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Model-independent embedding of directed
networks into Euclidean and hyperbolic spaces
Bianka Kovács1 & Gergely Palla 1,2✉

The arrangement of network nodes in hyperbolic spaces has become a widely studied pro-

blem, motivated by numerous results suggesting the existence of hidden metric spaces

behind the structure of complex networks. Although several methods have already been

developed for the hyperbolic embedding of undirected networks, approaches able to deal

with directed networks are still in their infancy. Here, we present a framework based on the

dimension reduction of proximity matrices reflecting the network topology, coupled with a

general conversion method transforming Euclidean node coordinates into hyperbolic ones

even for directed networks. While proposing a measure of proximity based on the shortest

path length, we also incorporate an earlier Euclidean embedding method in our pipeline,

demonstrating the widespread applicability of our Euclidean-hyperbolic conversion. Besides,

we introduce a dimension reduction technique that maps the nodes directly into the

hyperbolic space of any number of dimensions with the aim of reproducing a distance matrix

measured on the given (un)directed network. According to various commonly used quality

scores, our methods are capable of producing high-quality embeddings for several real

networks.
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Networks offer an intuitive and general approach to the
study of complex systems that has become extremely
widespread in the recent decades1–3. The staggering

amount of research in this direction has shown that the statistics
of the underlying graph structure can highlight previously unseen
properties in systems ranging from interactions within the cell up
to the level of the entire human society1–5. The most well-known
features that seem to be more or less universal across the majority
of the complex networks are the small-world property6,7, the high
clustering coefficient8, the scale-free degree distribution9,10 and a
well-pronounced community structure11–13.

Grasping the above properties all at once with a simple network
model is a challenging task for which hyperbolic approaches offer
an intuitive framework. The basic idea of hyperbolic network
models is to place the nodes in the hyperbolic space and connect
them with a probability decaying as the function of the hyperbolic
distance14–22. Remarkably, the networks generated in this way are
usually small-world, highly clustered and scale-free14,15, and
according to recent results they can easily display a strong com-
munity structure as well18,20,23–27. In parallel with revealing the
notable properties of hyperbolic models, several studies suggested
the existence of hidden geometric spaces behind the structure of
real networks as well, ranging from protein interaction
networks28,29 through brain networks30,31 to the Internet32–36 or
the world trade network37, leading to important discoveries about
the self-similarity38 and the navigability of networks32,39,40.

These advancements opened a further frontier in the research
focusing on the relationship between hyperbolic spaces and
complex networks centred on the problem of hyperbolic
embedding, where the task is to find an optimal arrangement of
the network nodes in the hyperbolic space for a given network
structure that we inputted33. A natural idea in this respect is
likelihood optimisation16,41, where a loss function is formulated
(and minimised) based on the assumption that the input network
was generated by a given hyperbolic network model. A prominent
method following this idea is HyperMap16, working with a gen-
eralised version of the popularity-similarity optimisation (PSO)
model15 called the E-PSO model. Another possibility is the
application of dimension reduction techniques to matrices that
represent the network topology, such as in the Laplacian-based
Network Embedding (LaBNE) technique42 (relying on the
Laplacian matrix of the graph to be embedded) and the family of
coalescent embeddings43 (building on different matrices of dis-
tances measured along the graph after pre-weighting), where the
dimension reduction yields a Euclidean embedding, the radial
coordinates of which are converted then to hyperbolic ones in
accordance with the PSO model, or in the hydra (hyperbolic
distance recovery and approximation) method44, where the
dimension reduction yields node positions in the hyperboloid
model of the hyperbolic space that are finally converted to an
embedding in the Poincaré ball representation. Dimension
reduction and the optimisation of the angular node coordinates
with respect to a given hyperbolic network model can be also
combined. Such a combination was applied for the Laplacian-
based embedding45 with the E-PSO model46 and the so-called
S1=H2 model47, and also for a coalescent embedding43 that was
coupled with a local likelihood optimisation according to the
E-PSO model17. A further alternative approach for embedding
networks into hyperbolic spaces is offered by artificial neural
networks, whose objective is to learn a low-dimensional repre-
sentation of the input network48–51. Although these methods are
more difficult to interpret and their setup is usually more com-
plicated compared to the previous approaches, they can also allow
the inclusion of additional node (or link) features such as attri-
butes, annotations, text, etc. in the learning process.

Even though the aforementioned methods achieved notable
success and have been shown to provide high-quality embeddings
for a number of different networks, almost all of them lack a very
important capability: to take into account the link directions when
dealing with directed network input. In general, directed connec-
tions can indicate asymmetric relations between the nodes (e.g., the
dominant-subordinate relations in hierarchical networks52,53, the
consumer-producer relations in food webs, etc.) or may signal
some sort of flow over the links. Consequently, nodes with mainly
incoming links may have a very different function in the system
compared to nodes with mainly outgoing links or nodes having a
balanced amount of in- and out-neighbours, and the directionality
may play an important role also on the level of communities54. In
this light, it seems that ignoring link directions during the pre-
paration of an embedding can lead to a considerable amount of
information loss. The only embedding methods41,51 that can take
into account the directed nature of a network and use hyperbolic
geometry either creates two-dimensional hyperbolic embeddings
with a likelihood optimisation technique based on a directed
S1=H2 model, or assigns to each network node a Gaussian dis-
tribution with a mean vector given in the hyperboloid model of the
hyperbolic space, where the parameters of the representation of the
nodes are learned using a neural network, and the asymmetry of the
relations between the nodes can manifest itself in the Kullback-
Leibler divergence between the Euclidean mapping of the corre-
sponding distributions.

Motivated by the above, here we propose a general, albeit also
simple framework for embedding directed networks into hyper-
bolic spaces of any number of dimensions, representing the
topological distances and the connection probabilities through
hyperbolic distances. Due to the possibly different functions of
the sources and the targets in directed systems, our approach
assigns separate source and target positions to each one of the
network nodes, allowing large flexibility in how the directed
nature of the input may affect the obtained embedding. This
means that in the two-dimensional case, the output of our
method can be visualised on a pair of disks (one of which con-
tains the nodes at their source coordinates and the other at their
target positions), where the links always point from the “source
disk” to the “target disk”.

In order to keep the approach model-independent, the calcu-
lation of the node positions is based on a dimension reduction of
a matrix encapsulating the distance relations in the network. The
result of the dimension reduction of a proximity matrix can be
already treated as a Euclidean embedding of the network. To
obtain the hyperbolic coordinates from the Euclidean node
arrangement, we introduce a transformation designed to preserve
the attractivity of a given radial position from the point of view of
link creation. With the help of this transformation, we can
incorporate the output of several directed Euclidean embedding
methods for gaining a hyperbolic layout of the studied network.
Along this line, in the present work, we also apply the Euclidean
HOPE (High-Order Proximity preserved Embedding)
algorithm55, and transform its output in the same manner as the
results of the here-proposed Euclidean embeddings. Finally,
inspired by the undirected hyperbolic embedding method hydra
(hyperbolic distance recovery and approximation)44, we also
introduce a directed embedding approach that yields hyperbolic
coordinates based on the dimension reduction of a Lorentz
product matrix calculated from node-node distances measured
along the inputted network, providing a hyperbolic layout with-
out embedding the network first into the Euclidean space.

