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Variable-order topological insulators
Yating Yang1, Handa Sun2, Jiuyang Lu 2, Xueqin Huang 2, Weiyin Deng 2✉ & Zhengyou Liu 3,4✉

Topological insulators, either the first-order or the higher-order, experience generally a

transition to a trivial phase or a topological one of the same order through the gap closing and

reopening procedure. Here, we report a topological insulator, which switches directly

between the first and higher orders, with only varying the hoppings and without breaking the

symmetry. The phase transition of the first and higher orders is originated from a competition

mechanism between the nearest and second-nearest neighbor interactions. This variable-

order topological insulator is implemented in a two-dimensional phononic crystal, and the

one-dimensional helical edge states, which signal the first-order phase, and the zero-

dimensional corner states, which signal the second-order one, are demonstrated in the

simulations and experiments. Our study gives insight to the topological states of different

orders.

https://doi.org/10.1038/s42005-023-01261-6 OPEN

1 College of Mathematics and Physics, Beijing University of Chemical Technology, 100029 Beijing, China. 2 School of Physics and Optoelectronics, South
China University of Technology, 510640 Guangzhou, China. 3 Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of
Physics and Technology, Wuhan University, 430072 Wuhan, China. 4 Institute for Advanced Studies, Wuhan University, 430072 Wuhan, China.
✉email: dengwy@scut.edu.cn; zyliu@whu.edu.cn

COMMUNICATIONS PHYSICS |           (2023) 6:143 | https://doi.org/10.1038/s42005-023-01261-6 | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01261-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01261-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01261-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01261-6&domain=pdf
http://orcid.org/0000-0001-5953-0258
http://orcid.org/0000-0001-5953-0258
http://orcid.org/0000-0001-5953-0258
http://orcid.org/0000-0001-5953-0258
http://orcid.org/0000-0001-5953-0258
http://orcid.org/0000-0002-6092-872X
http://orcid.org/0000-0002-6092-872X
http://orcid.org/0000-0002-6092-872X
http://orcid.org/0000-0002-6092-872X
http://orcid.org/0000-0002-6092-872X
http://orcid.org/0000-0001-5380-2419
http://orcid.org/0000-0001-5380-2419
http://orcid.org/0000-0001-5380-2419
http://orcid.org/0000-0001-5380-2419
http://orcid.org/0000-0001-5380-2419
http://orcid.org/0000-0002-7779-6129
http://orcid.org/0000-0002-7779-6129
http://orcid.org/0000-0002-7779-6129
http://orcid.org/0000-0002-7779-6129
http://orcid.org/0000-0002-7779-6129
mailto:dengwy@scut.edu.cn
mailto:zyliu@whu.edu.cn
www.nature.com/commsphys
www.nature.com/commsphys


Topological phases, including the conventional first-order and
higher-order topological insulators (TIs), have attracted wide
attention in electronic1,2, photonic3, and phononic4,5

materials. Generally, d-dimensional (dD) conventional first-order
TIs possess ðd � 1ÞD topological boundary states. There exist two
types of the two-dimensional (2D) first-order TIs, featured with the
1D edge states. The first type hosts the chiral edge states and thus
breaks the time-reversal symmetry, and is commonly called Chern
insulator, whose topological invariant is the Chern number6,7. The
second type possesses the helical edge states, and can classified by
the Z2 index or spin-Chern numbers, such as the quantum spin
Hall insulator8,9 and spin-Chern insulator (SCI)10,11. The quantum
spin Hall insulator has the gapless edge states protected by the spin-
1/2 electronic time-reversal operator. The SCI extends the concept
of quantum spin Hall insulator, which has the helical edge states,
but their gapless properties rely on the symmetry and boundary
potential of the sample12. By tuning the alternating sublattice
potential, it has been found that these 2D first-order TIs can be
transited to the trivial normal insulator (NI)7,8,10. Importantly, a
topological phase transition from the SCI to Chern insulator occurs
in the presence of the Zeeman field, providing a practical way to
realize the Chern insulator10,13–15.

