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Emergence of active turbulence in microswimmer
suspensions due to active hydrodynamic stress and
volume exclusion
Kai Qi 1,3, Elmar Westphal2, Gerhard Gompper 1✉ & Roland G. Winkler 1✉

Microswimmers exhibit an intriguing, highly-dynamic collective motion with large-scale

swirling and streaming patterns, denoted as active turbulence – reminiscent of classical high-

Reynolds-number hydrodynamic turbulence. Various experimental, numerical, and theoretical

approaches have been applied to elucidate similarities and differences of inertial hydro-

dynamic and active turbulence. We use squirmers embedded in a mesoscale fluid, modeled

by the multiparticle collision dynamics (MPC) approach, to explore the collective behavior of

bacteria-type microswimmers. Our model includes the active hydrodynamic stress generated

by propulsion, and a rotlet dipole characteristic for flagellated bacteria. We find emergent

clusters, activity-induced phase separation, and swarming behavior, depending on density,

active stress, and the rotlet dipole strength. The analysis of the squirmer dynamics in the

swarming phase yields Kolomogorov-Kraichnan-type hydrodynamic turbulence and energy

spectra for sufficiently high concentrations and a strong rotlet dipole. This emphasizes the

paramount importance of the hydrodynamic flow field for swarming motility and bacterial

turbulence.
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Active matter comprises a unique class of systems with
intricate structural and dynamical features, facilitated by
their elementary agents consuming internal energy, or

energy from the environment, to maintain an out-of-equilibrium
state. The interplay between the autonomous locomotion of the
agents and their interactions leads to large-scale self-organized
swarm behavior manifested in such diverse biological systems as
flocks of birds1–4, school of fish5,6, bacterial colonies7–16, epi-
thelial cell monolayers17–19, and the cell cytoskeleton20–23, as well
as synthetic systems like robots24,25, self-assembled magnetic
spinners26, and phoretic colloids27–29.

Bacteria exhibit a particular mode of locomotion in dense
populations denoted as swarming motility, where they exhibit
rapid, coherent group migration over surfaces, with large-scale
swirling and streaming patterns7,10–12,30,31. Similarly to bacterial
swarming behavior11,13,16,32–38, tissue cells19,39–41, and filament/
motor-protein mixtures18,22,23,42,43 exhibit collective, visually
chaotic motion, nowadays often denoted as active turbulence or
mesoscale turbulence, with large-scale spatially and temporally
random flow patterns. At first glance, the flow patterns are
reminiscent of those observed in classical high-Reynolds-number
hydrodynamic turbulence44–46, despite active turbulence occur-
ring at exceedingly small Reynolds numbers. The similarity
prompted intensive studies of the collective motion of active
matter systems to unravel the underlying physical mechanisms
due to its prototypical character for nonlinear and none-
quilibrium dynamical systems, which is considered as a major
challenge for current theoretical physics43.

Fundamental insight into hydrodynamic turbulence is achieved
via velocity correlation functions47. In particular, Kolmogorov
predicted the universal power-law dependence for the energy
spectrum E ~ k−κ on the wavenumber k= ∣k∣, with κ= 5/3,
obtained by Fourier transformation of the spatial velocity corre-
lation function44,47. In fact, this relation applies for two- (2D) and
three-dimensional (3D) systems45. Numerous studies on active
systems reveal a wide spectrum of possible turbulent character-
istics dependent on their constituents and the detailed (micro-
scopic) interaction mechanisms, reflected in a wide range of
exponents deviating from the Kolmogorov value, see Table 1.
Experiments on B. subtilis and E. coli bacteria13,38 yield expo-
nents significantly above and below the Kolmogorov value.
Computer simulations employing various models have been
performed and the energy spectrum has been calculated. Non-
hydrodynamic particle-based simulations of an extension of the
Vicsek model48, accounting for short-range parallel and large-
range antiparallel alignment, yield the same exponent49 as
experiments on E. coli13. Simulations of self-propelled rodlike
particles give a value close to the Kolmogorov value13,50. Lattice

Boltzmann simulations of microswimmers represented by
extended force dipoles (point particles) produce seemingly tur-
bulent behavior for sufficiently large swimmer densities51 (see
Table 1). For active nematics, the route to chaotic behavior has
been studied experimentally and theoretically23,52. Their
dynamics is characterized by an intrinsic length scale la, where la
is determined by the balance between the active and nematic
elastic stress18,42, and the creation and annihilation of topological
defects. In addition, various theoretical studies have been per-
formed with42 and without18 defects, where both yield similar
energy spectra with distinct power-law exponents for length
scales larger and smaller than la (Table 1). In contrast, we expect
hydrodynamic interactions to dominate the chaotic and turbulent
behavior in bacterial suspensions. Hence, it is a priori not evident
that both types of chaotic dynamics exhibit the same kind of
turbulent behavior, taken into account the disparity in the
exponents κ and κ̂ in Table 1.

There are two particular systems of mesoscopic active particles,
namely spinners — short rodlike self-organized colloidal struc-
tures rotated by an external magnetic field53 — and Marangoni
surfers28, where turbulent dynamics consistent with Kolmogorov
scaling has been observed. Their Reynolds numbers Re � Oð10Þ
are much smaller than that of classical inertial turbulence, but are
much larger than those of microswimmer systems, where Re≪ 1.

As a major difference to hydrodynamic turbulence, various
experimental and simulation studies of active turbulence suggest
the presence of a characteristic upper length scale for the vortex
size, only below which the energy spectrum decreases in a power-
law manner with increasing wavenumber k32,35,36. This scale is
typically on the order of ten microswimmer lengths. Theoretical
studies based on a continuum approach13,36,43,54, where the
velocity field is described by the incompressible Toner-Tu
equation55,56 combined with a Swift-Hohenberg term57 for pat-
tern formation, support this observation. However, in contrast to
high-Reynolds-number hydrodynamic turbulence, which is gov-
erned by inertia, the internal stress due to self-propulsion and
polar alignment interactions of the active agents is important,
which, combined with the fluid dynamics, determines the vortex
size54.

The diversity of obtained energy spectra and characteristic
power laws (Table 1) indicates a strong dependence of the col-
lective behavior on the detailed microswimmer interactions. Yet,
it is not clear to which extent and under what circumstances
hydrodynamic interactions are important.

In this article, we perform extensive coarse-grained mesoscale
hydrodynamic simulations by employing the multiparticle colli-
sion dynamics (MPC) approach for fluids58–60 to elucidate the
collective, turbulent motion of microswimmers in monolayer

Table 1 Various aspects of experimentally, theoretically, and by simulations studied systems exhibiting features of active
turbulence.

Technique System/Approach Shape HI Excl. volume Active stress Rotlet dipole Gaussian vel. distr. κ, k−κ (large k) κ̂; kκ̂ (small k) Ref.

