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An anomalous topological phase transition in
spatial random graphs
Jasper van der Kolk 1,2, M. Ángeles Serrano 1,2,3 & Marián Boguñá 1,2✉

Clustering–the tendency for neighbors of nodes to be connected–quantifies the coupling of a

complex network to its latent metric space. In random geometric graphs, clustering under-

goes a continuous phase transition, separating a phase with finite clustering from a regime

where clustering vanishes in the thermodynamic limit. We prove this geometric to non-

geometric phase transition to be topological in nature, with anomalous features such as

diverging entropy as well as atypical finite-size scaling behavior of clustering. Moreover, a

slow decay of clustering in the non-geometric phase implies that some real networks with

relatively high levels of clustering may be better described in this regime.
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For many years, Landau’s theory of symmetry breaking was
believed to be the ultimate explanation of continuous phase
transitions1. In the liquid-crystal transition, for instance, the

continuous translational and rotational symmetry at high tem-
peratures break into a set of discrete symmetries in the low-
temperature phase. This paradigm was challenged by Berezinskii,
Kosterlitz, and Thouless (BKT) in the two-dimensional XY
model2–4. For this model, the Mermin–Wanger theorem5 states
that there is no ordered phase even at zero temperature, so that a
phase transition in Landau’s sense cannot exist. Yet, BKT showed
that, in fact, there is a finite temperature phase transition driven
by topological defects: vortices and antivortices. At low tem-
perature, vortex-antivortex pairs are bound together. Above the
critical temperature, vortex-antivortex pairs unbind, moving
freely on the surface. No symmetry is broken in the transition
since both phases are rotationally invariant and so magnetization
is zero in both phases. Topological order and topological phase
transitions are nowadays fundamental to understand the prop-
erties of quantum matter6.

We study this type of transition in the framework of complex
networks, more specifically that of sparse geometric random
network models. We use a geometric description of networks7 as
it provides a simple and comprehensive approach to complex
networks. The existence of latent metric spaces underlying
complex networks offers a deft explanation for their intricate
topologies, giving at the same time important clues on their
functionality. The small-world property, high levels of clustering,
heterogeneity in the degree distribution, and hierarchical orga-
nization are all topological properties observed in real networks
that find a simple explanation within the network geometry
paradigm7. Within this paradigm, the results found in this work
hold in a very general class of spatial networks defined in compact
homogeneous and isotropic Riemannian manifolds of arbitrary
dimensionality8–13. Yet, in this paper, we focus on the S1 model9

and its isomorphically equivalent formulation in the hyperbolic
plane, the H2 model14. Interestingly, many analytic results have
been derived for the S1=H2 model, e. g. degree distribution9,14,15,
clustering14–17, diameter18–20, percolation21,22, self-similarity9, or
spectral properties23 and it has been extended to growing
networks24, as well as to weighted networks25, multilayer
networks26,27, networks with community structure28–30 and it is
also the basis for defining a renormalization group for complex
networks31,32. The analytical tractability of the S1 model makes it
the perfect framework for our work.

In this paper, we study a transition taking place in a very
general class of sparse spatial random network models and show
that it is, in fact, topological in nature. We show that both its
thermodynamic properties as well as the finite size scaling
behavior are, to the best of our knowledge, novel, and different to
those observed in the BKT transition. We structure the paper in
the following way: First, we introduce the S1-model, which will be
used to obtain both analytical as well as numerical results for the
phase transition. Then, by mapping the network model to a
model of non-interacting fermions, we are able to study analy-
tically the behavior of the entropy at the critical point, showing
that it diverges in the thermodynamic limit at the critical point,
unlike in the case of the BKT transition. Next, we prove that the
transition is topological in nature by noticing that in the transi-
tion, chordless cycles in the network play the role of topological
defects with respect to a tree. The critical temperature separates a
low-temperature phase, where the underlying metric space forces
chordless cycles to be short range –mostly triangles– and a high-
temperature phase, where chordless cycles decouple from the
metric space and become of the order of the network diameter.
This is similar to the unbinding of vortex-antivortex pairs in the

BKT transition. These two distinct topological orders of the
transition can be quantified by means of the average local clus-
tering coefficient, a measure of the fraction of triangles attached
to nodes. Clustering is finite in the geometric phase with short-
range cycles and vanishes in the thermodynamic limit of the non-
geometric phase with long-range chordless cycles. Thus, the local
average clustering coefficient can be used to study the finite-size
scaling behavior of the transition. This geometric to non-
geometric phase transition shows interesting atypical scaling
behavior as compared with standard continuous phase transi-
tions, where one observes a power law decay at the critical point
and a faster decay in the disordered phase. Instead, at the critical
point, the average local clustering coefficient decays logarith-
mically to zero for very large systems and, in the non-geometric
phase, where the coefficient decays as a power law, we discover a
quasi-geometric region where the exponent that characterizes this
decay depends on the temperature.

