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Modeling epithelial tissues as active-elastic sheets
reproduce contraction pulses and predict rip
resistance
Shahaf Armon 1✉, Matthew S. Bull 2, Avraham Moriel3, Hillel Aharoni 1 & Manu Prakash 4

Confluent epithelial tissues can be viewed as soft active solids, as their individual cells

contract in response to local conditions. Little is known about the emergent properties of

such materials. Empirical observations have shown contraction waves propagation in various

epithelia, yet the governing mechanism, as well as its physiological function, is still unclear.

Here we propose an experiment-inspired model for such dynamic epithelia. We show how

the widespread cellular response of contraction-under-tension is sufficient to give rise to

propagating contraction pulses, by mapping numerically and theoretically the consequences

of such a cellular response. The model explains observed phenomena but also predicts

enhanced rip-resistance as an emergent property of such cellular sheets. Unlike healing post-

rupture, these sheets avoid it by actively re-distributing external stresses across their surface.

The mechanism is relevant to a broad class of tissues, especially such under challenging

mechanical conditions, and may inspire engineering of synthetic materials.
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Epithelial tissues are confluent cell sheets, made of individual
active units (the cells) that are mechanically coupled. Such
living materials far from equilibrium have been suggested to

exhibit unexpected material properties, ranging from solid–fluid
transitions1–3, active super-elasticity4, and exotic forms of
viscoelasticity5,6. These active cellular sheets act as chemical
barriers and apply mechanical protection and shape to the
underlying organ. As such, they are required to keep their sta-
bility and integrity at all times. Evidence shows that when put
under tension, these substrates can quickly and reversibly
rigidify7–13 or soften4,10,12,14,15 (aside slower remodeling via
plastic deformations like oriented divisions or cell
intercalations16,17). The interplay between these responses,
orchestrated to keep integrity across millions of cells and various
mechanical threats, is still unclear.

In recent years observations are accumulating showing
dynamic contraction patterns in confluent epithelia that are
suspected to be governed mechanically. These evidence include
contraction fronts in drosophila embryo during development18

and ongoing density waves seen in migrating cell monolayers
in vitro, either in confinement11,19, during expansion11,20 or in
response to substrate-shear21. Theoretical works suggested
models to explain the contractile patterns22–25, models that
suggest an interplay between mechanical, chemical, and geome-
trical fields, diffusion or active transport, and cell polarity. A few
works11,18,25 suggested that a cellular response of contraction-
under-tension may be the only requirement to create contraction
waves that propagate mechanically. Both the mentioned obser-
vations and the theoretical models exhibit time scales in the range
of minutes to hours.

Recently we reported the observation of ultrafast contraction
dynamics in the thin, suspended epithelium of the marine animal
T. adhaerens26. These traveling pulses initiate spontaneously,
irregularly, propagate at high speed (1–3 cells or 10–30 μm in 1 s),
and transmit a fast contraction event (50% cell area in 1 s) across
the tissue (Fig. 1a–d, Supplementary Note 1). During these
dynamics, and in time scales of up to 10 min, no cell rearrange-
ments (neighbor exchange) have been seen in the epithelium26.
The contraction pulses can propagate radially or uniaxially, split
at the propagating fronts, and annihilate each other. Importantly,
this early-divergent animal has no reported muscles, neurons or
synapses, and its epithelium has no gap junctions that can sup-
port chemical transport between cells. In addition, the contrac-
tion propagation speeds exclude too slow biological processes,
such as transcription/translation, from being involved (Supple-
mentary Note 1). All these raise the speculation that mechanics
governs the contraction propagation. The pulses are seen in the
suspended epithelium, that has no known ECM, while the animal
is freely moving. Due to its erratic, locally-driven ciliary loco-
motion, the tissue is found constantly under alternating tensile/
compression stresses. Despite these external stresses, and the
intrinsic contractions, the tissue does not rupture26.

