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Thermodynamics of correlated electrons in a
magnetic field
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The Hofstadter–Hubbard model captures the physics of strongly correlated electrons in an

applied magnetic field, which is relevant to many recent experiments on Moiré materials. Few

large-scale, numerically exact simulations exists for this model. In this work, we simulate the

Hubbard–Hofstadter model using the determinant quantum Monte Carlo (DQMC) algorithm.

We report the field and Hubbard interaction strength dependence of charge compressibility,

fermion sign, local moment, magnetic structure factor, and specific heat. The gross structure

of magnetic Bloch bands and band gaps determined by the non-interacting Hofstadter

spectrum is preserved in the presence of U. Incompressible regions of the phase diagram

have improved fermion sign. At half filling and intermediate and larger couplings, a strong

orbital magnetic field delocalizes electrons and reduces the effect of Hubbard U on ther-

modynamic properties of the system.
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Strong magnetic fields allow us to probe the phase diagram of
strongly correlated materials and uncover novel phases. For
example, a magnetic field induces charge/pair density wave

order in cuprate superconductors1–4; magnetic field is a convenient
tuning parameter for accessing quantum critical points5,6, and
field-induced reentrant superconductivity also has been reported in
uranium compounds7,8. With the recent proliferation of experi-
mental evidence for fractional quantum Hall effect, super-
conductivity, and other correlated electron phases9–14 in graphene
Moiré superlattices, there is renewed interest in studying the
behavior of strongly correlated electronic systems in strong mag-
netic fields.

Properties of non-interacting electrons in a two-dimensional
periodic lattice under the influence of a strong magnetic field are
fairly well-understood. In this system, the competition between
lattice and magnetic length scales leads to the fractal Hofstadter
butterfly spectrum with recursive magnetic subband
structure15,16, which generalizes the idea of Landau levels in a free
electron gas. The Chern numbers associated with these magnetic
subbands provide an elegant explanation of the integer quantum
Hall effect17. Experimentally, the Hofstadter Hamiltonian has
been realized in ultra-cold atoms loaded on optical lattices18, and
direct observation of the Hofstadter spectrum has been reported
in Moiré superlattices in graphene with high resolution19,20.

The most natural framework for understanding the simultaneous
influence of magnetic field and Coulomb interaction on electrons in
a periodic lattice is to take the Hofstadter Hamiltonian and add to it a
Hubbard interaction term. In the literature, this is sometimes called
the Hofstadter–Hubbard or Hubbard–Hofstadter model. This model
has been investigated using Hartree–Fock mean-field theory21,22,
exact diagonalization23,24, dynamical mean-field theory25,26, and in
the large U limit via renormalized mean-field theory27. Aside from
exact diagonalization, which is limited to small system sizes, all
methods used to study the Hubbard–Hofstadter model have been
approximate and don’t capture the full extent of quantum fluctua-
tions. It is not conclusive, for example, whether interactions change
or preserve the gap structure of the Hofstadter butterfly22,24,26.

Determinant quantumMonte Carlo (DQMC)28–30 is an unbiased
and numerically exact algorithm for studying quantum systems at
finite temperature. It employs a discrete Hubbard–Stratonovich
transformation to reduce the quartic Hubbard interaction term to
quadratic at the cost of introducing a fluctuating auxiliary field. This
auxiliary field is then sampled using the Metropolis–Hastings algo-
rithm. DQMC has been employed successfully in the (zero-field)
Hubbard model to study spin and charge excitations31,32 and
superconducting fluctuations33, as well as find evidence for fluctu-
ating stripes34 and T-linear resistivity35. The DQMC method is

especially powerful at half-filling in the absence of kinetic
frustration36, where the fermion sign problem is absent due to
particle-hole symmetry, even in the presence of a magnetic field. This
allows simulations to be performed at much lower temperatures,
providing access to properties more reflective of the ground state.

