to obtain a final result from
the model during reconstruction. For instance, if the last three
bits are 101, it indicates a benign instance, while if they are 001, it
reveals an attack.

To measure the classical RBM’s performance in the two datasets,
we investigate the optimal number of hidden units and the number
of Gibbs sampling during the training and once the model has been
trained. First, let us compare the performance of classical RBMs by
setting the number of CD steps to 1000 and increasing the number of
hidden units until no further improvement in performance is
detected. Therefore, in all the following experiments, the number

of hidden units for the RBM and the QRBM are set to 30 for the
NSL-KDD dataset and 90 for the CSE-CIC-IDS2018 dataset,
respectively. Then the training performance of the RBMs is
compared by varying the number of CD steps k during the training.
The number of Gibbs sampling steps does not affect the performance
of the model trained on the NSL-KDD dataset, while it has a mild
effect on the CSE-CIC-IDS2018 dataset as shown in Fig. 5.
Comparing the performance of the model by varying the number
k during the exploitation phase, then in both datasets the
performance of the RBMs depends on the number of CD steps, as
shown in Table 1. In particular, it emerges a 13% increase in accuracy
by employing 1000 CD steps compared to a single CD step in the
CSE-CIC-IDS2018 dataset.

Finally, the performance of the QRBM in the two datasets is
measured by setting the same hyperparameters in common with
the classical RBMs. More details on the hyperparameters
employed during the training are given in Supplementary Table 1.
The number of quantum samples required to train the QRBM is
reasonably limited. In particular, it is possible to train the QRBM
by extracting ten samples only from the QPU. In addition, the
QRBM performance is comparable to the classical RBM, although
less effective on the CSE-CIC-IDS2018 dataset, as shown in
Table 2 and in Supplementary Fig. 1. Since we have not further
optimized the hyperparameters in this work, the difference in the
performance could be due to sub-optimal values and could be
leveled by carefully choosing the optimal parameters. It is worth
noting that the quantum model requires less training epochs to
achieve a target accuracy (η) for the NSL-KDD dataset, while for
the CSE-CIC-2018 dataset it is the opposite, as shown in
Supplementary Table 3.

By comparing the classical and quantum computational time,
we detect a speed-up in the computational time by employing the
QRBM as NIDS trained on the two real-world cybersecurity
datasets. In fact, to maximize the performance of the classical
machine during the exploitation phase, it is required to perform
more than 10 and 100 CD steps for the NSL-KDD and CIC-
IDS2018 datasets, respectively. At the same time, it is necessary to
sample 10 samples only from the QPU. Table 3 summarizes the
speed-up measured on the two datasets.

Discussion
We now turn our attention to the computational time, the
computational complexity, and the performance achieved by the
model at the end of the training process on today’s classical and
quantum hardware.

The time required to train and query the classical RBM
depends on both the size of the model and the number of CD
steps, respectively. The latter affects the performance achieved by
RBMs and it should be chosen carefully depending on the par-
ticular problem to balance the times and model accuracy.
Increasing the number of thermalization cycles comes at the cost
of higher computational time, which can increase by orders of
magnitude. Although it is possible to use a single CD step during
the training phase, significantly reducing the time while still
achieving excellent performance49,50,52, such choice is not pos-
sible in the exploitation phase, where one wants to maximize the
performance of the model, as shown in Table 1.

Although in principle quantum annealing offers a different way
of training machines by avoiding long thermalization cycles with
the complexity of a single quantum operation in theory, in
practice, sampling states from D-Wave is an operation that
depends on the number of involved qubits and the number of
samples extracted. In particular, Fig. 4 shows that the computa-
tional complexity scales linearly with the number of units and the
number of samples extracted, comparable with the classical

Fig. 4 D-Wave quantum processor units access as a function of the
quantum-restricted Boltzmann machine (QRBM) size. The figure shows in
green, blue, and orange color the quantum processor unit (QPU) access
time measured to sample 10, 100, and 1000 samples, respectively, from the
D-Wave Advantage 4.1 quantum annealer as a function of the number of
QRBM units (hidden + visible units). The data points show a linear trend
between times and QRBM units, as shown by the straight dashed lines. All
the data points were fitted by a linear function (dashed gray line) with
R2= 0.979 and root mean square error (RMSE) of 7.1 ⋅ 10−5, 7.1 ⋅ 10−4, and
7.1 ⋅ 10−3, respectively.
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computer, where the dependence on the number of Gibbs steps
and the model size is linear.