Extension-induced contraction (EIC) is a common, well known
cellular response in epithelia. EIC has been demonstrated experi-
mentally in various cells, and different molecular mechanisms have
been shown to participate in it (e.g., mechanosensitive calcium
channels, ERK protein activation, actin alignment, myosin
recruitment, conformational changes in adherens junction, and
more)5,7–10,25,27–30. The diversity of mechanisms for EIC genera-
tion hints towards its crucial evolutionary advantages. In addition,
in many systems, it was shown that aside EIC, cells also respond to
stretch by softening/yielding4,10,12,14,15. The two antagonist
responses, of contraction/stiffening and yielding/softening, have
been shown to coexist in cytoskeletal assays7,14, and were
demonstrated, separately, in the same cell type (MDCK cells4,11),
but their exact interplay in live cells and tissues is still unknown.

Here we suggest a model for dynamic contraction patterns
emerging from the cellular response of EIC. We frame our model
regardless of the specifics of the intra-cellular process, and show
that cellular EIC may be the only requirement for contraction
propagation and the observed dynamics. This is in agreement
with previously suggested models11,18,25. Built from direct, high
spatial-temporal measurements in T. adhaerens, and using
numerical and analytical considerations, we construct our model
which is very general and purely mechanical. Its basic feature is
longitudinal density waves that propagate utilizing local con-
tractile activity, hence can be described as “active-acoustics”.
These nonlinear pulses propagate without dissipation, hence can
be viewed also as mechanical “trigger waves”. Primarily, we write
scaling laws for these contraction pulses and quantitatively map
the different pulsatile modes in parameter space. Our results may
explain many phenomena seen in T. adhaerens and other epi-
thelia, such as single or repeated contractile pulses, either oscil-
latory or in response to external stress, and pulse annihilation.
Finally, the model predicts another emergent outcome of EIC in
such cellular sheets: enhanced resistance to rupture under ten-
sion. The contraction dynamics increases tissue cohesion by
distributing strains homogenously throughout the surface. By
numerically introducing a cell softening response to the model,
on top of EIC, we see further enhancement of cohesion in the
cellular sheet, via elimination of high-stress values at cell–cell
junctions. Together, the two cellular responses prevent tissue
failure under tension in both cells and junctions simultaneously
in a process we name “active cohesion”.

As both EIC and yielding are common epithelial responses,
and as tissue integrity is at the heart of any epithelium function,
“active cohesion” may be relevant in a wide range of epithelia,
during development, physiology, pathology, and regeneration,
even if manifested in different time and length scales (Supple-
mentary Note 1c). In addition, our work may contribute to the
understanding of physical principles in active solids, and to the
engineering of tissues and ‘smart’ materials.

Results
Single-cell dynamics. We begin by looking at the recently-
measured contraction profile in T. adhaerens26 (Fig. 1c). The
profile shows the strain evolution of a single cell during a single
contraction event in vivo, as averaged from multiple cellular
events that did not propagate as pulses in the tissue. On average,
during such a contraction event, the cell area increases gradually
to a critical point, at ~110% of its initial value, at which it
abruptly decreases to ~50%. Finally, the cell relaxes slowly
towards its initial area. Despite the overdamped conditions, the
contraction reaches significantly below the cell’s steady-state size
and beyond the ~10% level of expansion (“overshoot”). This
shows that the contraction is an active process that consumes
internal cell energy, and explains why it involves observed force
and time scales that are different from the viscoelastic ones. As
the contraction seem to happen at a critical cell size, an additional
length scale is required, to describe the extension needed for
activation. These three scales—the active force, its duration, and
the critical cell size—are the minimal requirements for the model.

We, therefore, model a single cell as an overdamped elastic
entity (a spring with rest length l0 and elastic modulus k, in a
media with viscosity γ) that is connected in parallel to an active
contractile unit (Fig. 1e). The active unit implements a simple
EIC, using the three scales discussed above: when the cell reaches
a critical length lc, it immediately applies a fixed compression
force fc for a duration of tc (see “Discussion” for further reasoning
and alternative options, see methods for implementation).
Inspired by T. adhaerens data, we take the active forces to be
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larger than the elastic force at criticality (fc > klc) and the active
time scale shorter than the passive one (tc < k/γ). Finally, we
assume the spring to be linearly elastic. Effects of cell-volume
conservation, though shown irrelevant to T. adhaerens26, may
require additional nonlinearities.