We test all the proposed methods both on synthetic and real
networks. We examine the mapping accuracy56, which is a
measure of embedding quality characterising the correlation
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between the shortest path lengths and the pairwise geometric
relations of the nodes. We also evaluate the performance of the
embeddings in graph reconstruction problems, where the task is
to distinguish the connected node pairs of the embedded network
from the unconnected ones according to geometric measures
associated with the node pairs. Lastly, the embeddings are also
compared to each other based on their navigability via greedy
routing, which corresponds to a simple navigation protocol where
we always try to proceed towards the destination node based only
on the spatial position of the current neighbours.

Results
In this section, we first outline the studied embedding framework
and describe the quality functions used for characterising the
performance of the different methods. This is followed by the
results obtained for a couple of directed real networks.

The studied embedding algorithms. In this paper, we consider
embeddings of directed networks, which—due to the possible
different roles of the same node as a source or as a target of links
—result in two distinct sets of coordinates (i.e., source and target
coordinates). In Fig. 1, we provide a concise flowchart of the
considered embedding methods, the full detailed description of
which is given in Supplementary Note 1. Note that all the studied
methods are deterministic, yielding always the same node
arrangement for a given network.

Embedding into the hyperbolic space through the conversion of a
Euclidean node arrangement. The three main steps of the algo-
rithms described by the left side of the flowchart in Fig. 1 can be
summarised in the following way:

1. Preparation of a proximity matrix P based on the network
topology.

2. Decomposition of this matrix for performing dimension
reduction and obtaining a Euclidean embedding, i.e. a
lower-dimensional representation in the Euclidean space.

3. Model-independent conversion (MIC) of the Euclidean
source and target coordinates into position vectors in the
native representation of the hyperbolic space.

The proximity matrix can be defined in multiple alternative ways,
and since steps (2) and (3) are always the same, we name the
different methods based on the choice of P. In the High-Order
Proximity preserved Embedding (HOPE)55, the applied proxi-
mity matrix is the Katz matrix, where the intuitive meaning of a
matrix element is that it corresponds to the weighted sum of the
paths between the corresponding pair of nodes, where longer
paths are more or less suppressed with the help of the adjustable
parameter α. As an alternative for embedding via the Katz matrix,
we introduce the method TRansformation of EXponential
shortest Path lengths to EuclideaN measures, abbreviated as
TREXPEN, where the proximity matrix P is composed of
exponential shortest path lengths in the form of

Pst ¼ e�q�SPLs!t ; ð1Þ
where SPLs→t denotes the shortest path length from node s to
node t, and 0 < q is a decay parameter similar in nature to the α
parameter of the Katz matrix. Note that for node pairs s and t
where t is unreachable from s, the above matrix element Pst and
also the element of the Katz matrix becomes zero, which enable
us to embed weakly connected components, not only strongly
connected parts of directed networks.

The usage of a proximity matrix (where large values indicate
small distances or large similarities) has the advantage compared
to distance matrices that it yields such Euclidean embeddings in

which smaller topological distances can be associated primarily
with larger inner products of the position vectors instead of
smaller Euclidean distances, providing the possibility to effort-
lessly separate the contribution of the radial and the angular
node coordinates in the geometric relations. However, when
equating only non-negative proximity values with Euclidean
inner products, the angular range of the node coordinates
becomes restricted. Therefore, we also consider a centred version
of the proximity matrices by shifting the mean of the matrix
elements to zero, which is expected to broaden the angular range
of the node coordinates. We shall refer to the embeddings where
the mean of the proximities is set to zero before the matrix
decomposition as HOPE-S and as TREXPEN-S (where the suffix
“-S” refers to the shifting of the elements of P). Another
alternative considered here is that we return to the original (non-
shifted) proximity matrices, but discard the first and use from the
second to the d+ 1th dimension for creating a d-dimensional
embedding. The rationale behind this approach is that when
embedding the network, we are interested in the positions of the
nodes relative to each other, whereas the first component in the
dimension reduction usually contains information mainly about
the point cloud as a whole, relative to the origin. We shall refer to
the embedding methods relying on the second to d+ 1th
dimensions as HOPE-R and as TREXPEN-R (where the suffix
“-R” refers to the removal of the first dimension). These circular
Euclidean node arrangements in which the high connection
probabilities are represented with high inner products can serve
as a good candidate for a Euclidean-hyperbolic conversion that
maps the high Euclidean inner products to small hyperbolic
distances.

In our hyperbolic embedding methods, we used the native
representation of the hyperbolic space14, which is commonly used
both in hyperbolic network models15,21,22,26 and hyperbolic
embeddings16,17,43,47. This representation visualises the d-dimen-
sional hyperbolic space of curvature K=− ζ2 < 0 in the Euclidean
space as a d-dimensional ball of infinite radius (to which we refer
as the native ball), in which the radial coordinate of a point (i.e.,
its Euclidean distance measured from the centre of the ball) is
equal to the hyperbolic distance between the point and the centre
of the ball, and the Euclidean angle formed by two hyperbolic
lines is equal to its hyperbolic value. The hyperbolic distance is
measured along a hyperbolic line, which is either an arc going
through the points in question and intersecting the ball’s
boundary perpendicularly or—if the ball centre falls on the
Euclidean line that connects the examined points—the corre-
sponding diameter of the ball. According to the commonly
applied approximating form of the hyperbolic distance14 given by

xs!t � rsources þ rtargett þ 2
ζ � ln θs!t

2

� �
, a smaller hyperbolic dis-

tance xs→t between the source position of node s and the target
position of node t—the indicator of a higher connection
probability—can originate from small radial coordinates rsources

and rtargett and/or a small angular distance θs→t. Another intuitive
consequence of the above distance formula is that nodes with low
radial coordinates are more attractive since their hyperbolic
distance can become small in a larger angular region compared to
nodes with large radial coordinates.