The quantum speed-up offered by quantum annealers is pro-
blem dependent. It could emerge only for a sufficiently large RBM
or for tasks that require long thermalization cycles and, therefore,
a high number of Gibbs steps. We observed an advantage in

terms of the computational time by employing a QRBM as an
NIDS trained on two real-world cybersecurity datasets up to 64x
compared to a single-core trained RBM, as summarized in
Table 3.

It is worth highlighting that modern CPUs can process batches
of data thanks to parallel computing, while for large RBMs, the

Fig. 5 Restricted Boltzmann machine (RBM) performance during classical training as a function of the number of Gibbs steps (k). The figure shows the
F1 score (a, b) and the accuracy (c, d) achieved by training an RBM using different Gibbs step values for the NSL-KDD and the CSE-CIC-IDS2018 datasets
during 2000 training epochs. F1 score and accuracy were chosen as performance metrics since computing the log-likelihood evaluation is impractical for
RBMs of moderate size. In addition, these metrics allow for comparing RBM and QRBM models with existing literature on anomaly detection. The
performance was measured using the testing dataset and averaged over 10 identical runs showing the 95% confidence interval as colored shadows. The
number of Gibbs sampling steps does not affect the performance of the model trained on the NSL-KDD dataset, while it has a minor effect on the model
performance trained on the CSE-CIC-IDS2018 dataset.

Table 1 Performance of restricted Boltzmann machine (RBM) as a function of the number of Gibbs steps (k).

Dataset k Accuracy F1 TP FP FN TN

NSL-KDD 1 0.906 ± 0.005 0.901 ± 0.005 0.909 ± 0.009 0.091 ± 0.009 0.096 ± 0.005 0.903 ± 0.005
10 0.935 ± 0.002 0.932 ± 0.002 0.936 ± 0.003 0.064 ± 0.003 0.065 ± 0.003 0.935 ± 0.003
100 0.937 ± 0.002 0.934 ± 0.002 0.939 ± 0.004 0.061 ± 0.004 0.064 ± 0.001 0.935 ± 0.001
1000 0.938 ± 0.002 0.935 ± 0.002 0.979 ± 0.002 0.020 ± 0.003 0.064 ± 0.002 0.936 ± 0.002

CSE-CIC-
IDS2018

1 0.800 ± 0.004 0.805 ± 0.005 0.833 ± 0.003 0.166 ± 0.004 0.234 ± 0.006 0.766 ± 0.006

10 0.897 ± 0.001 0.903 ± 0.001 0.907 ± 0.002 0.093 ± 0.002 0.113 ± 0.002 0.887 ± 0.002
100 0.915 ± 0.001 0.921 ± 0.001 0.922 ± 0.003 0.078 ± 0.003 0.092 ± 0.001 0.907 ± 0.001
1000 0.924 ± 0.001 0.929 ± 0.001 0.932 ± 0.001 0.068 ± 0.002 0.084 ± 0.001 0.916 ± 0.001

The table reports the accuracy, F1 score, and the normalized number of true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN) measured for the RBM at the end of the
training procedure (2000 epochs) for the two datasets.

Table 2 Performance of quantum-restricted Boltzmann machine.

Dataset Accuracy F1 TP FP FN TN

NSL-KDD 0.937 ± 0.001 0.935 ± 0.001 0.951 ± 0.002 0.050 ± 0.002 0.073 ± 0.002 0.927 ± 0.002
CSE-CIC-
IDS2018

0.8539 ± 0.0004 0.8612 ± 0.0003 0.8730 ± 0.0006 0.1270 ± 0.0005 0.1652 ± 0.0004 0.8348 ± 0.0004

The table reports the accuracy, F1 score, and the normalized number of true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN) measured for the quantum-restricted
Boltzmann machine at the end of the training procedure (2000 epochs) for the two datasets.
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QPU is limited to processing a single data point at each cycle,
hugely increasing the computational time of the quantum model
during the exploitation phase. Such limitation could be mitigated
by embedding multiple QRBM replicas on the QPU at the cost of
increasing the number of physical qubits involved.