The mechanical circuit proposed in Fig. 1e can be found in one
of two modes: an excitable mode, i.e., contract only in response to
external stretch (that is when lc > l0), or in an oscillatory mode,
i.e., oscillate spontaneously without any external stimulation, as a
relaxation oscillator (that is when lc < l0) (Fig. 1f). Evidence for
such an oscillatory cell behavior have been reported in T.
adhaerens (Fig. 1d), and in MDCK monolayers11,19–21. These
isolated-cell behaviors can be mathematically described in a
piecewise manner (Supplementary Note 2).

We will now examine the emergent behavior of a finite 1D
chain of such cells (Fig. 1g) or a 2D sheet of cells with similar
properties (Fig. 1h).

Dynamics in one dimension. In the 1D case, we take each cell to
be a spring connected in parallel to the active-contractile unit. All
cells experience viscous drag from the media. Cell–cell junctions
are the nodes, that feel tension due to forces from the nearest
cells. Throughout our investigation, we choose a finite yet large
number of cells, N, and free boundaries, in order to imitate T.
adhaerens, (details in Supplementary Note 3).

First, we consider a one-dimensional chain of N identical
excitable cells (i.e. lc > l0). Initiating all cells at length l0, the chain
will remain at rest. We now introduce an initial stretch, by
initiating a rim-cell at li= lc+ ε, after which it is set free. The
dynamics starts as the stretched cell actively contracts, stretching
the next cell in line, due to the spatial coupling in the overdamped
conditions. If the induced stretch in the neighbor cell is sufficient,
it triggers active contraction, that in turn activates the next
cell and so forth. A contraction pulse then propagates throughout
the tissue at a constant speed, V (Supplementary Movie 1, Fig. 2a,
b). The emerging longitudinal perturbation is not an acoustic
(inertial) wave, but a slower, trigger-wave in an excitable media,
that consumes cellular energy.

The symmetric shape of the strain signal (Fig. 2b, c) may be
surprising, as we defined an asymmetric EIC profile for the
individual cell: the expansion induces a much larger contraction.
In fact, a cell participating in a contraction pulse shows a
symmetric strain profile, with a delayed, reduced shrinkage. To
understand this emerging effect, let us examine the pulse
propagation at the bulk of this large, deeply overdamped tissue.
We notice that essentially the only nodes moving are the ones at
the interface between active and passive cells—all other nodes are
at rest due to force balance. Therefore, at the interface, the sum of
the active and passive cell lengths is fixed. Thus, the dynamics in
time of a bulk-cell is as follows: (i) starts at l0 (ii) gets stretched by

Fig. 1 Modeling epithelium with cellular extension-induced-contraction (EIC). a–d Experimental results from contractions in the dorsal epithelium of T.
adhaerens (reproduced from Armon et al.26, where more related data can be found). a Sequential snapshots from contraction pulses in the tissue, imaged
using fluorescent membrane stain. The fluorophore intensity (greyscale) is related to membrane density hence to cell area: white areas are contracted cells
and dark areas are relaxed, larger ones. White arrows indicate pulse propagation direction. Scale bar: 35 μm. b Sequential snapshots from a cellular
contraction event. The contraction induces the expansion of neighboring cells. Scale bar: 3 μm. c The average contraction profile over 746 individual cells
within the tissue (such that are not participating in pulses). The gray sections mark the expansion phase, followed by a quick contraction and a slower
relaxation. The horizontal line represents the average cell area over a longer time (40 s). d A single event where oscillatory contraction activity is seen in a
single cell (a cell that is not participating in a pulse). e The mechanical circuit representing the single cell in our model. A spring with rest length l0 and
stiffness k is connected in parallel to the active unit, which is operating the active response (represented in red arrows): when reaching above a critical
length lc, a cell contracts with constant force fc for a given period of time tc. In the simulations we use a boxcar function to model immediate activation and
termination of the force. The cell is found in a media with viscosity γ. f The behavior of such isolated cells, in either an excitable mode (l0< l c), or oscillatory
mode (lc < l0). Dashed red lines represent asymptotic tendencies. Expressions for lmin, l∞ and the piecewise exponential solutions are in Supplementary
Note 2. g–h Sketches of the 1D and 2D settings in our multi-cell simulations. The degrees of freedom are the vertices between cells that are free to move
under cellular forces and viscous drag. The systems are large but finite and the boundary is free.
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its active neighbor to exactly lc, and gets activated (iii) contracts
until reaching l0, at which point its passive neighbor reaches
exactly lc and gets activated (iv) our cell keeps applying
contraction forces without changing its length, as both its
neighbors are also active (v) only when an active neighbor
deactivates at tc and starts to relax—our cell finally shrinks, until
reaching tc itself. As a result, the emergent pulse in the tissue is
composed of an extension front, followed by an identical (but
opposite-sign) contraction front, and in between, all cells are
actively contracting yet remain at their rest-length (Fig. 2a–c,
Supplementary Movie 1).