Results and discussion
The S1-model. In the S1 model, nodes are assumed to live in a
metric similarity space, where similarity refers to all the attributes
that control the connectivity in the network, except for the
degrees. At the same time, nodes are heterogeneous, with nodes
with different levels of popularity coexisting within the same
system. The popularity of a given node is quantified by its hidden
degree. In our model, expected degrees can match observed
degrees in real networks and we fix the positions of nodes in the
metric space so that generated networks can be compared against
real networks. This imposes constraints on the connection
probability. Specifically, a link between a pair of nodes is created
with a probability that resembles a gravity law, increasing with the
product of nodes’ popularities and decreasing with their distance
in the similarity space. We further ask the model to define an
ensemble of geometric random graphs with maximum entropy
under the constraints of having a fixed expected degree sequence.
This determines completely the form of the connection prob-
ability depending on the value of one of the model parameters:
temperature8. Next, we describe the S1 model in the low and
high-temperature regimes. Further technical details can be found
in Supplementary Note 1.1.

The S1 is a model with hidden variables representing the
location of the nodes in a similarity space and their popularity
within the network. Specifically, each node is assigned a random
angular coordinate θi distributed uniformly in [0, 2π], fixing its
position in a circle of radius R=N/2π. In this way, in the limit
N≫ 1 nodes are distributed in a line according to a Poisson point
process of density one with periodic boundary conditions. Each
node is also given a hidden degree κi, which corresponds to its
ensemble expected degree. In the low temperature regime, each
pair of nodes is connected with probability

pij ¼
1

1þ xij
μ̂κiκj

� �β ; ð1Þ

where xij= RΔθij is the distance between nodes i and j along the
circle, and β > βc= 1 and μ̂ ¼ β

2πhki sin
π
β are model parameters

fixing the average clustering coefficient (c) and average degree
(hki) of the network, respectively8. In this representation, the
parameter β plays the role of the inverse temperature, controlling
the level of noise in the system.

In the high temperature regime β < βc we again fix the angular
coordinate and expected degree of the nodes (κi, θi) so that the
degree distribution of the network remains unaltered when
temperature is increased beyond the critical point and the model
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can be directly compared with real networks. Under these
constraints, maximizing the entropy of the ensemble leads to the
following connection probability8

pij ¼
1

1þ xβij
μ̂κiκj

; ð2Þ

with μ̂ ’ ð1� βÞ2�βNβ�1=hki for β < 1 and μ̂ ’ ð2hki lnNÞ�1

when β= 1 (Here we define ‘A≃ B’ as ‘A is asymptotically equal
to B’, i.e. that the equality becomes exact as N→∞. This in
contrast to ‘A ~ B’ which means that A and B are asymptotically
proportional to one another). Notice that this definition of the
model converges to the soft configuration model with a given
expected degree sequence33–36 in the limit of infinite temperature
β= 0. As we show in Supplementary Note 1.2, in this regime long
range connections dominate, which causes the entropy density to
scale as lnN (see Fig. 1) in the whole interval β∈ [0, 1] (and so to
diverge in the limit N→∞) and the clustering to vanish in the
thermodynamic limit.

Entropy and the phase transition. Now that we have defined the
model both above and below the critical point βc= 1, we can
study if the transition in the local properties (the presence of
triangles attached to nodes) affects the global behavior of the
system (codified by the thermodynamic properties, specifically
the entropy). To this end, we show that, for β > βc, the networks
generated by the S1-model can be mapped exactly to a gas of
identical particles with Fermi statistics. First, we note that the

connection probability in Eq. (1) can be rewritten as the Fermi
distribution8

pij ¼
1

eβðϵij�μÞ þ 1
; ð3Þ

where the energy of state ij is

ϵij ¼ ln
xij
κiκj

" #
ð4Þ

and where the chemical potential μ ¼ ln μ̂ fixes the expected
number of links, as in the grand canonical ensemble. Second,
links in our model are unlabeled –and so indistinguishable–
objects. Third, the model generates simple graphs such that only
one link can occupy a given state of energy ϵij, which implies that
the links respect the Fermi exclusion principle. Finally, such a
state is occupied with the probability given in Eq. (3), which is the
occupation probability of the Fermi statistics in the grand cano-
nical ensemble. Thus, the S1 model is equivalent to a system of
noninteracting fermions at temperature T ¼ 1