Experiment B. subtilis Elong. √ √ √ √ √ 8/3 5/3 13

E. coli Elong. √ √ √ √ / 4/3 3/5 38

Cells Elong. √ √ √ − − ≳13/3 − 41

Theory Field, isotrop. / √ − − − / 8/3 5/3 13

Act. nem. (def. free) / √ − − − / 12/3 −1 18

Act. nem. / √ − − − √ 12/3 −1 42

Simulations SPR Rod − √ − − √ ≳5/3 / 50

Vicsek-type Point part. − − (√) − / 8/3 5/3 49

LB Point part. √ − √ − / 11/3 / 51

MPC: ϕ= 0.60 Spheroid √ √ √ √ − 2 5/3 This work
MPC: ϕ= 0.68 Spheroid √ √ √ √ √ 5/3 1 This work

The articles (Ref.) discuss microscale systems exhibiting a power-law energy spectrum E(k) ~ k−κ for km < k < kc and EðkÞ � kκ̂ for k < km, with km and kc the wavenumber of the maximum in the energy
spectrum and that of the microswimmer characteristic length, respectively. Note that in active nematic theory, km= 2π/la18, 42. Cells comprise canine kidney, endothelial, myoblast, and fibroblast cells.
Symbols: “√” aspect is present, “−” aspect is absent, “/” aspect has not been analyzed/considered.
Act. nem. active nematics, SPR self-propelled rod, LB Lattice Boltzmann, MPC multiparticle collision dynamics, HI hydrodynamic interactions, ϕ packing fraction.
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films. The microswimmers are described in a coarse-grained
manner through the squirmer model60–64. Particular attention is
paid to the influence of the microswimmers’ hydrodynamic flow
field on their collective behavior, i.e, the active stress and the
rotlet dipole resulting from the rotating flagella (bundles) and the
counterrotating cell body in flagellated bacteria65–68. In general,
hydrodynamics plays a decisive role in the collective behavior of
microswimmers60,63,69. While dry spherical active Brownian
particles (ABPs) exhibit motility-induced phases separation
(MIPS)15,70–75, spherical microswimmers in the presence of
hydrodynamics show cluster formation60, but no phase
separation60,76. However, anisotropic, spheroidal squirmers
exhibit enhanced clustering compared to similar ABP systems
due to hydrodynamic attraction and steric interactions60. Hence,
it is important to unravel the effect of shape, active stress, and of a
rotlet dipole in dense microswimmer systems on their emergent
collective properties, since bacteria in films exhibit swarming — a
rapid, coherent group migration over surfaces in dense popula-
tions, with large-scale swirling and streaming patterns10,11,16,31 —
rather than clustering and phase separation11,13,16,32–36,38.

By systematically varying the squirmer density, the active
stress, and the rotlet dipole strength, our simulations provide
insight into their influence on the collective dynamics of micro-
swimmers. In particular, the combination of active stresses and a
non-zero rotlet dipole suppresses phase separation and promotes
swarming motility.

The analysis of the swarming phases reveals turbulent-like
motion, where the energy spectrum displays power-law decays
below the characteristic length scale discussed above, however,
with an exponent depending on the squirmer concentration. We
find the value κ= 5/3 for our largest density, strong active stress,
and a non-zero rotlet dipole, consistent with the Kolmogorov
prediction. Based on our analysis, in the Discussion and Con-
clusions section, we propose criteria which a dense, visually
chaotic systems should satisfy to be possibly classified as
turbulent.

Results
In our simulations, Nsq prolate spheroidal squirmers with the semi-
major, bz, and -minor, bx, axis are confined in a three-dimensional
narrow slit between two parallel walls and periodic boundary
conditions along the x and z direction (Fig. 1). As described in the
Methods section, the prescribed squirmer surface velocity yields

swimming with the velocity v0, an active stress of strength β, and a
rotlet dipole of strength λ. The embedding fluid is explicitly mod-
eled via the multiparticle collision dynamics (MPC) method58,59,
applying the stochastic-rotation variant with angular momentum
conservation (MPC-SRD+a)77,78. Further details of the model and
implementation are presented in the Methods section.

Structural properties. The simulation snapshots of Fig. 2 illus-
trate emergent structures for the various considered packing
fractions, active stresses, and rotlet dipole strengths. Distinct
motility patterns can be identified:

(i) Gas of small clusters for ϕ≲ 0.3.
(ii) Motility-induced phase separation (A-MIPS) for ∣β∣≥1, λ=

0, ϕ≳ 0.3. Since here the shape of the spheroids implies
squirmer alignment and the formation of polar motile
clusters, we use the notation A-MIPS to distinguish it from
the case of isotropic, non-aligning particles, which form
immobile clusters (MIPS)15,71,72.

(iii) Swarming motility for ∣β∣ > 1, λ= 4, ϕ≳ 0.6.
In a general sense, the clusters formed by A-MIPS can
exhibit swarming behavior, because they are rather dynamic
and exhibit translational and rotational motion. Their size
increases with increasing packing fraction and are system-
spanning for ϕ≳ 0.5, consistent with our previous studies60.

In the dense swarming phase, clusters of squirmers migrate
collectively, thereby forming dynamic swirling and streaming
patterns10,12,16,31. A quantitative criterion for the classification

Fig. 1 Illustration of the simulation setup. a Sketch of a spheroidal
squirmer, which is propelled in the direction e (red arrow) along the z-axis
of the body-fixed reference frame. The spheroid’s semi-major- and -minor
axis are bz and bx, respectively, and eτ and eζ indicate the local normal and
tangential unit vectors. b Multiple spheroidal squirmers in a narrow square-
shaped slit of width Ly= 4bx and lateral extension L. A strong repulsive wall
potential, as indicated by the dashed lines, implies quasi-2D confinement in
the channel center.

Fig. 2 Snapshots of emergent structures. Structures of squirmers for
various packing fractions, ϕ, active stresses, β, and rotlet dipole strengths,
λ. The box sizes are L= 160a for ϕ≤ 0.5 and L= 230a for ϕ > 0.5. Small
clusters with squirmer numbers m≤4 are colored in blue, various other
(random) colors are used for clusters with m > 4. The snapshots with green
frames correspond to (large) clusters and A-MIPS, where clusters are
systems-spanning at higher packing fractions (see Supplementary Movie 1
and Supplementary Movie 2). The snapshots with red frames correspond to
swarming systems (see Supplementary Movie 3). The other systems show
individually squirmers and (few) small clusters (see Supplementary
Movie 4).
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into A-MIPS and swarming motility will be provided in terms of
the cluster-size distribution function (cf. Sec. Cluster-size
distribution). Some of the small clusters for ϕ≲ 0.3 exhibit
cooperative motion, where a few squirmers move together for
some time. In general, the rotlet dipole enhances cluster
formation, and squirmers align side by side, which is clearly
visible for ϕ≲ 0.4. The precise mechanism for this cooperative
motion is unexplored, but could depend on squirmer wall
interactions. In contrast, for larger packing fractions the rotlet
dipole suppresses A-MIPS and enhances swarming motility.