Hence, in order to derive a simple scaling for the pulse
behavior, as a first approximation, we consider two cells with
fixed boundaries (this is practically the case at the interface
between active and passive cells). By calculating the time it takes

for one cell, contracting with fc, to excite its neighbor t* ¼ γ lc�l0ð Þ
fc

(Supplementary Note 3), we estimate the propagation speed of
the pulse V � fcl0

γðlc�l0Þ. The width of the pulse is the distance the
pulse propagates in time tc W= Vtc. The pulse amplitude, which
is the difference between maximal and minimal cell size, is found
to be amp ≈ 2(lc−l0). Our numerical results confirm all these
scaling laws (Fig. 2h–j). In addition, these scaling laws fit
previously measured data in epithelia and may explain both fast
and slow pulse propagations: 100 μm/s in T. adhaerens and

2–3 μm/min in MDCK monolayers (Supplementary Note 1). We
use the above scaling to find the requirements for pulses to
appear: The initial stretch should excite the first cell (li > lc), and
the impulse of active contraction should be large enough to excite
the next cell. Using a set of three non-dimensional parameters—
normalized time ~t � tck

γ , normalized force ~f � fc
klc
, and normalized

strain ~ϵ � lc�l0
l0
—this requirement estimates to ~t> ~ϵ

~f
(Supplemen-

tary Note 3). When the system satisfies these criteria, a pulse
propagates indefinitely in the tissue with a fixed speed. In the
absence of these requirements, the initial stretch decays, and bulk
cells stay at their rest lengths indefinitely.

We notice, that changing the contraction parameters fc,tc
changes the pulse velocity V and width W, but not the amplitude,
amp (Fig. 2d–e). Only by changing lc the amplitude is altered
(Fig. 2f). As a result, for a given set of activation parameters (lc, fc,
tc), if the external stimulation lasts longer than tc (in our case, if
the initial excitation, li is large enough), it generates a “spike
train”—a series of sequential pulses, all carrying the same quanta
of strain—amp (Fig. 2g, Supplementary Note 3). This effect
resembles neuronal action potential: sequential identical firing
events in response to above-threshold stimulation31,32.

Next, we consider a row of N identical oscillatory cells (lc < l0).
All cells are initiated at l0 and the boundaries are set to be free.
Each cell is a relaxation oscillator, that would beat spontaneously
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Fig. 2 Contraction pulses in a 1D excitable tissue. a Sequential snapshots from a dynamic simulation of a 1D chain of excitable cells (in which the rest
length, l0, is shorter than the critical length lc), show the propagation of a single contraction pulse from left to right (Supplementary Movie 1). Cells are
shown as circles, at their location along the chain, x, with a color representing their length, l. At time t0 all cells are set at their rest length, l0, except the first
cell on the left, which is initiated at li > lc, which triggers the pulse. Red asters represent activly contracting cells. b A kymograph representation of the
dynamics shows the pulse propagation in the tissue at constant pulse width,W, and speed, V (defined in units of cells and cells per time, respectively). c A
cross-section from the kymograph shows the pulse profile: an expansion-front first, and an equal but opposite contraction-front behind it. All cells in
between are actively contracting yet found at their rest length. The main pulse characteristics (V-velocity, W-width, amp-amplitude) are shown. d–g Pulse
behavior with changing parameter values. Results are shifted by 0.1 in the y-axis in each experiment. Black dots represent activated cells. d–e System
snapshots and time series show that increasing the contraction force, fc, increases the pulse’s width and speed respectively. f System snapshots show that
increasing lc increases the amplitude amp. g System snapshots with different li values show a series of identical pulses is emerging. The number of pulses
depends on li. h–j Numerical results of the main pulse characteristics show a collapse into our theoretical predictions, specified on the x axis. The
parameters used in the simulations are covering the range ~f � fc