On the other hand, the Euclidean embedding methods we
consider provide layouts where node pairs with high proximity
values (and presumably, also high connection probabilities)
obtain position vectors yielding a high inner product value. As
the inner product between the source position of node s and the
target position of node t is simply rsources � rtargett � cosðθs!tÞ, high
connection probability in the Euclidean space can originate from
large radial coordinates and/or small angular distances.
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Since small angular distance is favourable from the point of
view of both a large Euclidean inner product and a small
hyperbolic distance, we transfer the angular coordinates from the
Euclidean space without modification to the hyperbolic ball,

similarly to the practice in several previous embedding algorithms
from the literature42,43,47. However, the situation is more
complex in terms of the radial coordinates, since a high inner
product requires large radial coordinates in the Euclidean space,
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Fig. 1 Flowchart of the studied embedding algorithms. The left side of the figure traces the algorithmic steps for creating a hyperbolic embedding with the
High-Order Proximity preserved Embedding (HOPE), our TRansformation of EXponential shortest Path lengths to EuclideaN measures (TREXPEN) and
their variants by converting the Euclidean node arrangement obtained from them to a hyperbolic one with our model-independent conversion (MIC). The
right side of the figure shows the algorithmic steps of our method named TRansformation of EXponential shortest Path lengths to hyperbolIC measures
(TREXPIC), which embeds networks directly in the hyperbolic space. The embedding parameters are written in red: the parameters α and q adjust how the
elements of the reduced matrices depend on the distances measured along the graph to be embedded, d denotes the number of dimensions of the
embedding space, ζ (usually set to 1) tunes the curvature of the hyperbolic space, and C (usually set to 2) controls the extent of the graph in the hyperbolic
space when using MIC.
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whereas a low hyperbolic distance favours small radial coordi-
nates in the hyperbolic ball. Nevertheless, relying on the
expectation that Euclidean and the hyperbolic radial arrange-
ments of the same network should represent the same attractivity
relations, we can presume that if the radial positions of the
embedding from both geometries are converted to the same
space, then the node arrangements that are formed in the
common space must be consistent with each other. More
precisely, we assume that the node arrangements obtained in
the common space from the Euclidean and the hyperbolic radial
coordinates reflect the same radial attractivity of any node
compared to the highest one.

We use the linearly expanding half-line as the pass-through
between the polynomially expanding Euclidean and the exponen-
tially expanding hyperbolic spaces. For this, we take the well-
known formulas for the spherical volume, and define the
coordinate on the half-line of Euclidean and hyperbolic radial
values to be equal to the volume of a sphere with the radius equal
to the original radial coordinate in the given metric space,
resulting in

rlineðrEucÞ ¼ VEuc
d ðrEucÞ ¼

π
d
2

Γ d
2 þ 1
� � � rdEuc; ð2Þ

rlineðrhypÞ ¼ Vhyp
d ðrhypÞ ¼

eζ�ðd�1Þ�rhyp � 1

ζ � ðd � 1Þ � 2d�1 : ð3Þ

Then, our assumption about the reconcilability of the node
coordinates calculated on the half-line from the Euclidean and the
hyperbolic radial coordinates can be formalised for any node i as

rlineðrEuc;maxÞ
rlineðrEuc;iÞ

¼ rlineðrhyp;iÞ
rlineðrhyp;minÞ

; ð4Þ

where we have also taken into account that the attractivity of the
nodes increases in the Euclidean and decreases in the hyperbolic
space with the radial coordinate (and that the radially most
attractive node is at the maximal radial coordinate rEuc;max in the
Euclidean space, and at the minimal radial coordinate rhyp;min in
the hyperbolic space).

By fixing the maximal radius in the hyperbolic space, we can
use Eqs. (2)–(4) for calculating the hyperbolic radial coordinate of
the nodes based on their Euclidean radial coordinate. Our
suggestion for the largest possible radial coordinate in the
hyperbolic ball is rhyp;max ¼ C

ζ � lnðNÞ, where C is a constant. With

this choice, the hyperbolic volume scales as Vhyp
d � NC�ðd�1Þ with

the number of nodes N, and at C= 2 we obtain the same volume
as we would have in a network generated by the PSO model15,22.
Based on that, the radial coordinate in the hyperbolic ball can be
expressed as

rhyp;iðrEuc;iÞ ¼
1

ζ � ðd � 1Þ � ln 1þ ½NC�ðd�1Þ � 1� � rEuc;min

rEuc;i

" #d
0
@

1
A;

ð5Þ
where further details of the calculation are given in Sect. S1.5 of
Supplementary Note 1. Besides, Sect. S2.3 of Supplementary
Note 2 demonstrates that MIC, our model-independent Eucli-
dean-hyperbolic conversion of the radial coordinates can outper-
form the widely used17,42,43,46 PSO-based transformation even on
such hyperbolic networks that were generated by the PSO model.

As an illustration of MIC, in Fig. 2 we show two-dimensional
embeddings of an undirected E-PSO network16,17 that was
generated from N= 1000 number of nodes, setting the average
degree to �k � 2 � ðmþ LÞ ¼ 2 � ð3þ 2Þ ¼ 10 (where one can
interpret m as the number of external links that emerge in each

time step and L as the net number of added and removed internal
links per time step), the popularity fading parameter to β= 0.8
(corresponding to the decay exponent γ= 1+ 1/β= 2.25 of the
degree distribution PðkÞ � k�γ), and the temperature T= 0
(resulting in an average clustering coefficient of �c ¼ 0:806).
During the network generation, the nodes appeared one by one
with increasing radial coordinate and connected to a given
number of hyperbolically closest ones of the previously appeared
nodes. Aiming at connections of small hyperbolic distances
basically means that the new nodes tended to connect to nodes of
small radial coordinates and/or small angular distance from them.
In our Euclidean embeddings that represent small topological
distances as large inner products, the early-appearing nodes that
collected the highest number of links during the network
formation become placed in the outermost positions, as the
radial attractivity of the nodes increases outwards in this case.
However, when transforming these layouts into hyperbolic ones,
the largest hubs are transferred back to the innermost positions
that possess the highest radial attractivity from the point of view
of the minimisation of the hyperbolic distances. Besides, both our
Euclidean and hyperbolic embeddings seem to preserve the
angular arrangement of the nodes, reflecting the common
preference of both geometries towards the relatively small angular
distances of the connected pairs.

Embedding directly into the hyperbolic space with TREXPIC. The
above-discussed hyperbolic embedding methods rely on the
implicit assumption that the Euclidean embedding obtained in
the first stages of the algorithms is able to capture the most
important features of the network structure. This dependence on
the Euclidean methods can be avoided by embedding directly into
the hyperbolic space, as it was done e.g. in the hydra approach44

on undirected networks. In order to provide also such an algo-
rithm that follows this alternative path, we propose the method
TRansformation of EXponential shortest Path lengths to hyper-
bolIC measures, abbreviated as TREXPIC in the following.

As it was utilised in the hydra method44, the Lorentz product
defined between two position vectors as y � z ¼ y1z1 � ðy2z2 þ
y3z3 þ � � � þ ydþ1zdþ1Þ enables the calculation of the hyperbolic
distance in the hyperboloid representation of the d-dimensional
hyperbolic space via the formula xðy; zÞ ¼ 1

ζ � acoshðy � zÞ. Thus,
if we construct a distance matrix D between the nodes where the
matrix element Dst estimates the hyperbolic distance from node s
to node t, then using the formula Lst ¼ coshðζ � DstÞ we obtain a
matrix containing the estimated pairwise Lorentz products. Here,
we suggest using

Dst ¼ e�
q

SPLs!t ; ð6Þ
where q > 0 is an adjustable parameter that controls how fast our
distance measure increases towards the larger shortest path
lengths. The advantage of this choice compared to using simply
the shortest paths themselves as in the hydra approach44 is that it
makes all the matrix elements finite even in weakly connected
components.