Local packing fraction. Clustering and A-MIPS of the squirmers
are analyzed quantitatively by a Voronoi tessellation of the
accessible volume60,74,79,80. Figure 3 provides examples of density
distributions for the average packing fractions ϕ= 0.4 and 0.6.
The pronounced peak at the local packing fraction ϕloc ≈ 0.75 for
ϕ= 0.4, β=−1, and λ= 0 indicates A-MIPS (Fig. 3(a)), with a
dense phase in contact with a dilute phase, consistent with the
snapshots of Fig. 2. Results for large ∣β∣ imply a disintegration of
the large aggregate and ultimately, for β <−3, Pϕ displays a
maximum at the average packing fraction, which indicates the
absence of phase separation. Similarly, at ϕ= 0.6, the peaks in
Fig. 3(b) for λ= 0 indicate phase separation, even for β as negative
as β=−5. The rotlet dipole prevents formation of large clusters,
but even for β=−5 and λ= 4 a broad range of cluster sizes exists.

Cluster-size distribution. The cluster-size distribution function

N ðnÞ ¼ 1
Nsq

npðnÞ ð1Þ

represents the fraction of squirmers belonging to a cluster of size
n, where p(n) is the number of clusters of size n. The distribution

is normalized such that ∑
Nsq

n¼1 N ðnÞ ¼ 1. We use a distance and
an orientation criterion to define a cluster: a squirmer belongs to
a cluster, when its closest distance to another squirmer of the
cluster is ds < 1.8(21/6− 1)σs and the angle between the orienta-
tions of the two squirmers is <π/6 (see Methods section for the
definition). The latter allows us to identify different clusters even
at high packing fractions.

The cluster-size distribution function is a useful quantity to
characterize the motility pattern of a microswimmer system16,81.
In the homogeneous phase, the distribution function decays
exponentially, whereas a second peak (bimodal distribution)
indicates the formation of giant clusters (A-MIPS). At the
percolation transition, N becomes scale free and decays by a
power law, N � x�γ81. The swarming phase is characterized by a
power-law decay with an exponential cut-off and a characteristic
scale determined by an average vortex size16. The distribution
functions presented in Fig. 4 confirm our above conclusions on
the emergent phases and motility patterns.

For ϕ= 0.4 and (β, λ)= (−1, 0), (−1, 4), ϕ= 0.6, λ= 0, and all
considered β, as well as (β, λ)= (−1, 4), (−3, 4), we obtain bi- and
multimodal distributions with a power-law decay (cf. Table 2) at
small cluster sizes and a high probability for giant clusters
(Nsq= 270, ϕ= 0.4 and Nsq= 833, ϕ= 0.6). This indicates
A-MIPS16,60. The large polar clusters are mobile, but the systems
lack the characteristic large-scale swirling patterns of swarming
(cf. Supplementary Movie 1 and Supplementary Movie 2). The
distribution functions for ϕ= 0.4, (β, λ)= (−5, 0), (−5, 4) decay
in a qualitative different manner. They are well fitted by the

Fig. 3 Local packing fraction. Probability distribution Pϕ of the local packing
fractions ϕloc for the average area packing fraction (a) ϕ= 0.4 and (b)
ϕ= 0.6 (vertical dotted lines). The various curves correspond to β=−1,
−3, and −5 (bright to dark), and λ= 0 (red) and λ= 4 (blue), respectively.

Fig. 4 Cluster-sizer distribution function. Cluster-size distribution function
N ðnÞ (Eq. (1)) for the average packing fractions (a) ϕ= 0.4 and (b)
ϕ= 0.6. The curves present results for β=−1,−3, and −5 (bright to dark)
and λ= 0 (red) and λ= 4 (blue), respectively. The dashed lines are fits of
the functionN ðxÞ of Eq. (2) with the parameters of Table 2. The green solid
lines indicate power laws with the respective exponents.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00820-7

4 COMMUNICATIONS PHYSICS |            (2022) 5:49 | https://doi.org/10.1038/s42005-022-00820-7 | www.nature.com/commsphys

www.nature.com/commsphys


function82

N ðxÞ ¼ Ax�γe�x=x1 : ð2Þ
This functional form is observed in various cluster-forming

processes81. The function interpolates between the power-law
decay found for percolating clusters and an exponential
suppression of larger clusters. Table 2 presents the fit parameters

for the various curves of Fig. 4. The exponential large-n decay for
ϕ= 0.4, (β, λ)= (−5, 0), (−5, 4) with a small value of x1 reflects
the predominance of very small clusters — such systems are
considered as a gas of clusters. In contrast, the cluster-size
distribution for ϕ= 0.6, (β, λ)= (−5, 4) decreases over a broad
range of n in a power-law fashion reflecting the presence of a
wide distribution of cluster sizes (x1 ≈ 80), and only larger clusters
are exponentially suppressed — this system is in the swarming
phase. The major difference to systems with (β, λ)= (−1, 4),
(−3, 4) at this concentration is the more pronounced suppression
of large clusters, which renders the overall system more dynamic.

The probability distribution functions of the local packing
fraction (Fig. 3) and cluster-size distribution functions (Fig. 4)
clearly reveal a marked effect of the rotlet dipole on the collective
behavior of the squirmers. In particular, A-MIPS is suppressed,
but formation of highly dynamic clusters prevails, with a rather
broad distribution of cluster sizes for high squirmer densities.

Dynamical properties
Rotational diffusion. An individual squirmer in the slit exhibits
rotational diffusion around a minor body axis. Interactions
between squirmers, either steric or by their flow fields, change
their diffusive behavior substantially60,63. Figure 5(a) displays the
time dependence of the autocorrelation function〈e(t) ⋅ e(0)〉 of
the propulsion direction of the squirmers. The various curves
reflect a marked dependence of the rotational dynamics on the
active stress and the rotlet dipole strength. The correlation
function of the systems for (β, λ)= (−1, 0), (−3, 0), (−1, 4)
exhibit a non-single-exponential decay. Steric interactions
between squirmers with a preference to cluster formation as well
as between finite-size clusters lead to a rotation of whole clusters,
which implies a faster decay of the rotational correlation com-
pared to thermal fluctuations alone (cf. Supplementary
Movie 4)83.