Higher-order topological phases generalize the conventional
bulk-boundary correspondence16–20, in which dD nth-order
(n > 1) TIs have ðd � nÞD topological boundary states. The 2D
second-order TIs (SOTIs) are characterized by the 0D in-gap
corner states21, which can be originated from the quantized
quadrupole moments20, the quantized bulk polarizations22 and
the Jackiw-Rebbi mechanism23. The corner states have been
observed in the artificial periodical structures, including the
photonic crystals24–27, phononic crystals (PCs)28–32 and electric
circuits33–35, thanks to their macroscopic nature. The corner
states are further explored to exhibit the helical36, pseudospin-
dependent37,38 and valley-selective39 properties. While breaking
or reducing an essential symmetry, the first-order TIs can be
transited to the higher-order TIs16,23,40–46, which to realize the
higher-order topological phases. For example, while breaking the
time-reversal symmetry, the quantum spin Hall insulator can
open an edge gap and host the in-gap corner state, transiting to a
SOTI42–44. The recently proposed45 and realized46 Dirac hier-
archy in 3D acoustic topological insulators provides another
concrete example to achieve the topological transitions between
the first-order, second-order and third-order TIs by step-by-step
breaking different symmetries. A natural question is that whether
the topological phase transition occurs between the higher-order
and first-order TIs without breaking the symmetry.

In this work, we answer this question and realize a topological
phase, referred as the variable-order TI, which switches directly
between the first and higher orders, with only varying the hoppings
and without breaking the symmetry. We first construct the tight-
binding model of a bilayer kagome lattice, where two different
intralayer nearest-neighbor hoppings can induce SOTI phase ori-
ginated from quantized bulk polarizations, and a chiral interlayer
hoppingmay give rise to SCI phase. The competition between these
two couplings leads to the topological phase transition between SCI
and SOTI phases. Then we map the lattice model to PC and find
that the phase transition occurs with changing structural parameter
but keeping the symmetry. A pair of 1D helical edge states in the
SCI phase and 0D corner states in the SOTI phase are demon-
strated in the simulations and experiments with good agreement.

Results
Tight-binding model for variable-order TI. We start from the
bilayer kagome lattice model with three inequivalent sites labeled
as 1–3 in each layer, as shown in Fig. 1a, where gray circles denote

the sites, blue (red) line denote the nearest-neighbor (NN) hop-
ping t0 � dt (t0 þ dt), and green line denote chiral interlayer
coupling with hopping integral tb. The tight-binding model can
be written as

H ¼ ∑
<ij>;α

tpc
y
iαcjα þ tb ∑

�ij�;α≠β
vij;αc

y
iαcjβ: ð1Þ

Here, the first term is the NN intralayer hopping with cyiα as the
creation operator of layer pseudospin α on site i, and the hopping
integral tp ¼ t0 � dt (t0 þ dt) when the bond between i and j lives
in (out) the unit cell. The second term is interlayer interactions,

where vij;α ¼ 1
2 1þ 8ffiffi

3
p vαð̂ejk ´ êkiÞz

h i
describes the relationship

between the hopping directions of the next-nearest neighbor
couplings and the symbol of pseudospins v"# ¼ ± 1. k is the
common NN site between sites i and j, and êjk is the unit vector
pointing from j to k. In our model, vij;α is equal to 0 or 1. vij;α ¼ 0
means that there is no interlayer coupling connection between the
two next-nearest lattice points, and vij;α ¼ 1 means that there is
interlayer coupling connection between the two next-nearest
lattice points. t0 is set to�1, and the lattice constant is set to unity
with a1 ¼ x̂ and a2 ¼ x̂ þ ffiffiffi

3
p

ŷ
� �

=2. The interlayer coupling can
induce the pseudospin-orbit interaction and may give rise to the
SCI phase11, while the intralayer ones may result in the SOTI
phase with quantized bulk polarizations22. So the competition of
the interlayer and intralayer couplings can result in the
topological phase transition between the SCI and SOTI phases.