Based on the matrix of Lorentz products, we created low-
dimensional hyperbolic embeddings in the hyperboloid model
with the help of dimension reduction. For this, we used singular
value decomposition (SVD) as opposed to hydra, which performs
eigendecomposition. Then, using a mapping between the
hyperboloid model and the native representation of the hyper-
bolic space, we obtained a layout in the native ball that is
comparable with the output of the previous embedding methods.

Directed embedding into two-dimensional spaces. As a first
illustration of the results that can be obtained from our
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framework, in Fig. 3 we show the embeddings of synthetic
directed networks generated by the stochastic block model
(SBM)57,58 (using the Python function ‘stochastic_block_model’
available in the ‘NetworkX’ package at https://networkx.org/
documentation/stable/reference/generated/networkx.generators.
community.stochastic_block_model.html) in both Euclidean and
hyperbolic spaces in the case of setting the number of dimensions
to d= 2, allowing the display of the achieved layouts in a simple
manner. In the top half of the figure (Fig. 3a–f) we show the
results for a graph with an apparent community structure (where
the diagonal elements of the connection probability matrix of the
blocks are larger), while in the bottom half of the figure (Fig. 3g–l)
the embedded network has an “anti-community” structure
(where the off-diagonal connection probabilities are larger).
According to these layouts, the considered embedding methods
were able to correctly separate the different blocks and provide an
angular arrangement that reflects the most important features of
the network structure in an easy-to-observe manner. Further
layouts of the SBM networks are displayed in Sect. S3.1 of Sup-
plementary Note 3.

Next, in Fig. 4 we present embeddings of the network of
political weblogs59 (downloaded from http://konect.cc/networks/
dimacs10-polblogs/), for which several quantitative results are
provided in the next section, in both the Euclidean and the

hyperbolic plane. As it can be seen here, the nodes of different
attributes tend to become grouped into different angular regions
in the embeddings. More examples of the automatic separation of
the ground-truth communities of real networks are provided in
Sect. S3.2 of Supplementary Note 3.

Performance of HOPE, TREXPEN, their several variants and
TREXPIC on real directed networks. We tested the proposed
embedding methods on the following directed real networks:

● A subnetwork of N= 505 number of nodes and E= 2081
number of edges extracted from Wikipedia’s norm network
of 201560, where Wikipedia pages are connected to each
other with directed edges that correspond to hyperlinks.
We created the subgraph by omitting all nodes for which
the highest value of the topic distribution does not reach
80%, i.e. we kept only the pages for which the topic was not
too uncertain.

● The transcriptional regulation network61 (downloaded
from https://www.weizmann.ac.il/mcb/UriAlon/download/
collection-complex-networks) of the yeast Saccharomyces
cerevisiae, describing E= 1063 number of interactions
between N= 662 number of regulatory proteins and genes.
The links point from the regulating objects toward the

Fig. 2 Demonstration of our Euclidean-hyperbolic conversion method MIC. Here we use embeddings of an undirected network that was created by a
generalised version of the popularity-similarity optimisation model. The node degrees are indicated by the node sizes: nodes with more connections are
depicted by larger markers. The nodes are coloured in each layout according to the angular coordinates originally assigned in the hyperbolic plane of
curvature K=− ζ2=− 1 by the E-PSO model. The depicted HOPE-R embeddings were created using α= 5.97 ⋅ 10−3, while the TREXPEN-R layouts were
obtained at q= 3.89. We used C= 2 and ζ= 1 for all the hyperbolic embeddings. We also show the result of carrying out the optional step of shifting the
centre of mass (COM) of the Euclidean node arrangement before converting it to a hyperbolic one.
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Fig. 3 Two-dimensional embeddings of directed networks generated by the stochastic block model. a An assortative block matrix used for generating
the input network for the embeddings displayed in panels b–f, where the embedding method is named in the panel title and the colouring of the nodes
indicates their block membership according to panel a. The source and the target coordinates are shown in separate planes (where a single node can
appear both as a source and as a target of links). As a consequence, the links of the network appear as lines between the “source plane” and the “target
plane”. g A disassortative block matrix used for generating the input network for the embeddings shown in panels h–l. The colouring of the nodes in panels
h–l reflects their block membership according to panel g.
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regulated ones. The mode of regulation was considered to
be the same in each case, i.e. we did not differentiate
between activators and repressors.

● A network59 (downloaded from http://konect.cc/networks/
dimacs10-polblogs/) of E= 19,021 hyperlinks among
N= 1222 number of U.S. political weblogs from before
the 2004 presidential election. The blogs are characterised
by their political leaning, forming 2 groups: left/liberal and
right/conservative.

● A word association network62 (downloaded from http://w3.
usf.edu/FreeAssociation/) of N= 4865 number of nodes
and E= 41,964 number of links that point from the cue
words toward the associated words.

Note that we carried out the same analysis as below for four
additional directed real networks in Supplementary Note 5, and
in Supplementary Note 7 we also show some results regarding the
embeddings of two undirected real networks, confirming that the
methods proposed here are able to compete with previous, well-
known dimension reduction techniques. In addition, in

Supplementary Note 6, we show the significance of the
directedness of the links in the examined directed real networks
by comparing their directed embeddings to the embeddings of
their undirected counterpart.

Since a node with zero out- and in-degree does not have any
role neither as a source nor as a target, it cannot be represented in
the embedding (will not have neither a source nor a target
position). Therefore, we only embedded the largest weakly
connected component (WCC) of each graph—the above-listed
N and E values refer to these. Throughout this section, we
discarded the link weights given in some of the datasets and
assigned the weight 1 to each edge. To learn about how our
embeddings treat real link weights, see Supplementary Note 8.

In the following subsections, we evaluate the embedding
performance on the above-listed four directed networks in three
aspects: we examine mapping accuracy, graph reconstruction and
greedy routing. The detailed description of the applied measures
is provided in the Methods section. During the measurements, we
took into consideration all the possible node pairs in each task for
the two smaller graphs (namely the network of Wikipedia pages

Fig. 4 Two-dimensional embeddings of the network of political blogs. The coordinates obtained for the source and the target representations of the
nodes are displayed in separate planes for better visibility. Thus, the links always point from a node on the “source plane” to a node on the “target plane”.
The node colours indicate the political leaning of the corresponding weblog. Larger node sizes in the “source plane” and in the “target plane” correspond to
larger out- and in-degrees, respectively. Panels a–c correspond to embeddings based on Katz proximity, while our exponential proximity was used in the
case of panels d–f. Panels a and d show the non-circular Euclidean embeddings created by HOPE and TREXPEN, respectively. Panels b and e depict the
circular Euclidean layouts yielded by the HOPE-R and the TREXPEN-R variants, while panels c and f present the hyperbolic embeddings obtained from these
using our Euclidean-hyperbolic conversion method MIC.
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and the yeast transcription network), but—because of the high
computational intensity—accomplished the evaluation of the
embedding performance only on sampled sets of node pairs in the
case of the two larger graphs (i.e. the network of political blogs
and the word association network). The details of the applied
sampling procedures are given in the Methods section.