We characterize the rotational motion by fitting the initial
decay of the correlation function with the exponential

CRðtÞ ¼ eðtÞ � eð0Þ� � ¼ C0
Re

�DRt ; ð3Þ

as displayed in Fig. 5(a). The factor C0
R � 1:03 is included to

account for a non-exponential decay for very short times.
Squirmers with large active stresses and a rotlet dipole ((β, λ)=
(−5, 0), (−3, 4), (−5, 4)) exhibit an exponentially decaying cor-
relation function CR over more than an order of magnitude. The
extracted rotational diffusion coefficients DR obey DR=D

0
R>1

(Fig. 5(b)), which reveals an accelerated rotational motion by
shape-induced steric interactions and hydrodynamic flow fields.
Note that D0

R in a dilute system is independent of β. The diffusion
coefficient DR increases with increasing squirmer concentration,
reaches a packing fraction-dependent maximum and decreases
again for larger ϕ. The snapshots of Fig. 2 suggest that the
maxima in Fig. 5(b) are related to the threshold of cluster
formation. An increasing number of squirmer contacts with
increasing ϕ (ϕ≲ 0.5) implies a faster reorientation. However, at
larger ϕ, the emerging clusters, which move collectively and more
persistently, lead to a reduction of DR. The larger DR values for
larger ∣β∣ demonstrate the substantial contribution of active stress
to the reorientation of the squirmers. At smaller ϕ and β <−1, the
presence of a rotlet dipole with λ= 4 evidently reduces DR

compared to that for λ= 0, which is associated with the
appearance of small clusters of side-by-side swimming squirmers
(cf. Fig. 2 and Supplementary Movie 4). In contrast, at high
packing fractions, a rotlet dipole implies a larger DR as a
consequence of an enhanced orientational motion of smaller
clusters, specifically at large ∣β∣= 5.

Table 2 Fit parameters of cluster-size distribution.

ϕ β λ A x1 γ Mode

0.4 −1 0 0.17 / 2.0 A-MIPS
0.4 −3 0 0.86 / 1.8
0.4 −5 0 0.75 1.38 0.31 Clus. gas
0.4 −1 4 0.5 / 1.8 A-MIPS
0.4 −3 4 1.25 / 2.3
0.4 −5 4 0.98 2.0 0.7 Clus. gas
0.6 −1 0 0.08 / 1.5 A-MIPS
0.6 −3 0 0.14 / 1.5 A-MIPS
0.6 −5 0 0.34 / 1.4 A-MIPS
0.6 −1 4 0.22 / 1.4 A-MIPS
0.6 −3 4 0.27 / 1.4 A-MIPS
0.6 −5 4 0.32 80 1.25 Swarming

Parameters of the cluster-size distribution function, Eq. (2), for various average squirmer
densities, active stresses, and rotlet dipole strengths. “/” indicates absence of the exponential
function, i.e.,N ¼ Ax�γ . The last column classifies the systems according to their structures and
collective behavior. No entry indicates inconclusive behavior.

Fig. 5 Propulsion direction autocorrelation function. a Autocorrelation
function of the propulsion direction as a function of time for the packing
fraction ϕ= 0.6. D0

R is the rotational diffusion coefficient of an individual
squirmer in the slit (see Methods). The dotted lines are fits to Eq. (3). b
Diffusion coefficients, DR, obtained by a fit of Eq. (3) as a function of the
average packing fraction ϕ. The curves indicate results for β=−1,−3, and
−5 (bright to dark) and λ= 0 (red) and λ= 4 (blue), respectively.
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Mean square displacement. The mean-square displacement of the
squirmers at high packing fractions (ϕ ≥ 0.6, Fig. 6) exhibit the
typical ballistic motion for short times and a crossover to a dif-
fusive motion for long times tD0

R ≳ 0:115,71, at least for systems
with λ= 4. (The resolution of the long-time behavior of the phase
separated systems for λ= 0 requires longer simulations.) There is
only a slight difference in the swimming speed of the various
squirmers at short times. The presence of a rotlet dipole causes an
earlier deviation from a strict ballistic motion toward a ballistic-
like motion with an exponent somewhat smaller than 2 as time
increases compared to squirmers without such a dipole. The
systems with (β, λ)= (−5, 0), (−1, 4), (−3, 4), (−5, 4) exhibit a
crossover from a ballistic or near ballistic to a diffusive motion at
a displacement roughly corresponding to 12bz, i.e., 6 squirmer
lengths. We may consider this as a characteristic length scale in
the system, separating the scale of persistent motion from that of
diffusive motion. The crossover for (β, λ)= (−1, 0), (−3, 0)
occurs at longer times.

The attempt to fit the mean-square displacement of Fig. 6 by
the expression of an ABP15,71 failed for β > 1, in particular for
λ= 4. As reflected by the density dependence of DR, the long-time
dynamics is strongly affected by the formation of cluster and their
collective dynamics. However, the restriction of the fit to the
crossover regime from ballistic to diffusive motion yields
rotational diffusion coefficients in agreement with those extracted
from the short-time behavior of the correlation function CR

(Fig. 5).

Velocity distribution function. Thermal fluctuations and squirmer
interactions imply strongly varying instantaneous velocities, both
in direction as well as in magnitude. Hence, for the calculation of
the velocity distribution function, we determine a swimming
velocity by the finite-difference quotient of displacements

viðtÞ ¼
riðtÞ � riðt � ΔtÞ

Δt
; ð4Þ

where ri is the center-of-mass position of squirmer i. During the
selected time interval Δt ¼ 103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=ðkBTÞ

p
, a squirmer moves at

most the distance 2bz/3.
For lower packing fractions ϕ ≤ 0.5, Fig. 7(a) displays the

distribution function P(v) of the Cartesian in-plane velocities

Δv ¼ ðvx=z � �vx=zÞ, where �vx=z are the ensemble- and time-
averaged velocities along the Cartesian directions x and z. The
averages �vx=z are very small for all considered parameter sets.
Since the two spatial dimensions are equivalent, P(v) is averaged
over the x and z direction. For ϕ= 0.1, we find pronounced non-
Gaussian, bimodal distributions. It reflects the swimming of the
squirmers with nearly constant velocity magnitude v0 along their
major semi-axis. This is emphasized by the distribution function
of the velocity modulus v= ∣v∣ (inset Fig. 7(a)). This behavior is
not unique for squirmers, but generic and also displayed by
ABPs84. Thermal fluctuations, and hydrodynamic and steric
interactions between squirmers modify the swimming velocity,
hence, P(v) is broadened and asymmetric with respect to the
average of the modulus of the swimming velocity. With
increasing density, the modulus decreases and the two peaks of
the bimodal distribution gradually merge, exhibiting a flat central
regime for certain parameters. Our data show that the rotlet
dipole enhances the variations in v.