At half filling, the Fermi surface of the non-interacting Hof-
stadter model consists of a finite number of Dirac points at even-
denominator rational fractions of magnetic flux per plaquette37.
The ground state of the Hubbard–Hofstadter model is thus
expected to remain a Dirac semi-metal up to some finite coupling
strength Uc. At half a magnetic flux quantum per plaquette, the
model also is known as the π-flux model38, and has been studied
extensively numerically. As interactions are turned on, the π-flux
model exhibits a quantum phase transition of the chiral Hei-
senberg Gross-Neveu universality class at Uc ≈ 5.6t into an anti-
ferromagnetic Mott insulator (AFMI)39–43. Since the π-flux
model corresponds to the Hubbard–Hofstadter Hamiltonian
threaded with maximum possible flux, we may think of the zero-
field Hubbard model on a half-filled square lattice as the “0-flux
model”, which exibits a metal–AFMI transition with Uc= 029,30.
Our simulations address intermediate field strengths between the
0-flux and π-flux Hubbard model, which, to the best of our
knowledge, has not been studied via DQMC.

In this work, we study the Hubbard–Hofstadter model using
DQMC and present the evolution of thermodynamic properties
of correlated electrons in an orbital magnetic field B. We
demonstrate that the gross structure of magnetic Bloch bands and
band gaps determined by the non-interacting Hofstadter spec-
trum is preserved in the presence of U. Moreover, we determine
that the many-body fermion sign is directly connected to elec-
tronic charge compressibility. Finally, focusing on the half-filled
AFMI, we find that an orbital magnetic field tends to delocalize
electrons and thus effectively lower the influence of Hubbard U.

Results and discussion
Interacting gap structure. In Fig. 1, we show the electron density
〈n〉 vs. chemical potential μ at different field strengths for
U/t= 0–8. In Fig. 1a we observe an electron density plateau where
there are energy gaps between magnetic Bloch bands,
hni ¼ 2Bν=Φ0; ν 2 Z. As U increases in Fig. 1b–e, these plateaus
are weakened and pushed outward in chemical potential, but
inflections of the 〈n〉 vs. μ curves are still visible at the same
density values, indicating that degeneracy of Landau levels is not
modified by U. Since we are at relatively high temperature, only
the most prominent band gaps (with Chern number C= ±1)
〈n〉= 2B/Φ0 remain visible at larger U values. Additionally, at

Fig. 1 Electron density vs. chemical potential. Electron density 〈n〉 vs. chemical potential μ a in the non-interacting system, and b–e with Hubbard
U/t= 2–8. Curves with the same color have the same magnetic field strength Φ/Φ0 across all panels. Each curve is plotted with an offset 2B/Φ0 in order to
improve visibility of inflection points. Error bars, corresponding to ±1 standard error of the mean, estimated by jackknife resampling, are smaller than the
size of data points. All plots have inverse temperature β= 4/t.
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half filling, as U increases, a Mott gap appears and widens for all
values of magnetic field. In Fig. 1d, e, for U/t ≥ 6, when the Mott
gap is well-defined, it decreases monotonically as the magnetic
field increases, consistent with previous exact diagonalization
results24. The same trend can be seen in a “correlated Hofstadter
butterfly” plot, as shown in Supplementary Fig. S1 and described
in Supplementary Note 2. We will discuss later, and in more
detail, the behavior of the Mott gap.

It is instructive to plot our data as Wannier diagrams44, i.e.,
color intensity plots of charge compressibility χ= ∂〈n〉/∂μ as a
function of electron density 〈n〉 and magnetic field strength B.
Charge compressibility, or thermodynamic density of states, is
directly measurable in experiments9,13. In a non-interacting
system, at zero temperature, charge compressibility is equivalent
to the single-particle density of states. We measure charge
compressibility in DQMC simulations as

χ ¼ β

N
∑
ij
½hninji � hniihnji�; ð1Þ

where ni= ni↑+ ni↓. In Fig. 2, we show Wannier diagrams for
U/t= 0–6. For all values of U, we observe local minima of χ
(indicating incompresssible states) along straight lines satisfying
the Diophantine equation

hni
n0

¼ r
Φ

Φ0

� �
þ s; ð2Þ

where r and s are integers, and n0= 2 is the electron density of
the completely filled system. This is consistent with what we
expect from the Hofstadter spectrum in the non-interacting
system44. The most prominent incompressible state with r= 1,
s= 0 remains clearly visible up to U/t= 8. Less prominent
incompressible states with r= 2 and r= 3 persist to U/t= 4 and