We then calculate the topological invariants of the system. The
Brillouin zone with high symmetry points is shown in Fig. 1b,
where the red rhombic denotes the first Brillouin zone to form a
closed loop to calculate the topological invariants. k1 and k2 are
the wavevector components along the directions of the reciprocal
lattice vectors. The topological phase as functions of tb=t0 and
dt=t0 is illustrated in Fig. 1c. The topological properties of the SCI
phase can be described by the spin-Chern numbers C ± , while the
SOTI is characterized by the spin-polarized bulk polarizations
P1 ± and P2 ± , which are equal due to the C3 symmetry. There are
three different phases, SCI with C ± ¼ ± 1 in the pink area, SOTI
with C ± ¼ 0 and P1 ± ¼ �1=3 in the purple area, and NI with
C ± ¼ 0 and P1 ± ¼ 0 in the blue area (see Supplementary
Note 1). The boundaries of these phases are formed by the critical
points with the bulk gap closure between the second and third
bands, which can be analytically obtained as dt=tb ¼ ± 2=3,
plotted by the white lines.

In Fig. 1d, fixed tb=t0 ¼ 0:6, bulk dispersions with dt=t0 ¼ �0:3
(point A), dt=t0 ¼ 0:4 (point B), dt=t0 ¼ 0:8 (point C) are
depicted. SCI gap marked by pink area is reduced to a degenerate
point, and then reopened as a SOTI gap marked by purple area.
The boundary states revealing the SCI and SOTI phases will emerge
in the nontrivial band gaps according to the bulk-boundary
correspondence. For parameters at point A, the projected
dispersion of a ribbon with open boundary along the y direction
is shown in Fig. 1e. One can see that a pair of the helical edge states,
located at the top (green lines) and bottom (red lines) boundaries,
exist in the bulk gap, demonstrating the point A hosts the SCI
phase. For parameters at point C, the energy spectrum of 5 layers
triangle-shaped sample is plotted in Fig. 1f. Point C is the SOTI
phase, possessing six corner states at zero-energy labeled by orange
circles, in which a pair of the corner states localize at a corner and
are protected by the C2 symmetry.

Acoustic variable-order TI. Next, we discuss the realization of
the above topological phase transitions in a PC. The unit cell of
the PC is shown in Fig. 2a with a ¼ 5mm. The cylindrical cavities
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can be viewed as the lattice sites, with the diameter dc ¼ 12:2mm
and height hc ¼ 26:5mm. Left panel shows a top view of the three
cavities clearly on each layer and two different types of tubes
(diameter d0 ± dr with d0 ¼ 2:5mm) connecting the NN cavities
provide the different intralayer couplings. Right panel with a side
view clearly shows the chiral interlayer tubes (diameter
db ¼ 2:6mm) connect the cavities between the upper and lower
layers, giving rise to the interlayer couplings. Since we focus on
the bands of the dipole mode, two parallel tubes are used to
connect the cavities at the heights of hc=4 and 3hc=4 in each layer,
and the interlayer tubes connect the bottom of the cavities of the

upper layer with the top of the ones of the lower layer. As such,
the PC is consistent with the lattice model described by Eq. (1).

The phase diagram of dipole modes as a function of dr=d0 is
shown in Fig. 2b, where the lower (upper) line denotes the top
(bottom) of the second (third) band of dipole mode. There are
three topologically distinct phases, i.e., the NI (blue area), SCI
(pink area) and SOTI (purple area), corresponding to the lattice
model. The phase transition points are at dr=d0 ¼ �0:29 and
0:29 with bulk gap closing (the gray dashed lines). As shown in
Fig. 2c, the bulk dispersion of dipole modes is gapless at K point
(the red dashed line) for dr=d0 ¼ 0:29. The bulk dispersions of