The advantage carried by a quantum annealer may increase in
the following years through quantum hardware improvements.
Increasing the number of physical qubits will make it possible to
embed larger models and multiple replicas. However, improving
the number of connections per qubit could provide a more sig-
nificant advantage by reducing the number of physical qubits
involved and, consequently, the computational complexity of
quantum annealers.

Methods
Restricted Boltzmann machine. RBMs are probabilistic neural
network models that consist of a layer of visible binary units
v= (v1, v2,⋯ , vN) connected to a layer of hidden binary units
h= (h1, h2,⋯ , hM). Although each unit is connected to all the
units in the opposite layer, no intraconnection is allowed, forming
a bipartite system. They belong to the class of generative models
and they can learn the underlying probability distributions of the
dataset inputs once properly trained. The RBM is an energy-
based model where every “state”, i.e., specific configuration of v
and h, is associated with an energy:

Eðv; hÞ ¼ �∑
i
aivi �∑

j
bjhj �∑

i;j
viWijhj ð1Þ

where a, b are biases and W are the weights that represent the
connection strength between units. The joint probability of a state
is given by the Boltzmann distribution is:

Pðv; hÞ ¼ expð�Eðv; hÞÞ
∑v;h expð�Eðv; hÞÞ ð2Þ

while the probability of finding an individual visible unit vi= 1
given the hidden units h is:

Pðvi ¼ 1jhÞ ¼ expðai þWijbjÞ
1þ expðai þWijbjÞ

¼ σðai þWijbjÞ ð3Þ

where σ is the logistic function. In the same fashion, the prob-
ability of finding an individual visible unit hj= 1 given the visible
units v is:

Pðhj ¼ 1jvÞ ¼ σðbj þWijaiÞ ð4Þ
The goal of the training is to learn the best parameters

θ= (a, b,W) that maximize the data log-likelihood. One strategy
to achieve that is to perform gradient ascent steps of the log-
likelihood function ll(θ):

θnew ¼ θold þ ϵ
∂llðθÞ
∂θ

ð5Þ

where ϵ corresponds to the learning rate.

It can be proven that

∂llðθÞ
∂θ

¼ ∑
N

t¼1

∂ð�Eðvt ; htÞÞ
∂θ

� �
Pðht jvt Þ

� N � ∂ð�Eðv; hÞÞ
∂θ

� �
Pðv;hÞ

ð6Þ
where 〈⋅〉P(⋅) denotes the expectation values with respect a
distribution P( ⋅ ), ht is sampled from vt by using Eq. (4), and the
sum is over a dataset withN records. The first term in Eq. (6) is called
“positive phase” and can be estimated by using the data. However,
the second term, called “negative phase”, is model dependent and
requires a sum over all the states, which is intractable except for very
small RBMs. Although an exact computation is unfeasible, there exist
several methods that can be employed to approximate the
expectation, such as CD, PCD, and Fast PCD.

Contrastive divergence. The CD procedure is a technique to
approximate the negative phase by running a Monte Carlo
Markov chain until a near-to-equilibrium distribution is reached.
Ideally, the number of iterations should be high enough to
get almost unbiased samples of the distribution modeled by the
RBM (Gibbs sampling). Since the computational time required to
get unbiased samples is considerable, the procedure is usually
stopped after k iterations (CD-k).

The basic training idea of CD-k is to start the learning
procedure by randomly setting the parameters θ. Then k
sequences of Gibbs sampling steps are performed by starting
from a vector v(0) sampled from the dataset to reach state v(k)
and h(k). More precisely, during each step l < k of the Gibbs
sampling, we sequentially sample h(l) starting from v(l) using Eq.
(4) followed by sampling v(l+ 1) from h(l) using Eq. (3). The
state v(k), h(k) are then used to estimate the negative phase and,
therefore, the log-likelihood derivatives. Finally, θ is updated by a
single gradient ascent step using Eq. (5).