At the highest packing fraction ϕ= 0.68, compare Fig. 7(b), in
particular for (β, λ)= (−5, 4), the squirmers strongly interact
with each other and the distribution function P(v) becomes
Maxwellian and P(v) Gaussian. The latter not only requires
pronounced changes of the swimming direction, but more
importantly, of the modulus v. The crossover from a bimodal
to a Gaussian distribution is gradual and depends on the

Fig. 6 Mean-square displacement. Mean-square displacement of the
square center of mass r(t) as a function of time for the packing fraction
ϕ= 0.6, various active stresses β, and rotlet-dipole strengths λ. D0

R is the
rotational diffusion coefficient of an individual squirmer and bz the major-
semi axis of the spheroid. The black dashed lines indicate the power laws of
ballistic (t2) and diffusive (t) motion, respectively. The horizontal gray
dashed line corresponds to the displacement of 6 squirmer lengths.

Fig. 7 Velocity distribution function. a Distribution function P(v) of the
Cartesian in-plane velocity components Δv ¼ vx=z � �vx=z, with respect to
the mean velocity �vx=z, normalized by the swimming speed v0 for the active
stress β=− 5, the indicated packing fractions ϕ, and the rotlet-dipole
strengths λ= 0, 4. Inset: distribution function P(v) of the modulus v= ∣v∣ of
the velocity for β=− 1. b Distribution function of the Cartesian in-plane
velocity components normalized by the standard deviation σv for ϕ= 0.68
and various β and λ. The dashed line is a Gaussian of unit variance.
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microswimmer parameters β and λ. The broad tails of the
distribution functions for λ= 0 and the small deviations from a
Gaussian for β=−3 and −5 reflect a persistent motion of
squirmers in large clusters with a preference toward larger
velocities v. The system with (β, λ)= (−1, 0) provides an example

for a strongly correlated dynamics of squirmers in huge clusters
(Fig. 2), with a very slow sampling of the velocity distribution. As
a consequence, we obtain broad tails and large variations in the
vicinity of Δv= 0 in the distribution function. Here, many more
realizations and longer simulation times have to be considered to
converge to the final stationary state. It is worth mentioning that
experimental and theoretical studies of persistent random walks
with a broad distribution of relaxation times predict non-
Gaussian distribution functions with a broad tail85,86. Indeed, the
orientational correlation function of the squirmers decays in a
non-single exponential manner for various pairs of β and λ,
specifically for λ= 0, corresponding to a wide distribution of
rotational diffusion coefficients, as shown in Fig. 5(a). This
reflects a more intricate dynamics of the squirmers in these
systems, which could suffice to result in non-Gaussian velocity
distribution functions. Here, further studies are required to
resolve the influence of clusters on the dynamics of the squirmers
and the velocity distribution function.

We like to emphasize that the velocity distribution functions in
the regime of swarming motility, especially for systems with
ϕ= 0.68 and (β, λ)= (−3, 4), (−5, 4), are very well described by a
Gaussian, despite pronounced collective swimming. Evidently,
steric and flow-field interactions induce sufficient randomness,
which correspondingly leads to large variations in the swimming
velocity, specifically in the modulus. This aspect is particularly
relevant, because velocities in both bacterial13,36 and high-
Reynolds-number turbulence are Gaussian distributed.

Active turbulence. The characteristic features of the swimmer
flow fields at higher densities are illustrated in Fig. 8. The clusters
depicted in Fig. 8(a) exhibit a visually chaotic collective motion
with regions of low and high velocity (Fig. 8(b)) and vorticity
(Fig. 8(c)) (see Supplementary Movie 3, Supplementary Movie 5,
and Supplementary Movie 6 for the packing fraction ϕ= 0.68).
The patterns are similar to those observed in experiments on
bacteria13,16,32,35,36, previous simulations13,49, and continuum
theory13,33,36.

Spatial velocity correlation function. Quantitative insight into the
turbulent dynamics of the squirmers is obtained by their spatial
velocity correlation function, a concept well established in classic
hydrodynamic turbulence13,44,46,47. For the discrete particle

Fig. 8 Squirmer flow fields. Visual chaotic collective dynamics of squirmers. a Snapshot illustrating the presence of clusters. b Velocity field v(r, t) and c
vorticity field ω(r, t)= ∂vz/∂x− ∂vx/∂z of the system with Nsq= 833 squirmers, β=− 5, λ= 4, and the packing fraction ϕ= 0.6. The black lines with arrows
indicate the streamlines of the fields (See Supplementary Movie 3, Supplementary Movie 5, and Supplementary Movie 6). The maximum values of the flow
fields are vmax ¼ 6 ´ 10�3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
and ωmax ¼ 1:2 ´ 10�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ðma2Þ

p
, corresponding to the effective Péclet number Pe= 96 and ωmax=ð2πD0

R Þ ¼ 38, and
rb= 2bx= 4a, the diameter of the minor axis. For the velocity field, squirmer velocities (Eq. (4)) are averaged over 60 subsequent configurations separated
by the time interval 102

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=ðkBTÞ

p
and sorted into quadratic bins of length rb. The vorticity field is calculated by the five-point stencil method.

Fig. 9 Velocity correlation function. Normalized spatial velocity correlation
function C0

v ðRÞ for the packing fraction (a) ϕ= 0.4 and (b) ϕ= 0.6 as a
function of the radial distance R/(2bz), where bz is the semi-major axis of
the spheroid, various active stresses β, and rotlet-dipole strengths λ. The
inset in b displays C0

v in log-log representation. Dashed lines are fits to Eq.
(5). Note that the peaks for R/(2bz)≈ 1, 2,… reflect the local packing of the
squirmers.
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system, we define the spatial velocity correlation function
as50,74,87

CvðRÞ ¼
∑i;j≠iviðtÞ � vjðtÞδðR� jri � rjjÞ

D E
∑i;j≠iδðR� jri � rjjÞ

D E : ð5Þ

Moreover, we introduce a normalized velocity correlation
function as C0

vðRÞ ¼ CvðRÞ=c0, with c0 ¼ ∑ihv2i i=Nsq. (For a
homogeneous and isotropic system, Cv(R) is a function of R= ∣R∣
only.) Results of C0

v for the packing fractions ϕ= 0.4 and 0.6 are
presented in Fig. 9. Three distinct decay patterns can be identi-
fied: (i) a very slow decay over roughly the whole system (ϕ= 0.4,
(β, λ)= (−1, 0), Fig. 9(a); ϕ= 0.6, (β, λ)= (−1, 0), (−3, 0),
Fig. 9(b)), (ii) a decay, where correlations functions are negative
for R≲ L/2 (ϕ= 0.4, (β, λ)= (−1, 4); ϕ= 0.6, (β, λ)= (−1, 4),
(−3, 4)), and (iii) correlations functions, which assume negative
values over a certain interval, but are positive for R ≈ L/2 (ϕ= 0.4,
(β, λ)= (−5, 0), (−3, 4), (−5, 4); ϕ= 0.6, (β, λ)= (−5, 4)). The
case (i) corresponds to long-range correlations over the entire
simulation box, consistent with A-MIPS and the appearance of a
large cluster (Fig. 4). As shown in Fig. 9(b), such C0

vðRÞ can be
fitted by the function

C0
vðxÞ ¼ Ave

�x=ξ � g: ð6Þ
Specifically for ϕ= 0.6, we obtain the parameters of Table 3.