We always tested HOPE-S, HOPE-R, TREXPEN-S and
TREXPEN-R both with and without shifting the centre of mass
(COM) of the node positions to the origin, but depicted here only
the results of the better option. Note that shifting all the nodes by
the same vector does not change the pairwise (Euclidean or
hyperbolic) distances, but modifies the pairwise inner products of
the nodes in a Euclidean embedding, and also changes the
hyperbolic node arrangement that can be obtained from that via
MIC. The difference between the quality scores achieved with or
without shifting the COM is demonstrated by Supplementary
Note 4 and Supplementary Note 7: usually the Euclidean
embeddings are hindered by the displacement of the COM,
whereas MIC—and the hyperbolic embeddings resulting from it—
can benefit from the balancing of the Euclidean node arrangement.

In every task, the tested number of dimensions were
d ¼ 2; 3; 4; 8; ¼ ; 2n ≤ N

10, n 2 Zþ for all the embedding methods,
where the condition d ≤ N/10 is intended to ensure a considerable
dimension reduction. Note that while the embeddings obtained in
high-dimensional spaces may be able to capture more informa-
tion precisely, relatively high importance can be attributed also to
the d= 2 and the d= 3 settings that are the only ones yielding
directly visualisable node arrangements.

In HOPE and its variants, we tested 15 number of α values that

we sampled from the interval 1
200�ρspectralðAÞ ;

1
ρspectralðAÞ

h i
for each

network (see Sect. S1.2 of Supplementary Note 1), where
ρspectral(A) is the spectral radius of the adjacency matrix A. In
the case of TREXPEN and its variants, we always tested 15
number of q values sampled from the interval
½� lnð0:9Þ=SPLmax;� lnð10�50Þ=SPLmax� (see Sect. S1.3 of Supple-
mentary Note 1), where SPLmax is the largest finite shortest path
length occurring in the given network. For TREXPIC, we tested
15 number of q values from the interval ½lnð1:0=0:9999Þ �
SPLmax; lnð10Þ � SPLmax� for each network (see Sect. S1.6 of
Supplementary Note 1). The suitability of these parameter
intervals is demonstrated by Supplementary Note 4, where we
show through the example of the Wikipedia network that the
performance of the examined methods typically reaches a
maximum within these ranges and declines at the boundaries.
It is important to emphasize that we did not try to find the exact
optimum of the embedding parameters, meaning that slight
variances between the different embedding methods have to be
treated with caution since these may simply be a consequence of
the imperfection of the parameter settings and the method that
seems to be worse may prevail over the other at a better
parameter setting.

The curvature K=− ζ2 of the hyperbolic space was set to− 1
for all the hyperbolic embeddings—the role of the curvature is
discussed in Sect. S4.1 of Supplementary Note 4. And lastly, we
always used C= 2 in MIC, which choice is supported by
Supplementary Note 4.

Mapping accuracy. A simple measure of the embedding quality is
provided by the mapping accuracy56, defined as the Spearman’s
correlation coefficient (that we calculated with the Python function
‘spearmanr’ available in the ‘scipy.stats’ package at https://docs.
scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html)
between the shortest path lengths and given geometric measures of
the node pairs in an embedded network. In this study, the examined
geometric measures were the Euclidean distance and the additive

inverse of the inner product in the case of the Euclidean embed-
dings, and the hyperbolic distance for the hyperbolic node
arrangements. In all cases, we considered the quality of
those embeddings to be better, which yielded higher positive values
of the correlation coefficient, meaning that we expected all the
investigated methods to minimise the distances and/or maximise
the inner products between the positions of the nodes that are close
to each other according to the network topology.

In Fig. 5, we show the mapping accuracy on the four test
networks, i.e. the network of Wikipedia pages, the transcription
network, the network of political blogs and the word association
network. As expected, TREXPEN, its variants and TREXPIC yield
higher correlations between the shortest path lengths and the
geometric measures compared to HOPE and its variants in most of
the cases since HOPE considers all the paths between the nodes to a
certain extent, not only the shortest ones. The best overall results
were produced by Euclidean embeddings, but the hyperbolic
methods do not fall behind much and, in the meantime, typically
prevail over the Euclidean node arrangements when considering the
distances between the nodes instead of the inner products.

Graph reconstruction. To quantify the ability of the node
arrangements provided by our embedding methods to reflect the
topology of the inputted networks, we accomplished graph
reconstruction trials aiming at the differentiation between the
connected and the unconnected node pairs of the examined
networks based on pairwise geometric measures. For this, we
embedded the whole largest WCC for each one of the studied
networks, and ranked the source-target node pairs according to
the Euclidean distance, the inner product or the hyperbolic dis-
tance between them, assuming simply that smaller distances and/
or higher inner products refer to higher proximities along the
graph, and thus, larger connection probabilities.

As a baseline, we measured the graph reconstruction
performance of some local methods that, contrary to the
embeddings, do not use the whole graph to give an estimation
of the connection probability of a given node pair. We associated
higher connection probabilities with higher numbers of common
neighbours63, higher node degrees (preferential attachment64)
and higher values of 3 directed variations of the originally
undirected resource allocation index65—for details, see the
Methods section. In our figures, we always indicate for each
quality measure only the best result obtained among these
(altogether 5) tested local methods.

We evaluated the graph reconstruction performance with 3
measures: Prec∈ [0, 1] denotes the precision obtained when
treating the number of links E that have to be reconstructed as a
known input (i.e. the proportion of the actual links among the
first E node pairs in the order assigned by the given connection
probability measure), the area under the precision-recall (PR)
curve AUPR∈ (0, 1] and the area under the receiver operating
characteristic (ROC) curve AUROC∈ [0, 1]. All of these are
increasing functions of the graph reconstruction performance.
For more details, see the Methods section.

Figure 6 presents the embedding quality with respect to the
graph reconstruction task of the examined four networks:
Fig. 6a–c refer to the subgraph of Wikipedia’s norm network,
Fig. 6d–f depict the results obtained for the transcriptional
regulation network, Fig. 6g–i deal with the network of U.S.
political weblogs, while Fig. 6j–l show the values achieved in the
case of the word association network. The usage of Katz
proximities (in HOPE and its variants) and the exponential
proximities (in TREXPEN and its variants) or distances (in
TREXPIC) both seem to be expedient in this task. While generally
the inner product in the Euclidean embeddings seems to be the
best proxy for the connection probability, in the network of
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political blogs, with regard to the area under the PR curve
(Fig. 6h) the best method in the two-dimensional case is a
hyperbolic one. Furthermore, when focusing on the distance-
based representations of the network topology, the hyperbolic
embeddings clearly outperform the Euclidean ones that often
even struggle to surpass the performance of the local methods.