It is worth noticing that the CD procedure does not
approximate the correct model distribution P(v, h), returning a
biased estimate of the desired update direction69. Nevertheless, it
has proven to be successful in training challenging applications.

Quantum training. Quantum annealers can be used to estimate
the negative phase by extracting samples from the distribution
associated with the RBM. The basic idea is to embed the RBM
weights and biases on the QPU and then perform an annealing
cycle. While in principle the machine is expected to obtain
samples representing the system’s ground state, in practice
Dumoulin et al.70 observed that the AQA generates configura-
tions with higher energy levels, as if they were extracted from a
Boltzmann distribution. Specifically, a quantum annealer at very
long annealing times returns a final population that is close to
such a distribution, up to a point where the dynamics freeze and
the system deviates from the equilibrium71. If the dynamics slow
down and freeze out within a short period of time, then an AQA

Table 3 Quantum speed-up for the NSL-KDD and CIC-IDS2018 datasets.

Dataset Processor k – s Computational time (s) Speed-up

CSE-CIC-IDS2018 Threadripper 3990X – single core 100 1.1 64x
Threadripper 3990X – 128 cores 100 0.71 41x
D-Wave Advantage 4.1 10 0.017 1x

NSL-KDD Threadripper 3990X – single core 10 0.070 4x
Threadripper 3990X – 128 cores 10 0.035 2x
D-Wave Advantage 4.1 10 0.016 1x

The table reports the computational time and speed-up to evaluate the negative phase offered by the quantum model for the NSL-KDD and CIC-IDS2018 datasets. The column “k – s” reports the number
of contrastive divergence steps performed by the classical restricted Boltzmann machine or the number of quantum samples extracted from the quantum processor unit depending on the processor
employed.
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with a linear annealing schedule will provide samples from the
Boltzmann distribution22. However, in such a region, the actual
probability distribution sampled by the AQA52,70,72 deviates
slightly from Eq. (2). In fact, at each annealing cycle, samples are
extracted with probability:

Pðv; hÞ ¼ expð�Eðv; hÞ=Teff Þ
∑v;h expð�Eðv; hÞ=Teff Þ

ð7Þ

where Teff is an effective temperature determined by thermal
noise inside the chip73,74. To compensate for this problem, the
energy is rescaled by a factor α so that we sample with an effective
temperature Teff= 1. The optimal hyperparameter α should be set
periodically since it changes over time, and its time evolution is
challenging to forecast38,52. The mismatch between α and Teff
might lead to sub-optimal RBM training. Supplementary Table 1
reports the value for the annealing time and α employed during
the QRBM training for the two cybersecurity datasets.

Embedding. To sample states from a QRBM directly on a D-Wave
system, or in general, to solve a QUBO problem directly on a
D-Wave system, it is required to map the model onto the QPU
topology. Such a procedure, called embedding, consists of identi-
fying groups of physical qubits in the QPU (chains) so that they
form the topology of the problem under investigation by behaving
as individual units. The connectivity of each group can be enhanced
by creating strong ferromagnetic couplings between the qubits
(Jchain), which forces coupled qubits to stay in the same state.
Achieving the optimal chain strength involves finding a balance
where setting it too low increases the likelihood of encountering
broken chains in the output, while setting it too high may result in
weights that are not sufficiently distinguished by the analog control
system73. Finding the best embedding is generally an NP-hard
problem65. Although it is possible to get the optimal embedding of
a QRBM manually by exploiting the specific topology of the
QPU37,52,53, we exploited the minorminer algorithm65 provided by
D-Wave to find the embedding for the QRBMs investigated in this
work. Since the minorminer algorithm is heuristic and finds an
embedding with some probability, we run the algorithm three times
per QRBM to reduce the number of physical qubits involved in the
mapping and the length of the chains. Supplementary Table 2
provides information on the lengths of the chains and the corre-
sponding Jchain values used in the embedding for representing the
QRBM utilized in the NSL-KDD and CSE-CIC-IDS2018 datasets.