U/t= 2, respectively. These results show that the integer quantum
Hall states for r ≤ 3, s= 0 have no weak coupling instabilities with
respect to Hubbard repulsion; the r= 1, s= 0 state remains stable
up to large U. At half filling, the vertical compressibility minima
indicative of the Mott gap becomes visible for U/t≳ 4. Thus, we
argue that the gross structure of magnetic Bloch bands and band
gaps determined by the non-interacting Hofstadter spectrum is
preserved in the presence of U, with the Mott gap at half-filling
when U/t≳ 4 superimposed as an additional feature. Due to the
sign problem, our DQMC simulations are restricted to relatively
high temperature βt ≤ 5, so we cannot resolve conclusively how
much U changes the fine structure of the Hofstadter spectrum.

Fermion sign. An important quantity in QMC simulations of
interacting fermions is the fermion sign. The Hubbard-Hofstadter
model is sign-problem-free at half filling on a bipartite lattice. But
the fermion sign problem45 fundamentally prevents us from
obtaining high quality simulation data at low temperatures and
away from half filling. Thus, any insight into factors affecting the
severity of the sign problem is valuable. Since the fermion sign
problem is NP-hard46, we do not expect a general solution to the
fermion sign problem to exist. Nevertheless, as the sign problem
is representation-dependent, it is possible to reduce or completely
remove the sign problem for specific classes of non-generic
Hamiltonians47.

In this work, we find a correlation between the fermion sign
and the charge compressibility. In Fig. 3, we show the fermion
sign 〈s〉 and charge compressibility χ, both plotted against 〈n〉, for
one representative set of parameters. Local minima of charge
compressibility in this interacting system exactly correspond to
local maxima of the fermion sign. At these local maxima, the
fermion sign may be an order of magnitude improved over its

Fig. 2 Wannier diagrams. Wannier diagrams a in the non-interacting
system and b–d with Hubbard U/t= 2–6. Gray regions in b–d are
parameter regions where we don't have simulation data. All plots have
inverse temperature β= 5/t. Magnetic field strength is displayed as Φ/Φ0,
and electron density is shown as 〈n〉/n0, where n0 is the electron density of
a completely filled system, which in our case is 2. The system is particle-
hole symmetric, so only the range 〈n〉/n0∈ [0, 0.5] is shown. Dotted cyan
lines indicate where we expect local minima of charge compressibility to
occur from the non-interacting model.

Fig. 3 Fermion sign—charge compressibility correspondence. a Charge
compressibility χ= ∂〈n〉/∂μ and b fermion sign 〈s〉 plotted against electron
density 〈n〉 at magnetic field strength Φ/Φ0= 12/64, inverse temperature
β= 6/t and Hubbard interaction U/t= 4. This system is particle-hole
symmetric, so we only plot the density range 〈n〉∈ [0, 1]. Dashed lines
indicate electron densities at which χ reaches local minina and 〈s〉 reaches
local maxima. Error bars, corresponding to ±1 standard error of the mean,
estimated by jackknife resampling, are smaller than the size of data points.
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value at other electron densities and that of the standard zero-
field Hubbard model. For an extended figure demonstrating that
this correspondence is general across our parameter space and
not a finite size artifact, see Supplementary Fig. S2 and
Supplementary Note 3. Our results may mean that although the
Hubbard model, in general, suffers from a sign problem, it is
possible to obtain good results when we are precisely located on
an integer quantum Hall plateau. Since similar sign-
compressibility correspondence has been reported30,48–50, it
appears that the improvement of fermion sign in insulating
phases is quite general, consistent with our intuition that
fermionic statistics become less important in localized states.
Our results also relate to recent work51–53 suggesting that the
fermion sign is not merely a coincidental barrier to accessing low-
temperature physics, but may be reflective of intrinsic physics of
model Hamiltonians.