β
8,14. These Fermi-

like “particles” correspond to the links of the network and live on
a discrete phase space defined by the N(N− 1)/2 pairs among the
N nodes of the network. Each such state ij has an associated
energy given by ϵij, which grows slowly with the distance between
nodes i and j in the metric space.

Despite the fact that links in the model are noninteracting
particles, the system undergoes a continuous phase transition at a
critical temperature Tc ¼ β�1

c ¼ 1, separating a geometric phase,
with a finite fraction of triangles attached to nodes induced by the
triangle inequality, and a non-geometric phase, where clustering
vanishes in the thermodynamic limit9. We can analyze the nature
of the transition by studying the entropy of the ensemble. Given
the mapping of the S1 model to a system of non-interacting
fermions in the grand canonical ensemble, we start from the
grand canonical partition function

lnZ ¼ ∑
i<j
ln 1þ xij

μ̂κiκj

 !�β
2
4

3
5; ð5Þ

where μ̂ ¼ exp μ. Given the homogeneity and rotational invar-
iance of the distribution of nodes in the similarity space, we can
place the i’th node on the origin, leading to N identical terms.
When the system size is large, we can approximate the sums in
Eq. (5) by integrals. This leads to the following expression

lnZ ¼ N
Z Z

dκdκ0ρðκÞρðκ0Þ
Z 1

0
dx ln 1þ x

μ̂κκ0

� ��β
" #

¼ Nμ̂hki2
Z 1

0
dt ln 1þ t�β

� � ¼ N
μ̂hki2π
sin π

β

:

ð6Þ

We can then use the above expression to find the grand
potential Ξ ¼ �β�1 lnZ and the entropy as S ¼ β2ð∂Ξ∂βÞμ From

this, we can find the entropy per link of the system as

S
E
¼ β� π cot

π

β
�β!βþc 1

β� 1
; ð7Þ

where in the last step μ̂ was plugged in. Note that E=N〈k〉/2 is
the number of links –and so particles– in the network.
Interestingly, the entropy density is only a function of β, and so
independent of the degree distribution.

From Eq. (7), we see that the entropy per link diverges at the
critical temperature β ! βþc ¼ 1. This implies that there is a
sudden change in the behavior of the system at the critical point
β= βc, which could indicate the presence of a phase transition.

(a)

(b)

Fig. 1 Behavior of the network model as one crosses the critical
temperature, both from an entropic as topological perspective. a Sketch
illustrating the different organization of cycles in the two phases, short-
range at low temperatures and long-range --of the order of the network
diameter-- in the high temperature regime. b Entropy per link for S1

geometric networks of different sizes with homogeneous degrees. Different
curves are obtained by numerical integration (see Supplementary Note 1.2).
The inset shows the same curves in the region β > βc in logarithmic scale.
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This transition is, however, anomalous –at odds with the
continuous entropy density usually observed in continuous phase
transitions– and thus cannot be described by Landau’s symmetry-
breaking theory of continuous phase transitions. Figure 1 shows a
numerical evaluation of the entropy for different system sizes in
homogeneous networks confirming the divergence of the entropy
per link at the critical temperature as predicted by our analysis.
Nevertheless, as we show in Supplementary Note 1.2, entropy per
link diverges logarithmically with the system size at β= βc so that
the divergence can only be detected for very large systems.