The respective velocity correlation functions decay approximately
exponentially, with characteristic lengths scales between 2.3 and
5.6 swimmer lengths. The smaller value ξ/(2bz)= 2.3 for λ= 4
indicates that a non-zero rotlet dipole implies weaker spatial
correlation and, hence, smaller clusters. The distinct decay pat-
terns support our conclusion on the motility mode as discussed in
relation with the cluster-size distribution functions (Fig. 4).
However, a clear-cut separation of swarming and cluster
dynamics is difficult to establish based on Cv(R).

An important feature of bacterial turbulence is a finite vortex
size, which marks a characteristic length scale in the system and is
reflected in a minimum of the velocity correlation
function13,34,36,87. Our simulations yield such a minimum, e.g.,
for ϕ= 0.6, 0.68, (β, λ)= (−5, 4). Hence, we expect such squirmer
system to exhibit active turbulence. A characteristic length scale
can also exist for lower densities, e.g., for ϕ= 0.4, (β, λ)= (−5,
0), (−5, 4), where only small clusters are present. We do not
denote the dynamics of such systems as turbulent according to
the criteria provided in the Discussion and Conclusions section.

Energy spectrum. Insight into the turbulent behavior is gained by
the energy spectrum

EðkÞ ¼ k
2π

Z
d2R e�ik�RCvðRÞ; ð7Þ

which is obtained as Fourier transform of the spatial velocity
correlation function (5)47, and manifests the distribution of
kinetic energy over different length scales. In the calculation of
E(k), we apply a left-shift of the correlation function Cv(R) (Fig. 9)
such that the decay starts at R= 0 in order to avoid artifacts in

the Fourier transformation by a truncated correlation function.
As for bacterial suspensions, the energy injection scale is the
length scale of a microswimmer (2bz), which yields the char-
acteristic (maximum) wavenumber kc= π/bz for our squirmers.

Figure 10 displays the energy spectrum for (β, λ)= (−5, 4) and
the two packing fractions ϕ= 0.6, 0.68, and various system sizes.
The simulations show two power-law regimes for a given density,
namely EðkÞ � kκ̂ for k < km and E(k) ~ k−κ for km < k < kc, with
km corresponding to the position of the maximum of E(k). Such a
maximum in E(k) is a feature of microswimmer active turbulence,
and reflects a characteristic vortex size13,35,36. Our simulations
yield approximate vortex sizes of 5 (10bz) and 10 squirmer
lengths (20bz) for ϕ= 0.6 and 0.68, respectively. They are roughly
consistent with the patterns of Fig. 8, the crossover from ballistic
to diffusive motion in the mean-square displacement of Fig. 6,
and the minimum of the correlation function of Fig. 9(b). Vortex
sizes on the order of 5–10 microswimmer lengths are also found
in experiments13,35,38.

For km < k < kc, corresponding to R > 2bx, our simulations yield
turbulent flow patterns (Fig. 8). The exponent of the scaling
regime depends on the squirmer density, with the values κ=− 2
for ϕ= 0.6 and κ=− 5/3 for ϕ= 0.68. The latter is consistent
with the Kolmogorov-Kraichnan prediction for classical 2D
turbulence45. This is in contrast to the wide range of exponents
found in simulations and experiments (cf. Table 1). Density
seems to play an important role for the observed turbulent
behavior. The squirmers of both densities exhibit swarming
motility, namely, collective motion with large-scale swirling and
streaming patterns. However, only the dynamics in the higher
density system exhibits the exponent κ= 5/3.

In the small k-value regime, we obtain the exponents κ̂ ¼ 1 for
ϕ= 0.68 and κ̂ ¼ 5=3 for ϕ= 0.6, which reflect an increase of the
energy with increasing k. The dependence k5/3 is consistent with
that observed theoretically and experimentally in Ref. 13, as well
as in simulations49. However, other studies yield rather different
dependencies (Table 1). Theoretical models suggest that the
small-k slope is governed by finite-system-size effects, i.e.,
depends in the boundary condition and physical parameters43.
The curves in Fig. 10 reflect a weak dependence on the
system size.

The presences of a small-distance cut-off, where energy input
by the squirmers occurs, and the peak in E(k), corresponding to a
characteristic vortex size, limits the k-range over which the energy

Table 3 Fit parameters of velocity correlation function.

β λ Av ξ/(2bx) g

−1 0 1.00 4.5 0.00
−3 0 0.92 5.6 0.16
−1 4 0.86 2.3 0.032

Parameters of the spatial velocity correlation function, Eq. (6), for various active stresses and
rotlet dipole strengths, and the squirmer density ϕ= 0.6.

Fig. 10 Energy spectrum. Energy spectra of systems with the active stress
β=− 5 and rotlet-dipole strength λ= 4 for the packing fractions ϕ= 0.6
(red) and 0.68 (blue) as a function fo the wave vector k, with kc= π/bz and
bz the semi-major axis of the spheroidal colloid. Various system sizes, L,
(see legend) have been explored in order to verify absence of finite-size
effects. The dashed lines indicate power-laws in the respective regimes.
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spectrum decays in a power-law manner. This is in stark contrast
to classical high-Reynolds-number turbulence, where the energy
cascade extents over many orders of magnitude.

Discussion
We have performed large-scale mesoscale hydrodynamics simu-
lations of spheroidal squirmers in a narrow slit in order to analyze
the emerging structures, motility patterns, and turbulent behavior
for various packing fractions, active stresses, and rotlet-dipole
strengths.

Our studies reveal a strong dependence of the motility pattern
on the microswimmer concentration and their propulsion-
induced flow field. The classification of the distinct motion pat-
tern into the various categories — swimming and collective
motion of very small clusters (cluster gas), phase separation by
activity and anisotropic swimmer shape (A-MIPS), and swarming
— is accomplished by visual inspection of snapshots (Fig. 2) and
the characteristic features of the cluster-size distribution function
(Fig. 4). A-MIPS appears for small active stresses, ∣β∣ ≲ 3, and all
packing fractions ϕ > 0.2. Here, we expect enhanced cluster for-
mation for larger system sizes rather than active turbulence.
Squirmers with stronger forces dipoles, ∣β∣ ≳ 3, at concentrations
ϕ < 0.4 exhibit small clusters and strong cooperative effects for
λ= 4. At higher packing fractions, ϕ > 0.6, swarming motility
appears for the rotlet-dipole strength λ= 4, where clusters of
squirmers move collectively, and even exhibit active turbulence
for ϕ= 0.68 and β=− 5 (Fig. 2). Importantly, the rotlet dipole
suppresses A-MIPS. As shown in Fig. 10, this behavior is inde-
pendent of system size.