Fig. 1 Variable-order topological insulator with phase transition between the spin-Chern insulator (SCI) and second-order topological insulator
(SOTI). a Bilayer breathing kagome lattice model with three inequivalent sites (gray circles) labeled as 1–3 in each layer of a unit cell. Blue (red) line
denotes the NN intralayer hopping t0 � dt (t0 þ dt). Green line denotes the chiral interlayer hopping tb. b The first Brillouin zone (red rhombic) with high
symmetry points. c Phase diagram in the tb=t0 versus dt=t0 plane. White lines are the phase boundaries with bulk gap closure. Normal insulator in the
phase diagram is abbreviated as NI. d Bulk dispersions with dt=t0 ¼ �0:3 (point A), dt=t0 ¼ 0:4 (point B), dt=t0 ¼ 0:8 (point C). e Projected dispersions of
a ribbon with open boundary along the y direction for parameters at point A in (c). Inset: the illustrations of the ribbon and the edge states propagations.
f Eigenvalue of a triangle-shaped sample (inset) for parameters at point C.
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the different phases with bulk gaps are shown in Supplementary
Note 2. To confirm the topological nature of the bulk gap, we
calculate the spin-polarized Berry phases v1 ± along the loop k1 2
0; 4π=

ffiffiffi
3

p
a

� �
as a function of k2. Due to the dipole modes, we use

the pressure fields at the center of the circle at 3hc=4 height the six
cavities in a primary cell to construct the normalized wavefunc-
tions. As shown in Fig. 2d, for the parameter dr=d0 ¼ �0:1 in the
SCI phase, the Berry phase for the spin-up (spin-down)
polarization winds 2π (�2π) when k2 runs a loop from 0 to
4π=

ffiffiffi
3

p
a, leading to Cþ ¼ 1 (C� ¼ �1). In Fig. 2e, for dr=d0 ¼ 0:6

in the SOTI phase, the Berry phases for both the spin-up and spin-
down polarizations wind zero, giving rise to C ± ¼ 0. However, the
spin-polarized bulk polarizations P1 ± ¼ �1=3, obtained by
integrating v1 ± over k2, as shown by the dashed gray line. For
the NI phase, C ± ¼ 0 and P1 ± ¼ 0. These results confirm the PC
hosts the topological phase transition between the SCI and SOTI
phases, same to the lattice model.

For the acoustic SCI phase, non-zero spin-Chern numbers
guarantee a pair of helical edge states on the boundaries of a PC
ribbon. To verify it experimentally, we take parameter
dr=d0 ¼ �0:1, and fabricate a sample of 21´ 7 unit cells using
3D printing technology with resin materials DSM IMAGE8000.
The sample has two different configurations of boundary, which
is formed by triangles with tube diameter d0 � dr , as illustrated in
Fig. 3a–d. The projected dispersions along the kx direction are
shown in Fig. 3e and f, corresponding to the top and bottom
boundaries, respectively. Color maps denote the experimental
results obtained from the Fourier transform of the sound pressure
field in the cavity on the boundaries. Dots denote the simulated
results calculated by COMSOL Multiphysics with ρ ¼ 1:3kg=m3

and v ¼ 346m=s. For both two different boundaries, there are a
pair of edge states with opposite group velocities emerge at the
bulk gaps. The eigenfields for the helical edge states are shown in

Supplementary Note 3. As shown in Fig. 3g, we measured the
sound pressure field distributions excited by a point source at the
top and bottom boundaries respectively, at f ¼ 6:225kHz. A pair
of edge states with positive and negative group velocities are
excited simultaneously. Due to the thermal resistance effect of air,
the intensity of sound fields at the boundaries decreases
continuously during transmission. The agreement between the
simulated and experimental results proves that the PC with
parameter dr=d0 ¼ �0:1 is the SCI.

For the acoustic SOTI phase, non-zero spin-polarized bulk
polarizations lead to the corner states at the corners of a triangle-
shaped PC. Figure 4a shows the triangle-shaped sample with
dr=d0 ¼ 0:6 bounded by triangles with tube diameter d0 � dr .
The corresponding eigenfrequencies is calculated in Fig. 4b,
where the orange circles show a pair of corner states with spin
polarization located at each corner. Figure 4c shows the measured
corner, edge and bulk normalized response spectra labeled by the
orange, green and black areas. The positions of sources and
probes are pointed by the yellow arrows in Fig. 4a. The response
peaks are in good agreement with the simulated eigenfrequencies,
demonstrating the existence of the corner modes. We further
measure the pressure field distributions of the upper layer,
corresponding to the bulk, edge, corner and bulk states for fixed
frequencies, as shown in Fig. 4d. In this case, the source and
probe are put at the same cavities. The visualized corner modes
for f ¼ 6:470 kHz reveal the PC with parameter dr=d0 ¼ 0:6 is
the SOTI. We also compare the edge state and corner state
properties of different topological phases under the same
excitation in Supplementary Notes 4 and 5.