Notice that the S1 model is rotationally invariant both above
and below the critical temperature, which implies that there is no
symmetry breaking at the critical point. In fact, we argue that βc
separates two distinct phases with different organization of the
cycles, or topological defects, in the network. Indeed, the cycle
space of an undirected network with N nodes, E links, and Ncom

connected components is a vector space of dimension
E−N+Ncom

37. This dimension is also the number of indepen-
dent chordless cycles in the network as they form a complete
basis of the cycle space. In complex networks, we are typically
interested in connected or quasi-connected networks, with a giant
connected component extending almost to the entire network. In
the S1 model this is achieved in the percolated phase when the
average degree is sufficiently high, but still in the sparse regime so
that the vast majority of cycles are contained in the giant
component. In this case, by changing temperature without
changing the degree distribution, the number of nodes, links,
and components remain almost invariant and so does the number
of chordless cycles. Thus, the two different phases correspond to a
different arrangement of the chordless cycles of the network, as
illustrated in the sketch in Fig. 1. This is again similar to the BKT
transition since the number of vortices and antivortices is
preserved in both phases. We, however, notice that the exact
preservation of the number of cycles is not a necessary condition
for the transition to take place.

This difference in arrangement of the cycles is caused by the
following process. At low temperatures, the high energy associated
with connecting spatially distant points causes the majority of
links attached to a given node to be local. This defines the
geometric phase at β > βc where the triangle inequality plays a
critical role in the formation of cycles of finite size. As temperature
increases, the number of energetically feasible links connecting
very distant pairs of nodes grows, and at β ≤ βc the number of
available long-range states becomes macroscopic due to the
logarithmic dependence of the energy on distance, which causes
the entropy per link to be infinite in this regime. This defines a
non-geometric phase where links are mainly long-ranged and the
fraction of finite size cycles vanishes because the triangle
inequality stops playing a role. This in turn implies that chordless
cycles are necessarily of the order of the network diameter.

In the geometric phase, there are finite cycles of any order,
although, as we show in Fig. 2, the density of triangles is much
higher than the density of squares, pentagons, etc. In the non-
geometric phase, the cycles are of the order of the network diameter.
However, due to the (ultra) small-world property and finite size
effects, the diameter of the network can be quite small, so that the
distinction between finite cycles of order higher than three and long-
range cycles can be difficult. Therefore, the average local clustering
coefficient –measuring the density of the shortest possible cycles,
which are also the most numerous– is the perfect order parameter to
quantify this topological phase transition.

Finite size scaling behavior of the transition. To quantify the
behavior of clustering in this transition, we compute the average
local clustering coefficient, �c, as the local clustering coefficient

averaged over all nodes in a network. The local clustering coef-
ficient for a given node i, with hidden variables (κi, θi), is defined
as the probability that a pair of randomly chosen neighbors are
neighbors themselves and, using results from38, can be computed
as

ci ¼
∑j≠i∑k≠ipijpjkpik

∑j≠ipij

� �2 : ð8Þ

In Supplementary Notes 1.3 and 1.4 we derive analytic results
for the behavior of the average local clustering coefficient when
hidden degrees follow a power law distribution ρ(κ) ~ κ−γ with
2 < γ < 3 and a cutoff κ < κc ~Nα/2. Notice that the arguments
above, presenting the average local clustering coefficient as an
appropriate order parameter, should be valid for all choices of the
distribution of the hidden degrees, as long as they lead to sparse
graphs. Here, we choose this specific definition because it is the
most common in the literature and allows for analytically
tractable results. Notice also that it includes both the hetero-
geneous case with (α > 1) and without (0 < α ≤ 1) degree-degree
correlations39, as well as the homogeneous case (α= 0, see
Supplementary Note 1.3 for the derivation) where
ρ(κ)= δ(κ− 〈k〉).

When β > 1, i.e. in the geometric region, the average local
clustering coefficient behaves as9

lim
N!1

cðN; βÞ ¼ QðβÞ; ð9Þ
for some constant Q(β) that depends on β. Moreover, there exists
a constant Q0 such that

lim
β!1þ

QðβÞ
ðβ� 1Þ2 ¼ Q0: ð10Þ

The analytic results for β ≤ 1 are derived by finding appropriate
bounding functions f ðN; βÞ≤ cðN; βÞ≤ gðN; βÞ that are both
asymptotically proportional to N−σ(β)h(N, β), where h(N, β)
represents some non-power law function of N, implying that
c � N�σðβÞhðN; βÞ as well. When β0<β≤ 1, i.e. in the quasi-