Greedy routing. The navigability of an embedded network can be
measured via the greedy routing32,66,67, corresponding to the

process when a walker tries to reach a given destination node
from a starting node, always knowing only the position of the end
of the links that spring from the current node compared to the
position of the destination node. In our hyperbolic embeddings,
we minimised in each step among the current neighbours their
hyperbolic distance from the position of the destination node
occupied as a target of links, while in Euclidean embeddings we
tested both the minimisation of the Euclidean distance and the
maximisation of the inner product. An embedded network is

Fig. 5 Mapping accuracy on directed real networks. Each panel refers to a real network named in the title of the panel. For the networks in panels a and
b, we measured the mapping accuracy examining each node pair connected by at least one directed path, whereas for the larger networks in panels c and
d, the mapping accuracy was measured on five samples of 500,000 node pairs connected by at least one directed path. In the case of the larger networks,
we always considered the average of the performances over the five samples and depicted the corresponding standard deviations with (usually very small)
grey error bars. The colours indicate the used geometric measure, as listed in the common legend at the bottom of the figure. We plotted only the best
results in each panel, obtained with the parameter setting that yielded the highest values of the mapping accuracy. Note that the 0 values denote that the
given methods have not achieved any positive value. The bars were created considering all the tested number of dimensions, whereas the horizontal lines
show the best two-dimensional performances achieved among all the embedding methods.
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considered to be more navigable if its greedy routing score43GR-
score∈ [0, 1] is higher, expressing a larger success rate in reach-
ing the destination node and/or a smaller hop-length of the
successful greedy routes.

In Fig. 7, we depict the achieved greedy routing scores with the
corresponding success rates and average hop-lengths for the

examined starting node-destination node pairs in the studied four
real networks. For all of these networks, the best GR-scores are
achieved in the hyperbolic space; however, the distance-based
routing performed in the Euclidean space is usually also effective.
The inner product generally does not seem to be well usable for
navigating on networks in the Euclidean space. Besides, in this
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task HOPE and its variants clearly fall behind the methods that
we introduced here building on exponential proximities or
distances instead of Katz proximities.

Discussion
We introduced a general framework based on the dimension
reduction of proximity matrices for embedding directed networks
into Euclidean and hyperbolic spaces of any number of dimen-
sions. A key feature of our Euclidean embedding method
TREXPEN is that it assigns both a source and a target position
vector to each network node when aiming to capture the asym-
metry of the connections in directed input graphs. The proximity
matrix used in TREXPEN considers only the length of the
shortest paths contrary to calculating all path lengths as it is done
in the well-known HOPE algorithm55, and according to our
experiments, this may be suitable for obtaining higher quality
embeddings. This was especially striking in the case of the greedy
routing score, where the usage of our exponential proximities
instead of Katz proximities55 was proven to be strongly advan-
tageous. In addition, our exponential proximity measure can be
applied without any difficulty also on weighted networks, as it is
described in Supplementary Note 8.

We also proposed a model-independent conversion between
Euclidean and hyperbolic embeddings that does not assign any
specific hyperbolic network model as the origin of the network to
be embedded. The suggested transformation is based on the
assumption that high connection probabilities are represented by
large inner products in a circular Euclidean node arrangement on
the one hand, and by low hyperbolic distances in the corre-
sponding hyperbolic layout on the other hand. According to the
results, with the help of this transformation both the output of
our method TREXPEN and that of HOPE (with some minor
modification) can be converted into directed hyperbolic embed-
dings of high quality. In addition, inspired by the hydra method44

proposed for undirected networks, we also developed the
TREXPIC algorithm that can arrange directed networks in the
hyperbolic space in a straightforward manner, without the need
of creating a Euclidean embedding as an intermediate step.

The embedding techniques developed in this paper are all
based on dimension reduction, hence providing an efficient and
also model-independent approach for achieving an optimal
representation of directed networks in both Euclidean and
hyperbolic spaces. In two dimensions, the obtained hyperbolic
layouts seemed to be more pleasant to the human eye compared
to their Euclidean counterparts. This is due to the fact that the
large number of radially unattractive nodes are placed in the
outer regions of the hyperbolic disk, whereas they are gathered
around the origin on the Euclidean plane. Meanwhile, the radial
arrangements provided by TREXPIC did not seem to be so
informative visually due to the relatively small differences
between the radial coordinates, even though the measured quality
scores were competitive with that of the proposed conversion-
based hyperbolic algorithms. Treating the number of dimensions
of the embedding space as a free parameter, all of our methods

can utilize the benefits of the increased number of dimensions
(noting, however, that the number of dimensions was still sig-
nificantly lower compared to the system size in our experiments).
We demonstrated the excellent usability of HOPE, TREXPEN,
their variants and TREXPIC for different tasks via experiments
carried out on real networks of several disciplines, including e.g.
networks between webpages, word associations, and a transcrip-
tional regulation network.

It is worth emphasizing that in our measurements regarding
the mapping accuracy, the graph reconstruction performance and
the navigability, the hyperbolic distance was the only geometric
measure using which relatively good quality scores have been
achieved in all of the different tasks. Among the examined three
measures, the Euclidean distance performed the worst in map-
ping accuracy and especially in graph reconstruction, where it
was often outperformed even by the simple local methods that we
tested, while the results obtained using the Euclidean inner pro-
duct lagged behind both that of the Euclidean and the hyperbolic
distances in greedy routing. These findings clearly justify the
competitiveness of the hyperbolic embeddings. In recent years,
several studies examined the emergent properties of random
networks of different geometries14,68,69 and the indicators of
different hidden geometries behind networks70,71. In this work,
we did not pursue to reveal how certain network properties are
connected to the type and the dimension of the geometrical space
underlying the networks; however, our embedding framework
may contribute to further investigations on this topic by enabling
the placement of real networks in different geometrical spaces of
any number of dimensions.

Methods
This section provides the exact definition of the measures and methods used for
evaluating the embedding performance. Note that none of the examined quality
indicators assumes any specific model as the generator of the embedded network,
i.e., all the applied evaluation processes are model independent, just like our
embedding methods. For the details and the explanations regarding the studied
embedding algorithms, see Supplementary Note 1.

Mapping accuracy. To evaluate the performance of the embedding methods in
expressing the distance relations measured along the graph by means of geometric
measures, we calculated a mapping accuracy measure ACCm∈ [−1,+1] also used
for undirected networks56. It was defined as the Spearman’s correlation coefficient
(that we calculated with the Python function ‘spearmanr’ available in the ‘scipy.-
stats’ package at https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
spearmanr.html) between the shortest path lengths of a network and the pairwise
distances between the network nodes in the embedding space—either Euclidean or
hyperbolic. However, in the case of the Euclidean embeddings, the Euclidean
distance was not the only geometric measure that was examined, but the corre-
lation of the shortest path lengths with the inner products was also calculated.