The datasets. We selected two datasets for training RBMs on
quantum and on classical computers. The first one, the NSL-KDD
dataset, comes from the effort to partially solve the problems of
the KDD-99 cup dataset67, such as duplicate data and a large
number of records. Its wide diffusion makes it suitable for
training ML models in the field of NIDS since it is essential to
compare and relate the different performances of the proposed
models. However, it suffers from some problems, as pointed out
by McHugh75. For example, it is not representative of real net-
works because it lacks public datasets for network-based IDS and
is not representative of low-footprint attacks. For this reason, we
selected a second dataset, the CSE-CIC-IDS2018 dataset repre-
senting a modern, realistic dataset. The CSE-CIC-IDS2018 is one
of the most recent intrusion detection datasets publicly available,
with an extensive range of attack classes.

Feature extraction. The NSL-KDD dataset contains 41 variables
(NR), excluding labels. The training dataset has 125,972 obser-
vations (M), while the testing dataset has 22,543 records. The
training dataset includes 21 types of attacks, while the testing
dataset contains 37 kinds of attacks. These attacks are classified

into Denial Of Service, Probe, User to Root, and Root to Local. In
this work, we perform a binary classification, i.e., we do not
consider the different classes of attacks.

The CSE-CIC-IDS2018 dataset cannot be employed as it is,
since it contains millions of records, with more than 80 network
traffic features (NR), duplicate data, and missing values. More-
over, it is impossible to encode all the dataset features in the
current D-Wave Advantage QPU due to their number and the
limited number of physical qubits available. Therefore, after
removing all the duplicated records and missing data, we selected
a subset of features by applying hierarchical clustering on the
Spearman rank-order correlation and keeping a single feature
from each cluster76. As a result, we discarded the following
features: “Fwd Seg Size Avg”, “TotLen Fwd Pkts”, “Bwd IAT Tot”,
“Bwd Pkt Len Max”, “Subflow Fwd Byts”,"Pkt Size Avg”, “Bwd
Seg Size Avg”, “Subflow Fwd Pkts”, “Bwd IAT Max”, “Subflow
Bwd Pkts”, “Flow Pkts_over_s”, “Flow IAT Mean”, “Idle Max”,
“Active Min”, “Active Max”, and “Pkt Len Min”.

QRBM models require binary value numbers for the input
units. The two datasets were processed to fulfill this requirement.
We used a one-hot encoding for nominal features with a limited
number of distinct values, while we used a binary encoding for
those with many different values. All the real-valued records have
been digitized, i.e., we computed the histogram of the record, and
we substituted the value with the indices of the bins to which the
input belongs. We associated normal data with +1, and we used 0
for attacked records. For the sake of redundancy, the labels have
been encoded three times, i.e., attacks are labeled as (0, 0, 0) and
normal data as (1, 1, 1). At the end of the processing the NSL-
KDD dataset in compressed by 85 bits (N) while the CSE-CIC-
IDS2018 dataset 156 (N). Finally, we balance the datasets by
under-sampling the most common class.

Performance metrics. During this evaluation process, we mea-
sured six metrics to test the performance of the models: accuracy,
F1 score, true positive (TP), false negative (FN), false positive
(FP), and true negative (TN).

True positive: the number of TP indicates the number of
attacks correctly classified by the model.

True negative: the number of TN indicates the number of
normal events correctly classified by the model.

False negative: the number of FN indicates the number of
attacks classified as normal events by the model.

False positive: the number of FP indicates the number of
normal events classified as attacks by the model.

Accuracy: represents the proportion of total predictions that
have been classified correctly.

Accuracy ¼ TP þ TN
TP þ TN þ FN þ FP

F1 score: represents a harmonic mean of precision and recall,
where 1 represents the best score and 0 represents the worst score.

F1 ¼ 2TP
2TP þ FP þ FN

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code and the algorithm used in this study are available from the corresponding
author upon reasonable request.
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