Half-filling. Finally, we focus on half filling, where we believe
interesting interplay between Hofstadter physics and Hubbard
physics occurs. In the absence of a magnetic field, the ground
state of the half-filled Hubbard model is an AFMI at any nonzero
value of U, i.e., (Uc= 0)29,30, due to perfect nesting of the Fermi
surface and a logarithmically divergent single-particle density of
states. In the limit of strong interactions U≫ t, the half-filled
Hubbard model maps to the Heisenberg model with anti-
ferromagnetic nearest neighbor spin exchange energy J= 4t2/U54.

In the presence of an orbital magnetic field, the non-interacting
density of states at half filling is modified significantly. As can be
seen in Fig. 2a, the density of states/charge compressibility does
not change monotonically with field, but instead shows
prominent minima at Φ/Φ0= p/q, where p and q are co-prime
and q is even, corresponding to a non-interacting ground state
with q inequivalent Dirac cones37. The large-field limit corre-
sponds to the π-flux model, in which a semimetal–AFMI
transition occurs at Uc ≈ 5.6t. As the orbital magnetic field
significantly changes the non-interacting density of states at half
filling, we expect that critical Uc should exhibit B field
dependence. It would be interesting to investigate if Uc changes
monotonically with B, or if it exhibits non-monotonicity
commensurate with the oscillatory behavior of the density of
states. We defer the mapping of this U-B phase diagram to
future work.

For the remainder of this section, we focus on the parameter
region U/t∈ [6, 10]. Here, the system is safely an AFMI at all field
strengths. We examine the evolution of local magnetic moment
hm2

zi, antiferromagnetic structure factor S(π, π) and specific heat
cv= ∂〈E〉/∂T with magnetic field strength, and see that these
thermodynamic quantities all consistently show that a strong
orbital magnetic field tends to modify the AFMI by delocalizing
electrons and thereby reducing the effect of U on the low-energy
properties of the Mott insulating phase. For finite-size analysis of
thermodynamic observables at half filling, see Supplementary
Fig. S3 and Supplementary Note 3.

In Fig. 4, we show the temperature and field dependence of the
local moment. The local moment or sublattice magnetization

hm2
zi ¼

1
N
∑
i
hðni" � ni#Þ2i ð3Þ

measures the degree of spin localization. It is 0.5 in the non-
interacting system and approaches 1 in the U/t→∞ limit. In the
zero-field Hubbard model, hm2

zi has features at T ~U associated
with the formation of local moments, and at T ~ J, associated with
short- or long-range ordering of local moments36,55. We see that
at fixed U, increasing magnetic field strength reduces the local
moment monotonically at all temperatures, with the effect largest

below temperatures T ~ J. The zero-field and π-flux limit of local
moment data are consistent with previous work43.

The magnetic structure factor is the Fourier transform of the
real-space spin–spin correlation function

SðQÞ ¼ 1
N
∑
ij
eiQ�ðRi�RjÞhðni" � ni#Þðnj" � nj#Þi: ð4Þ

When the system has long-range antiferromagnetic order, the
structure factor is strongly peaked at the ordering wave vector
Q= (π, π), with peak height scaling linearly with lattice size36,56.
In our simulations, we find that at all B and U values, the
magnetic structure factor is sharply peaked at (π, π), consistent
with the system being in the AFMI phase. Insets to Fig. 4 show
that at all U, the magnetic field monotonically reduces S(π, π),
indicating that the magnetic field reduces the AFMI ordering
tendencies.