Naturally, in directed networks we took into account the directedness of the
paths and compared the hop-length of the shortest path from node s to node t to
the distance or the inner product measured between the source position vector of
node s and the target position vector of node t. We always discarded those s− t
node pairs in our calculations, for which the examined graph does not contain any
connecting paths, i.e. between which the shortest path length is infinity, and also
disregarded the pairing of each node with itself (characterised by a shortest path
length of 0) since the location of the target representation of a node compared to its
own source position does not influence the quality of the embedding in itself, but
only via the relations of the node’s two representations with the other nodes.

Fig. 6 Graph reconstruction performance on directed real networks. For the networks in panels a–f, the task was to reconstruct all the links (Esampled= E),
whereas for the network of political blogs in panels g–j and for the word association network in panels j–l, due to the large network size, the task was to
reconstruct five samples of Esampled= 5000 and Esampled= 500 number of links, respectively. In the case of the larger networks, we always considered the
average of the quality scores over the five samples and depicted the corresponding standard deviations with (usually very small) grey error bars. Each row
of panels refers to a real network indicated in the row title, while the different columns show the different quality measures that we studied, given by the
precision obtained when reconstructing the first Esampled most probable links (1st column), the area under the precision-recall (PR) curve (2nd column), and
the area under the ROC curve (3rd column). The colours indicate the applied geometric measure, as listed in the common legend at the bottom of the
figure. Using the bars, we plotted only the best results regarding all the performance measures, considering all the tested number of dimensions. The
horizontal lines in colour show the best two-dimensional performances achieved among all the embedding methods, whereas the grey horizontal lines
correspond to the baselines provided by the random predictor and the best local method.
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Besides, to reduce the computational cost, in networks having >500,000 number of
start-destination node pairs that could be used for the evaluation of the mapping
accuracy, we estimated this quality measure based on 5 random samples of 500,000
proper node pairs. Note that when all the proper node pairs of a network are
considered, then the calculation of the mapping accuracy is deterministic, and thus,
there is no need for the repetition of its computation.

Evaluation of the embedding performance in graph reconstruction. We
examined how precisely the embedding methods can represent the presence and
the absence of the pairwise connections of an inputted network via the graph
reconstruction task, similarly to previous studies in the literature55,72. Here the
question is whether the connected and the unconnected node pairs can be dis-
tinguished based on pairwise measures that are derived with full knowledge of the
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network topology and can be interpreted as a proxy of the connection probability.
Regarding the embedding techniques, this means that we embedded the whole
largest WCC of a network in the Euclidean or the hyperbolic space, arranged the
node pairs in the increasing order of the Euclidean distance, the additive inverse
of the inner product or the hyperbolic distance and compared the set of node
pairs appearing at the beginning of the order (i.e. below a given threshold of the
applied geometric measure) to the list of links in the network. Besides the
embeddings, we also tested local methods in graph reconstruction, where the
decreasing order of the connection probability is estimated by the decreasing
order of such measures that depend solely on the immediate neighbourhood of
the two nodes in question. The assumptions of the applied local methods were the
following:

● Common neighbours: In undirected networks, the larger number of
common neighbours of two nodes are often associated with a larger
connection probability63. In directed networks, we assumed that the larger
the number of paths of hop-length 2 from node s to node t, the higher the
probability of the link from node s to node t.

● Preferential attachment: In undirected networks, a simple proximity measure is
given by the product of the node degrees in the examined node pair64. In the
directed case, we applied this concept as the following: the larger the product of
the out-degree of node s and the in-degree of node t (considering also the link
s→ t since we deal with graph reconstruction and not link prediction), the
higher the probability of the link from node s to node t.

● Resource allocation index: The resource allocation index RAI applies one of
the simplest ways for reducing the contribution of the common neighbours
of high degrees to the connection probability and assigning more weight to
the common neighbours of low degrees, which provide more specific
connections between the examined two nodes. For undirected networks,
the resource allocation index is defined65 as

RAIði; jÞ ¼ ∑
c2CNði;jÞ

1
kc
; ð7Þ

where CNði; jÞ denotes the set of the common neighbours of the examined
two nodes i and j, and kc stands for the degree of the common neighbour c.
Larger values of RAI are presumed to indicate larger connection probabilities.
For directed networks, we identified the set of common neighbours CNðs; tÞ
for the ordered node pair s, t as the nodes that are reachable from node s in
one step and from which node t is reachable in one step, and tested 3 versions
of RAI(s, t), in which we substituted kc in Eq. (7) with either the out-degree,
the in-degree, or the total degree of the common neighbour c.

In every case, the order between node pairs that have the same value of the given
measure of connection probability was set randomly.

In the smaller networks, we considered all the possible node pairs in the graph
reconstruction task with the exception of the pairing of each node with itself (since
self-loops are disregarded by the embeddings) and those node pairs in which the
out-degree of the source node or the in-degree of the target node is 0 (since to a
node with 0 out- or in-degree no position is assigned by the embedding methods as
source or target, respectively). In those larger graphs where the total number of the
proper source-target pairs exceeds 500,000, we applied a random sampling of the
connected and the unconnected node pairs. To obtain such samples that well
represent the total dataset, it is important to set the ratio between the number of
sampled links and the total number of sampled node pairs equal to the ratio
between the total number of links and the total number of proper node pairs in the
network73,74. In order to keep the computational cost within reasonable limits, we
set the number of links Esampled in each sample low enough to ensure that the total
size of the sample (i.e. the sum of the number of links and the corresponding
number of unconnected node pairs) remains under 500,000. When measuring the
embedding quality on such samples, we always repeated the sampling and the
reconstruction of the given links 5 times. However, since—at proper settings of the
embedding parameters—it is very rare that the same value of the given geometric
measure (i.e. the same connection probability) becomes assigned to more than one
node pair yielding an indefinite ordering between them, and therefore, the graph
reconstruction itself is rather deterministic, we did not repeat the evaluation of the

graph reconstruction performance in those cases where all the proper node pairs
were considered.

We characterised the embedding performance in graph reconstruction with the
following three measures (that can be also used for evaluating link prediction
accuracy75), each of which is an increasing function of the embedding quality:

● The precision at E number of node pairs labelled as connected, i.e.
Prec@E 2 ½0; 1� is defined as the proportion of the actual links among the E
number of guesses corresponding to the first E node pairs in the decreasing
order of the given measure of the connection probability. In our
measurements, we always set E to the number of links to be
reconstructed—that is, to the total number of links E in the smaller
WCCs and to the number of sampled links Esampled in the case of the larger
networks—and denoted the corresponding precision by Prec. For a random
predictor, Prec was calculated for each network as the ratio between the
number of actual links and all the node pairs in the examined set.