Fig. 2 The global clustering coefficient for different sized chordless
cycles as a function of the inverse temperature. The global clustering
coefficient is defined as the ratio between the amount of closed n-lets and
the total amount of n-lets, where n goes from three (triangles) to six
(hexagons). This coefficient is a measure for the amount of different sized
chordless cycles, as a function of the inverse temperature β. The results
shown are for networks of size N= 5000 and 〈k〉= 6. Error bars
representing the standard error are smaller than the data points and
therefore not displayed.
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geometric region,

cðN; βÞ � ðlogNÞ�2 if β ¼ 1

N�2ðβ�1�1Þ if β0 < β < 1

(
ð11Þ

where the value of β0 depends on the parameter α. If α > 1 it is
given by β0 ¼ 2=γ and if κc grows with N slower than any power
law (α= 0) then β0 ¼ 2

3. Notice that the behavior in a close
neighborhood of βc is independent of γ. The fact that
the microscopic details of the model, in particular the hidden
degree distribution, do not affect this scaling behavior points to
the universality of our results.

Finally, when β < β0 (in the non-geometric region), the exact
scaling behavior depends on α (see the Supplementary Note 1.3
for the case 0 < α ≤ 1):

cðN; βÞ � N�ðγ�2Þ logN if α > 1

N�1 if α ¼ 0:

(
ð12Þ

These results are remarkable in many respects. First, clustering
undergoes a continuous transition at βc= 1, attaining a finite
value in the geometric phase β > βc and becoming zero in the
non-geometric phase β < βc in the thermodynamic limit. The
approach to zero when β ! βþc is very smooth since both
clustering and its first derivative are continuous at the critical
point. Second, right at the critical point, clustering decays
logarithmically with the system size, and it decays as a power of
the system size when β < βc. This is at odds with traditional
continuous phase transitions, where one observes a power law
decay at the critical point and an even faster decay in the
disordered phase. Third, there is a quasi-geometric region
β0 < β < βc where clustering decays very slowly, with an exponent
that depends on the temperature. Finally, for β < β0, we recover
the same result as that of the soft configuration model for scale-
free degree distributions34. The results in Eqs. (11) and (12))
around the critical point suggest that Neff ¼ lnN plays the role of
the system size instead of N. Indeed, in terms of this effective size,
we observe a power law decay at the critical point and a faster
decay in the unclustered phase, as expected for a continuous
phase transition. Consequently, we expect the finite size scaling
ansatz of standard continuous phase transitions to hold with this
effective size. We then propose that, in the neighborhood of the
critical point, clustering at finite size N can be written as

�cðβ;NÞ ¼ lnN½ ��η
νf ðβ� βcÞ lnN½ �1ν
� �

; ð13Þ
with η= 2, ν= 1, and where f(x) is a scaling function that behaves
as f(x) ~ xη for x→∞.

We test these results with numerical simulations and by direct
numerical integration of Eq. (8) using Eq. (1) for β > βc and Eq.
(2) for β ≤ βc. Simulations are performed with the degree-
preserving geometric (DPG) Metropolis-Hastings algorithm
introduced in40, that allows us to explore different values of
β while preserving exactly the degree sequence. Given a network,
the algorithm selects at random a pair of links connecting nodes
i, j and l,m and swaps them (avoiding multiple links and self-
connections) with a probability given by

pswap ¼ min 1;
ΔθijΔθlm
ΔθilΔθjm

 !β
2
4

3
5; ð14Þ

where Δθ is the angular separation between the corresponding
pair of nodes. This algorithm maximizes the likelihood that the
network is S1 geometric while preserving the degree sequence
and the set of angular coordinates, and it does so independently
of whether the system is above or below the critical temperature.

Notice that the continuity of Eq. (14) as a function of β makes it
evident that, even if the connection probability takes a different
functional form above and below the critical point, the model is
the same.

Figure 3 shows the behavior of the average local clustering
coefficient as a function of the number of nodes for homogeneous
S1 networks with different values of β, showing a clear power law
dependence N−σ(β) in the non-geometric phase β < βc, with an
exponent that varies with β as predicted by our analysis. These
results are used to measure the exponent σ(β) as a function of the
inverse temperature β, which in Fig. 4 are compared with the
theoretical value given by Eqs. (11) and (12)). The agreement is in
general very good, although it gets worse for values of β very close

Fig. 3 The average local clustering coefficient as a function of the
network size. The networks were generated by applying the DPG technique
to a configuration model network with a homogeneous degree sequence
k= 4, ∀ k. Dashed lines are power law fits used to estimate the exponent
σ(β) defined as �c � N�σðβÞ. Errorbars representing the standard error are
smaller than the data points and therefore not displayed.