Our simulations clearly reveal the difficulty to characterize
turbulence in active systems. Even more fundamental is the
question, which criteria should be applied to classify a mesoscale
system as turbulent. Considering microswimmer systems, visually
chaotic flow patterns are evidently not sufficient. Inspired by
experimental systems displaying bacterial turbulence, our simu-
lation results for squirmer, and systems exhibiting classical
hydrodynamic turbulence, we propose the following “minimal”
criteria for bacterial turbulence:

● Reynolds numbers Re≪ 110,13
● high microswimmer density: closely packed swimmers with

average distances smaller than their size16
● presence of visually chaotic flow patterns18,43,52 with large-

scale collective behavior
● characteristic vortex size35,36 and a velocity correlation

function which becomes negative on intermediate distances
● Gaussian velocity-distribution function of the microswim-

mer’s Cartesian velocity components13,36
● energy spectrum with power-law decay E(k) ~ k−κ, κ > 0,

on length scales below the characteristic vortex size.

The presence of small and large length-scale cut-offs by the
microswimmer and vortex size implies a universal, scale-free
behavior only over a limited range of length scales.

Analyzing the swarming motion of the squirmers, we find non-
Gaussian distribution functions for the velocities parallel to the
confining walls for ϕ ≤ 0.6. According to our criteria, we classify
such systems as non-turbulent. However, we obtain a Gaussian
velocity distribution for ϕ= 0.68 and (β, λ)= (−5, 4) (Fig. 7). The
energy spectrum of that system exhibits a power-law decay with
the exponent κ= 5/3, characteristic for Kolmogorov-Kraichnan-
type turbulence in the inertial range. Hence, this systems fulfills
all the above criteria, and we consider it as fully turbulent.

The slope of the power-law regime depends on the squirmer
density. At the smaller packing fraction ϕ= 0.6 and (β, λ)=
(−5, 4), the energy spectrum decreases faster, with the exponent

κ= 2. At the same time, the velocity distribution function is non-
Gaussian. Thus, the system is not showing active turbulence in
the above sense, yet, is exhibiting swarming behavior. This sug-
gests a tight link between the energy spectrum and the velocity
distribution function, a relation which needs further
considerations.

As typically observed in turbulent bacterial suspensions13,35,36,
we also obtain a maximum in the energy spectrum at
5–10 squirmer lengths, as well as a negative spatial velocity cor-
relation function, in agreement with the presence of a char-
acteristic vortex size.

The effective inertia due to the collective active motion could
play an important role, since the crossover from the active bal-
listic motion — equivalent to inertia of a passive system — to
active diffusion appears on the length scale of approximately
6 squirmers lengths, which is comparable to the characteristic
vortex size. Yet, the Reynolds number on the scale of a vortex
(approximately 10 microswimmer lengths) is still smaller than
unity. Here, more detailed theoretical studies of a suitable model
are required to assess the relevance of the various interactions on
active turbulence.

Despite the similarities of our squirmer systems with bacterial
suspensions, there is one major difference, namely, the swimming
speed of bacteria increasing in the swarming phase, whereas it
decreases in our case88. This may point toward a particular role of
bacterial flagella in the propulsion of the dense bacterial system.

We like to emphasize that hydrodynamic interactions are
paramount for microswimmer swarming and active turbulence,
specifically the active stress and the rotlet dipole determine their
swarming motility. However, for Kolmogorov-Kraichnan-type
characteristics to emerge, in addition, density plays a major role,
and ensures an isotropic and homogeneous dynamics on lengths
scales larger than approximately a squirmer length. Our simula-
tions provide a benchmark for further theoretical and simulation
studies on bacterial turbulence to elucidate the interplay between
hydrodynamic stress — specifically a rotlet dipole —, alignment
interactions by anisotropic swimmer shapes, and volume
exclusion.

Methods
Microswimmer model: prolate squirmer. The prescribed surface velocity of the
prolate spheroidal squirmer, a homogeneous colloidal particle of mass M, is given
by61–64

us ¼ �B1ð1þ βζÞðeζ � eÞeζ þ
3λzs�rs
r5s

eφ ð8Þ

in terms of spheroidal coordinates τ, ζ, φ (1 ≤ τ <∞, −1 ≤ ζ ≤ 1, 0 ≤ φ < 2π)
(Fig. 1(a))63,89. For a squirmer with propulsion direction e= (0, 0, 1), the Cartesian
coordinates of a point on the spheroid surface rs ¼ ðxs; ys; zsÞT are

xs ¼ bx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

q
cosφ; ys ¼ bx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

q
sinφ; zs ¼ bzζ;

with �rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s þ y2s

p
, rs= ∣rs∣, τ ¼ τ0 ¼ bz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2z � b2x

q
, and the lengths bz and bx

along the semi-major and -minor axis (Fig. 1(a)). The terms with the coefficients B1
and β (β < 0, pusher) account for swimming in the direction e and an active stress,
respectively63,77,89. The rotlet-dipole term (second term on the right-hand side of
Eq. (8)) accounts for the torque-free nature of swimming bacteria with a cell body
counterrotating with respect to the flagellar bundle66. Equation (8) is a straight-
forward generalization of the expression derived for spheres with the independent
parameter λ90. It is a solution of Stokes’ equations and, with the boundary con-
dition on the spheroid’s surface (8), the velocity field of such a squirmer in an
infinite fluid is given by vRðrÞ ¼ 3λz�reφ=r

5 in a reference frame, where e is aligned

with the z axis of the body-fixed reference frame (see Fig. 1), �r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and

r= ∣r∣. The swimming velocity of a squirmer is related to B1 as

v0 ¼ B1τ0½τ0 � ðτ20 � 1Þcoth�1τ0�: ð9Þ
To insure quasi-two-dimensional motion between the walls (Fig. 1(b)), a strong

repulsive interaction between squirmers and walls is implemented by the truncated
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and shifted Lennard-Jones potential

Uw ¼ 4ϵw
σw
y

� �12

� σw
y

� �6

þ 1
4

" #
ð10Þ

for y < 21/6σw and zero else, where y is the closest distance between a wall and the
surface of a squirmer. Here, σw and ϵw determine to the length and energy scale,
respectively. Hence, squirmers never touch a wall.

Squirmer volume-exclusion interactions are described by a separation-shifted
Lennard-Jones potential with parameters σs and ϵs, where y→ ds+ σs in Eq. (10),
and ds is the distance between the two closest points on the surfaces of two
interacting spheroids63,89.