Fig. 4 Evolution of local moment and magnetic structure factor in the
half-filled Hubbard–Hofstadter model. Temperature and field dependence
of local moment hm2

z i at half filling. Insets display the field dependence of
magnetic structure factor S(π, π) at βt= 16 for magnetic field strength Φ/
Φ0∈ [0, 0.5]. a-c Correspond to Hubbard interaction strength U/t= 6–10,
respectively. Curves with the same color and marker type have the same
magnetic field strength across all panels. Error bars, corresponding to
±1 standard error of the mean, estimated by jackknife resampling, are
smaller than the size of data points.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00968-2

4 COMMUNICATIONS PHYSICS |           (2022) 5:204 | https://doi.org/10.1038/s42005-022-00968-2 | www.nature.com/commsphys

www.nature.com/commsphys


Figure 5 shows the evolution of the low temperature peak of cv
with magnetic field and Hubbard U. We calculate cv numerically by
measuring energy as a function of temperature 〈E(T)〉 and taking
the finite difference Δ〈E〉/ΔT. In the zero-field half-filled Hubbard
model, at large U, the specific heat has a “two peak” structure, with
a broad high temperature peak at T ~U associated with charge
fluctuations and and a narrow low temperature peak at T ~ J
associated with spin fluctuations55,57. When a magnetic field is
turned on, as shown in Fig. 5b, c, U is large enough that the two
peaks remain well-separated. The high temperature peak doesn’t
move, while the low temperature peak shifts to higher temperatures.
In Fig. 5a, the two peaks are initially well-separated at low fields, but
at Φ/Φ0≳ 1/4, the low temperature peak shifts upwards and merges
with the high-temperature peak, complicating our interpretation.
This is likely due to U/t= 6 being low enough for the system to not
simply map to the Heisenberg model, and for the system to be close
to the AFMI phase transition at π-flux.

Since the low temperature peak in specific heat is associated with
the spin exchange energy J, we are tempted to say that the orbital

magnetic field increases J. However, this interpretation may be
overly naive. We believe the more accurate statement is that the
orbital magnetic field tends to delocalize electrons, and thus,
effectively lower the influence of U on low energy properties of the
system. Insets to Fig. 5 show that a magnetic field increases (in
magnitude) kinetic energy in the insulating phase, which supports
this interpretation. This runs contrary to our usual intuition that an
orbital magnetic field localizes electrons by winding them up into
Landau orbits. However, here our starting point is a correlated
insulator, rather than free electrons (or a Fermi liquid). Our results
in Figs. 4–5, along with the decreasing width of the Mott gap in
Fig. 1d, e, suggest that in the AFMI phase, the orbital magnetic field
tends to delocalize electrons, increase kinetic energy, and lower the
effective influence of U. We observe that the influence of magnetic
field is suppressed as U increases. As U/t→∞, the influence from
the B field will diminish and become negligible, since in the atomic
limit, no hopping exists, and the orbital magnetic field cannot have
an influence on the system.

Conclusions
In this work, we implemented DQMC to simulate the
Hubbard–Hofstadter model and directly investigate field dependent
thermodynamic properties of correlated electrons, specifically
focusing on the charge compressibility, local moment, magnetic
structure factor, and specific heat. By examining charge compres-
sibility, we find that magnetic Bloch bands are smeared out by the
Hubbard interaction, but the non-interacting band gaps away from
half-filling persist at temperatures accessible to DQMC in the
presence of local correlations. At half filling, we find that the orbital
magnetic field and Hubbard potential act antagonistically. At
intermediate to strong coupling U/t∈ [6, 10], strong orbital mag-
netic fields reduce the apparent width of the Mott gap, reduce the
magnitude of the local moment and magnetic structure factor,
increase kinetic energy, and shift the low-T peak of specific heat to
higher temperatures. Together, these phenomena indicate that an
orbital magnetic field tends to delocalize electrons and reduce the
effect of U. From the algorithmic perspective, we find that the
fermion sign in DQMC simulations is improved significantly when
the physical system is incompressible.

For future work, we are interested in mapping out the U-B
phase diagram for U/t∈ [0, 6] and in studying the evolution of Uc

with magnetic field strength. At smaller values of U, we can
achieve lower temperatures in DQMC simulations, but finite size
effects also become more significant. Pinning down the precise
location of the phase transition will require simulations on much
larger lattices, as well as careful finite size scaling analysis.