Fig. 4 Exponent of the average local clustering coefficient as a function of
the inverse temperature. The exponent σ(β), defined by
cðN; βÞ � N�σðβÞhðN; βÞ, with h(N, β) a non-power law function of N,
evaluated from numerical simulations (colored circles), numerical
integration of Eq. (8) (dashed lines), and theoretical approach Eqs. (11) and
(12)) (solid lines). Networks are generated with a homogeneous
distribution of hidden degrees (red lines and circles) and a power law
distribution with exponents γ= 2.3 and γ= 2.7, blue and green lines and
circles, respectively. Errorbars representing the standard error are smaller
than the data points and therefore not displayed.
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to βc and for very heterogeneous networks. This discrepancy is
expected due to the slow approach to the thermodynamic limit in
the non-geometric phase, which suggests that the range of our
numerical simulations, N∈ [5 × 102, 105], is too limited. To test
for this possibility, we solve numerically Eq. (8) for sizes in the
range N∈ [5 × 105, 108] and measure numerically the exponent
σ(β). In this case, the agreement is also very good for
heterogeneous networks. The remaining discrepancy when
β ≈ βc is again expected since, as shown in Eq. (11), right at the
critical point clustering decays logarithmically rather than as a
power law. Finally, Fig. 5 shows the finite size scaling Eq. (13)
both for the numerical simulations and numerical integration of
Eq (8). In both cases, we find a very good collapse with exponent
η/ν ≈ 2 in all cases. The exponent ν, however, departs from the
theoretical value ν= 1 in numerical simulations due to their small
sizes but improves significantly with numerical integration for
bigger sizes. We then expect Eq. (13) to hold, albeit for very large
system sizes.

The slow decay of clustering in the non-geometric phase
implies that some real networks with significant levels of
clustering may be better described using the S1 model with
temperatures in the quasi-geometric regime β < βc. Given a real
network, the DPG algorithm can be used to find its value of β. To
do so, nodes in the real network are given random angular
coordinates in (0, 2π). Then the DPG algorithm is applied,
increasing progressively the value of β until the average local
clustering coefficient of the randomized network matches the one
measured in the real network. Many real networks have very high
levels of clustering and lead to values of β > βc. However, there are

notable cases with values of β below the critical point. As an
example, in Supplementary Note 2 we show values of β obtained
for several real networks with values below or slightly above βc. In
fact, some of them are found to be very close to the critical point,
like protein-protein interaction networks of specific human
tissues41, with β ≈ 1, or the genetic interaction network of the
Drosophila Melanogaster42, β ≈ 1.1.

Conclusions
The S1 model shows different behavior of the average local
clustering coefficient on the left and right side of βc= 1. To
understand if there is a phase transition that goes beyond clus-
tering, we cast the model into a framework of Fermi statistics and
compute the entropy of the ensemble. The result shows that the
entropy diverges at the critical point, implying a change in
the structural organization of the system as a whole. Because the
model is rotational invariant in both regimes, one can conclude
that this transition is not due to symmetry breaking. The behavior
of clustering—non-zero on the right and vanishing on the left of
the critical point—indicates that the transition is of topological
nature related to the organization of cordless cycles. As the model
around the critical point is in the small-world regime, the largest
cycles are, at most, of the order lnN on both sides. This implies
that short cycles, like triangles, are more appropriate as the order
parameter to study the phase transition.

As the S1 model is geometric in nature, the set of states that
edges—considered noninteracting particles in the Fermi
description—can occupy are correlated by the triangle inequality
in the underlying metric space. This correlation induces an
effective interaction between particles, ultimately leading to a
clustered phase at low temperatures and to the anomalous phase
transition described above. Interestingly, the logarithmic depen-
dence of the state-energy with the metric distance results in the
divergence of the entropy at a finite temperature βc and, thus, to a
different ordering of cycles below βc, where clustering vanishes in
the thermodynamic limit. The finite size behavior of the transi-
tion is anomalous, with lnN and not N playing the role of the
system size. This slow approach to the thermodynamic limit is
relevant for real networks in the quasi-geometric phase
β0 < β < 1, for which high levels of clustering can still be
observed. All together, our results describe an anomalous topo-
logical phase transition that cannot be described by the classic
Landau theory but that, nevertheless, differs from other topolo-
gical phase transitions, such as the BKT transition, in the beha-
vior of thermodynamic properties.

Data availability
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authors on request.
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