Conclusions
In summary, we have reported variable-order TI, which hosts the
topological phase transitions between the SCI and SOTI without

Fig. 2 Phase diagram and topological properties in the acoustic variable-order topological insulator. a Unit cell of the phononic crystal (PC) with top and
side views. b Phase diagram with bulk gap of the dipole modes, including normal insulator (NI), spin-Chern insulator (SCI) and second-order TI (SOTI).
c Gapless bulk dispersion of the dipole modes for the parameter dr=d0 ¼ 0:29. d and e Calculated the spin-polarized Berry phases v1þ (spin-up) and v1�
(spin-down) as a function of k2 for the parameters dr=d0 ¼ �0:1 and 0:6, respectively.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01261-6

4 COMMUNICATIONS PHYSICS |           (2023) 6:143 | https://doi.org/10.1038/s42005-023-01261-6 | www.nature.com/commsphys

www.nature.com/commsphys


breaking any symmetry. The topological property of SCI is
described by spin-Chern number, while that of SOTI is originated
from quantized bulk polarizations. The acoustic 1D helical edge
states in the SCI phase and the 0D corner states in the SOTI
phase are evidently observed. Unlike the phase transitions in the
previous works breaking symmetries40–46, and the so-called
boundary-obstructed topological phases47,48, the transition here
between the first-order and second-order TIs occurs still at the
bulk gap closing without breaking symmetries. It is desirable to
explore a simple method to adjust the interactions of hopping and
show the phase transition in a single PC sample.

Methods
Simulations. All of the numerical simulations are performed by COMSOL Mul-
tiphysics. The parameters for the filling air in our systems are the mass density
ρ ¼ 1:3 kgm�3 and sound velocity v ¼ 346m s�1. The hard boundary conditions
set in the simulations are easy to realize in the air acoustic system, due to a huge
acoustic impedance mismatch between air and many materials, i.e., 3D-printed
resin samples and so on.

Experiments. All the experimental measuring devices are composed of a head-
phone with a diameter of 6 mm (generate acoustic waves), a microphone probe
with a diameter of 1.5 mm (measure the acoustic pressure fields), and a network
analyzer Keysight 5061B (send and record the acoustic signals). The PC samples

Fig. 3 Acoustic helical edge states in the spin-Chern insulator phase. Schematic and photo of (a and b), the top boundary and (c and d), the bottom
boundary for a phononic crystal (PC) ribbon. Green (pink) arrows represent a pair of edge states counterpropagating along the top (bottom) boundary.
e and f Projected dispersions of the PC ribbon for the top and bottom boundaries, respectively. Gray dots show the simulated bulk modes, while the green
and pink dots represent the simulated edge modes. Color maps denote the experimental data. g Measured sound field distributions excited at top and
bottom boundaries, respectively. Color map denotes the intensity of measured sound fields.
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shown in the main text are prepared by 3D printing technology with resin mate-
rials DSM IMAGE8000. The parallelogram-shaped sample with 21 ´ 7 unit cells
shown in Fig. 3 is used for measuring the SCI phase. At this time, the sound source
is placed in a cavity in the middle of the sample boundaries, and the probe measure
the sound pressure field distribution of all the cavities on the boundaries. The
helical edge states are obtained by performing the Fourier transformations along
the x directions. The triangle-shaped sample shown in Fig. 4a is used for measuring
the SOTI phase. For the response spectra of bulk, edge and corner, the positions of
sound source and probes are marked by yellow arrows in Fig. 4a. For the mea-
surement of field distributions, the sound source and probe are located in the
same cavity.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.

Code availability
The Matlab code that support this study can be accessed from the corresponding author
upon reasonable request.
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