● The precision-recall (PR) curve depicts the proportion of the actual links
among all the node pairs that become labelled as connected (i.e. the precision)
as a function of the proportion of the links that are successfully identified
among all the links that have to be restored (i.e. the recall or true positive rate),
where moving between the different points of the curve corresponds to
changing the threshold value of the given connection probability measure or, in
other words, shifting the point in the node pair order that separates the node
pairs that we label as connected from those that we label as unconnected. (We
computed the precision-recall pairs for different probability thresholds with the
Python function ‘precision_recall_curve’ available in the ‘sklearn.metrics’
package at https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
precision_recall_curve.html.) To give an overall description of the perfor-
mances obtained at the different thresholds, we calculated AUPR∈ (0, 1] (with
the Python function ‘auc’ available in the ‘sklearn.metrics’ package at https://
scikit-learn.org/stable/modules/generated/sklearn.metrics.auc.html) that is the
area under the PR curve76. In the case of a random predictor, the precision-
recall curve is a horizontal line at the precision value given by the ratio between
the number of actual links and all the node pairs in the examined set, yielding
an AUPR equal to this constant precision value.

● The receiver operating characteristic (ROC) curve presents the proportion of
the links that are successfully identified among all the links that have to be
restored (i.e. the recall or true positive rate) as a function of the proportion of
the actually unconnected node pairs that become labelled as connected (i.e.
the false positive rate) obtained using different threshold values of the given
measure associated with the connection probability. (We computed the
receiver operating characteristic curve with the Python function ‘roc_curve’
available in the ‘sklearn.metrics’ package at https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.roc_curve.html.) To summarize this curve
in a single number, we calculated AUROC∈ [0, 1] (with the Python function
‘auc’ available in the ‘sklearn.metrics’ package at https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.auc.html) that is the area under the ROC
curve, corresponding to the probability that a randomly chosen connected
node pair gets ranked over a randomly chosen unconnected node pair in the
order of the examined connection probability measure77,78. For a random
predictor, the ROC curve is a straight line between the points (0, 0) and (1, 1)
with AUROC= 0.5.

Evaluation of the embedding performance in greedy routing. To characterise
the navigability of the embedded networks, similarly to several other
studies16,17,43,56, we examined the efficiency of the greedy routing32,66,67 on them.
The aim of greedy routing is to walk along the network’s edges from a starting node
s to a destination node t using the possible least number of steps, leaning solely on
local information, namely the geometric distance of the current neighbours from
the destination.

In our measurements, we adopted a rather general stepping rule, where the
greedy router being at node i always moves along that outgoing link of node i that
points toward the neighbour having a target position of the smallest geometric

Fig. 7 Greedy routing performance on directed real networks. For the networks in panels a–f, the task was to perform greedy routing between each node
pair connected by at least one directed path, whereas for the larger networks in panels g–l, the task was to perform greedy routing in five samples of
500,000 node pairs connected by at least one directed path. In the case of the larger networks, we always considered the average of the quality scores
over the five samples and depicted the corresponding standard deviations with (usually very small) grey error bars. The colours indicate the used
geometric measure as listed in the common legend at the bottom of the figure. We plotted in each panel for each method only the result of the parameter
setting that turned out to be the best according to the GR-score. The bars were created considering all the tested number of dimensions, whereas the
horizontal lines show the best two-dimensional average performances achieved among all the embedding methods. Each row of panels refers to a real
network named in the row title, and the different columns correspond to different quality measures: the 1st column shows the greedy routing score (the
higher the better), the 2nd column corresponds to the success rate of greedy routing (the higher the better), and the 3rd column depicts the average hop-
length of the successful greedy paths (the smaller the better), where the grey bars indicate the average of the hop-length of the shortest paths connecting
the node pairs for which the greedy routing was successful.
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measure in relation to the target position of the destination node among all the
current neighbours. The examined geometric measures for which the local
minimisation was performed were the Euclidean distance or the additive inverse of
the inner product in the Euclidean embeddings, and the hyperbolic distance in the
hyperbolic cases. Returning to a node that has already been visited in the current
walk indicates that the walk between the given pair of starting and destination
nodes can not be accomplished in a greedy way. Thus, two simple measures of the
greedy routing’s quality are the average hop-length of the successful greedy routes
(that reached the destination and have not stopped at any other node) and the
fraction of successful greedy walks. Besides, we also measured the greedy routing
score43 (GR-score ∈ [0, 1], the higher the better), which we define for directed
networks as

GR-score ¼ 1
Npaths

� ∑
s2S

∑
t2Ts

‘ðSPÞs!t

‘ðGRÞs!t

; ð8Þ

where ‘ðSPÞs!t stands for the shortest path length from node s to another node t—
which is infinity if there is no path in the graph leading from s to t –, and ‘ðGRÞs!t
denotes the greedy routing hop-length between the same pair of starting and
destination nodes—which is set to infinity if the routing fails to reach node t from
node s. To allow the investigation of weakly connected networks where not all the
nodes are reachable from every node, we always took into account only those
starting node-destination node pairs that are connected by at least one path in the
graph, i.e., for which ‘ðSPÞs!t is finite, and thus, the greedy routing is at least
theoretically possible. Therefore, the total number Npaths of the examined start-
destination pairs can be <N ⋅ (N− 1), and the summations in Eq. (8) go over only
the nodes that function as a source of links in the network, i.e. the nodes of non-
zero out-degree (contained by the set S) and the destinations to which leads at least
one directed path from node s (contained by the set Ts for a given starting node s,
not including node s).

For large networks, it is not feasible to take into consideration each possible
node pair, but using a large enough random sample of the node pairs, the
performance of an embedding in greedy routing can still be well estimated. In this
study, we maximised the number of start-destination node pairs for which the
greedy routing was attempted at 500,000 for each network, meaning that in those
networks where the total number of node pairs connected by at least one path of
finite length was larger than this limit, we randomly sampled 500,000 number of
such node pairs and performed the greedy routing only between the selected
starting and destination nodes. For those networks where thus not all the possible
node pairs were examined, we repeated the node pair sampling and the greedy
routing 5 times. Otherwise, since—at proper settings of the embedding parameters
—it is very rare that two or more neighbouring nodes have the exact same
geometric relation with the destination and the greedy router has to choose
randomly between them, and therefore, the greedy routing itself is rather
deterministic, we carried out greedy routing only once for all the proper node pairs
of a network.

Data availability
All data generated during the current study are available from the corresponding author
upon request. The subnetwork extracted from Wikipedia’s norm network of 201560 is
available at https://github.com/BianKov/TREXPEN_TREXPIC/tree/main/
embeddingDirectedNetworks/wikipedia. The yeast transcription network61 is available at
https://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks. The
network of political blogs59 is available at http://konect.cc/networks/dimacs10-polblogs/.
The word association network62 is available at http://w3.usf.edu/FreeAssociation/.

Code availability
The code used for embedding undirected/directed, unweighted/weighted networks using
HOPE, TREXPEN, their variants and TREXPIC is available at https://github.com/
BianKov/TREXPEN_TREXPIC.
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