The solid-body equations of motion of the squirmers — the center-of-mass
translational motion and the rotational motion described by quaternions — are
solved by the velocity-Verlet algorithm63,89.

Fluid model: multiparticle collision dynamics. The fluid is modeled via the
multiparticle collision dynamics (MPC) method, a particle-based mesoscale
simulation approach accounting for thermal fluctuations58,59, which has been
shown to correctly capture hydrodynamic interactions91, specifically for active
agents and systems66,90,92–101.

We apply the MPC approach with angular momentum conservation (MPC-
SRD+a)77,78. The algorithm proceeds in two steps — streaming and collision. In
the streaming step, the MPC point particles of mass m propagate ballistically over a
time interval h, denoted as collision time. In the collision step, fluid particles are
sorted into the cells of a cubic lattice of lattice constant a defining the collision
environment, and their relative velocities, with respect to the center-of-mass
velocity of the collision cell, are rotated around a randomly oriented axes by a fixed
angle α. The algorithm conserves mass, linear, and angular momentum on the
collision-cell level, which implies hydrodynamics on large length and long time
scales58,91. A random shift of the collision cell lattice is applied at every collision
step to ensure Galilean invariance102. Thermal fluctuations are intrinsic to the
MPC method. A cell-level canonical thermostat (Maxwell-Boltzmann scaling
(MBS) thermostat) is applied after every collision step, which maintains the
temperature at the desired value103. The MPC method is highly parallel and is
efficiently implemented on a graphics processing unit (GPU) for a high-
performance gain104.

The fluid and the squirmers are confined in a narrow slit with no-slip boundary
conditions of the fluid at the walls. Squirmer-fluid interactions appear during
streaming and collision. While streaming squirmers and fluid particles, fluid
particles are reflected at a squirmer’s surface by application of the bounce-back rule
and addition of the surface velocity us(8). To minimize slip, phantom particles are
added inside of the squirmers, which contribute when collision cells penetrate
squirmers. In all cases, the total linear and angular momenta are included in the
squirmer dynamics. More details are described in Ref. 63 and the supplementary
material of Ref. 89.

Parameters. Multiple squirmers with the semi-major axis bz= 6a and semi-minor
axis bx= 2a are distributed in a narrow slit of width Ly= 8a, where a is the length
of the MPC fluid collision cell. Parallel to the walls, periodic boundary conditions
are applied. We set σw= 1.8a and ϵw= 18kBT. Squirmer propulsion requires fluid
particles adjacent to its surface. To avoid MPC particle depletion when two
squirmers approach each other, we introduce a safety layer of thickness dv= 0.25a
around every squirmer, corresponding to the effective squirmer semi-axes bz+ dv
and bx+ dv, respectively. The squirmer-squirmer Lennard-Jones parameters are set
to σs= 0.5a, ϵs= 5kBT. ds (see microswimmer model) is now the distance between
two closest points on the surfaces of the two interacting squirmers with effective
(larger) semi-axes60,63,89.

We employ a high average particle number 〈Nc〉= 60 in a collision cell60.
Furthermore, we choose a small collision-time step h ¼ 0:02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=ðkBTÞ

p
and the

large rotation angle α= 130∘. This results in the fluid viscosity η ¼
127:8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT=a4

p
and the 2D rotational diffusion coefficient around a minor axis

D0
R ¼ 5:2 ´ 10�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ðma2Þ

p
. This is in close agreement with the theoretical value

of a spheroid D0
R ¼ 5:5 ´ 10�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ðma2Þ

p
.

For a squirmer, we choose B1 ¼ 4:5 ´ 10�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
, corresponding to the

swimming speed v0 ¼ 4 ´ 10�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
, which yields the Péclet number Pe ¼

v0=ð2bzD0
RÞ ¼ 64 and the Reynolds number Re= 2bzv0〈Nc〉/(a3η)= 0.023. The

active stress values β=−1,−3,−5, covering approximately the estimated values from
experiments and simulations (see below), and the rotlet dipole strengths λ= 0, 4 are
considered. Typically, simulations with the box size L= 160a are performed for the 2D
packing fractions ϕ=Nsqπbxbz/L2= 0.1, 0.2, 0.3, 0.4, and 0.5, corresponding to the
squirmer numbers Nsq= 66, 140, 200, 270, and 341. In order to reduce/avoid finite-size
effects and to confirm our conclusions, we considered other system sizes, specifically, for
higher densities significantly larger systems are simulated with L= 230a for
Nsq= 833, 954, L= 460a and Nsq= 3332, 3816 (both ϕ= 0.6, 0.68), as well as L= 920a
for Nsq= 15264 (ϕ= 0.68). (Note that the largest system contains 4 × 108 MPC fluid
particles.) A passive spheroid is neutrally bouyant withM= 6031m, and the MPC time
step h is used in the integration of the squirmers’ equations of motion. Presented data
are collected over the total time interval 106

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=ðkBTÞ

p
, after an extended

equilibration period where the systems reached a stationary state. During this time, in
dilute solution a squirmer actively diffuses about 150 body lengths, which corresponds
to twice the size of the largest system, while for the largest packing fraction a squirmer
travels about 1/3 of the system size.

Estimation of squirmer parameters for E. coli from simulations and experi-
ments. In the far-field, the microswimmer flow field is dominated by the force-
dipole term of strength6,15,65,105

χ ¼ P
8πη

; ð11Þ

where P= fDlD is the magnitude of the force dipole of force fD and length lD. The
latter parameters can be determined from experiments65 and simulations66. The
far-field expansion of the flow field of a spheroidal squirmer provides the relation
between χ and the active stress parameter β63:

β ¼ � χ

v0ðb2z�b2x Þ
½3τ0þð1�3τ20Þcoth�1τ0 �½τ0�ðτ20�1Þcoth�1τ0 �

2=3�τ20þτ0 ðτ20�1Þcoth�1τ0
: ð12Þ

With the approximation of the bacteria cell body by a spheroid, Eq. (12) pro-
vides an estimation of β for a given χ.

● From simulations — An E. coli-type cell model with the body length
lb= 2.4μm, cell body diameter db= 0.9μm, the swimming speed
v0= 40μm/s, force-dipole strength fD= 0.57pN, and force-dipole length
lD= 3.84μm66, yields β ≈− 6. We use the cell body length rather the length
of body plus flagellar bundle, guided by the discussion of E. coli rotation in
Ref. 65.

● From experiments — E. coli bacteria are characterized by lb= 3 μm,
db= 1 μm, v0= 22 μm/s, fD= 0.42 pN, and lD= 1.9 μm65, which gives
β ≈− 3.

In both cases, the viscosity of water is used. These β values approximately fall
into the range of active stresses considered in our simulations.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The custom code for the simulations on GPUs is available from the corresponding author
upon reasonable request.
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