As this work is partially motivated by understanding the large
variety of exotic states in Moiré materials9–14, another potential
direction for future work is to use methods developed here to study
the Hubbard–Hofstadter model on the honeycomb or triangular
lattice. It has been suggested that the single-band Hubbard model on
a triangular lattice is directly applicable to transition metal dichal-
cogenide heterobilayers58,59. However, due to the linear dispersion
relation of Dirac fermions, the Coulomb interaction is poorly
screened in graphene. It is likely that some multi-orbital, extended
Hubbard model may be required to capture the full effect of electron
correlations, for example, in twisted bilayer graphene60,61.

Methods
We study the single-band Hubbard–Hofstadter model on a two dimensional square
lattice

H ¼ � t ∑
hijiσ

fexp iφij

h i
cyiσcjσ þ h:c:g

� μ∑
iσ
niσ þ U ∑

i
ni" � 1=2

� �
ni# � 1=2

� �
;

ð5Þ

Fig. 5 Evolution of specific heat and kinetic energy in the half-filled
Hubbard–Hofstadter model. Temperature and field dependence of specific
heat cv at half filling. Insets display the field dependence of kinetic energy
〈K〉 at βt= 16 for magnetic field strength Φ/Φ0∈ [0, 0.5]. a-c Correspond
to Hubbard interaction strength U/t= 6–10, respectively. Values of
J= 4t2/U are also indicated for each U. Curves with the same color and
marker type have the same magnetic field strength across all panels. Error
bars denote ±1 standard error of the mean, estimated by jackknife
resampling.
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where t is the hopping integral between the nearest neighbor sites 〈ij〉, μ is chemical
potential, and U is the on-site Coulomb interaction strength. cyiσ (ciσ) is the creation
(annihilation) operator for an electron on site i with spin σ= ↑, ↓ and niσ ¼ cyiσciσ
measures the number of electrons of spin σ on site i. As this model only has
nearest-neighbor hopping, it preserves particle-hole symmetry at half-filling with
μ= 0. A uniform, orbital magnetic field is introduced by the Peierls substitution via
the phase

φij ¼
2π
Φ0

Z Rj

Ri

A � d; ð6Þ

where the integral is taken over the shortest straight line path, Φ0= h/e is the
magnetic flux quantum, and Ri is the position of site i. We choose the symmetric
gauge A ¼ ð�yx̂ þ xŷÞB=2 and do not include any Zeeman coupling terms.

We simulate the Hamiltonian in Eq. (5) on a finite cluster with lattice constant
a= 1, and Nx and Ny sites in the x and y directions, respectively. N=NxNy denotes
the total number of sites. We implement modified periodic boundary conditions
consistent with magnetic translation symmetry62. Requiring that the wave function
be single-valued on the torus gives the flux quantization condition Φ/Φ0= nf/N,
where Φ= Ba2 is the flux through a plaquette and nf is an integer.

Allowing the hopping integral to carry a complex phase requires us to modify
the standard DQMC algorithm to use complex numbers, which increases the run-
time of our algorithm ~3-fold. The complexified DQMC algorithm retains the
same O(M3L) scaling as the real DQMC algorithm, where M=Nx=Ny is the
linear size of the lattice, and L is the number of imaginary time discretization steps.
Unless otherwise specified, all Hubbard–Hofstadter DQMC simulations are per-
formed on a Nx=Ny= 8 square cluster. Error bars in DQMC results, when shown,
denote ±1 standard error of the mean, estimated by jackknife resampling. Detailed
simulation parameters are listed in Supplementary Note 1. Non-interacting results,
where shown, are obtained from diagonalizing the Hofstadter model on a 40 × 40
cluster in order to minimize finite size effects.

Data availability
Aggregated numerical data and analysis routines required to reproduce the figures can be
found at https://doi.org/10.5281/zenodo.6383764. Raw simulation data that support the
findings of this study are stored on the Sherlock cluster at Stanford University and are
available from the corresponding author upon reasonable request.

Code availability
The most up-to-date version of our DQMC simulation code can be accessed at https://
github.com/edwnh/dqmc.
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