klc
¼ 0:1� 1;~t � tck

γ ¼ 0:1� 6;~ϵ � lc�l0
l0

¼ 0:01� 0:05; where k is the cell stiffness, γ is the
media’s viscosity and tc is the duration of contraction. k Numerical results of the pulse profile show the dependency of the shape on the specified ratio.
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in isolation. However, now the cells are additionally subjected to
forces coming from their neighbors. We show, that for a wide
range of parameters, the system converges to exhibit ordered
pulsations regardless of the initial condition. Initially, all cells
contract in a transient irregular phase. Eventually, the system
reaches a dynamic steady state (at characteristic time Tss) where
contraction pulses are initiated repeatedly and regularly at the
edges and annihilate at the center (Fig. 3a, b, Supplementary
Movie 1). Annihilation can be seen as a result of the shrinkage
front- a “recovering” regime at the back of the pulse that makes
the tissue harder to excite (again resembling the refractory period
of a neuronal action potential). The overall tissue length L(t)
shrinks from L(t0)=N*l0 to a steady-state size Lss and oscillates
around it with amplitude Amp and highest frequency Ω (Fig. 3c).

In this mode, cells in the bulk (far from both rim and
annihilation points) are effectively fixed at a compressed size: due
to viscosity and a large number of cells, the time scale for bulk
cells relaxation is much longer than the typical interval between
pulses. Therefore, the pulses propagate through a still and
uniform background of cells, that are all at l~lss < lc. As a result, a
pulse propagates at a fixed speed. Rim cells are the least
constrained and hence relax the fastest after a contraction. When
they reach criticality, they initiate a new pulse. The pulse profile
features are the same as in the excitable mode. The way the
system parameters (lc, fc, tc, k, γ, N) relate to the emergent overall
tissue measurables (Lss, Tss, V, W, Amp, Ω) is plotted from our
numerical results in Fig. 3d, e, and more elaborately in
Supplementary Fig. 1. Most measurables are invariant to the
system size (except Tss and frequencies lower than Ω), hence are
effective “material properties”.

Other solutions exist in the oscillatory mode, aside the ordered
pulsations, as shown in the phase diagram (Fig. 3f): When the
contraction force is weaker than the elastic retraction at lc (i.e.,
fc < klc) the system will be “stuck”, i.e. continuously apply
compression forces but exhibit fixed cell size, that is above lc.
These states may look “flickering” with constant local activation/
deactivation (Supplementary Movie 1). In contrast, when the
active force is too high, we reach a non-physical regime of the
model where cells collapse to negative size (in reality, nonlinear
elasticity at the limit of compressibility will prevent that). When
the viscosity is high, the time it takes to reach steady state is very
long, hence in realistic time scales the dynamics may look
irregular. Finally, when viscosity is low, irregular pulsations
emerge, as a result of various elastic modes that are not
overdamped (Supplementary Movie 1). The sharp transition
between the regular and irregular traveling pulsations is depicted
in Fig. 3g, as a transition from perfect limit cycles to “smeared”
chaotic activity.

Dynamics in two dimensions. We now apply the same principles
of EIC on 2D cellular sheets. We choose a hexagonal grid to
describe the cells, while each node is an independent degree of
freedom, and each edge represents a two-cell-junction. We use a
vertex model, that assumes separate stiffness of a cell perimeter,
kp, and a cell area, ka, and is a common modeling approach for
confluent tissues2,33,34 (See “Methods”). In the vast parameter
space of 2D vertex models we focus on a regime that is the most
relevant to the biological context of T. adhaerens (low area
stiffness ka, high fc- capable of reducing cell area by 50%, ϵc~10%

Fig. 3 Contraction pulses in a 1D oscillatory tissue. a Sequential snapshots from a dynamic simulation (Supplementary Movie 1) of a 1D chain of
oscillatory cells (in which the critical cell length lc, is shorter than its rest length l0). Cells are shown at their location along the chain, x, greyscale represents
their length and red asters represent activated cells. At t0 all cells are set to their elastic rest length l0. At t1 the system is during its transient shrinking
phase. At t2–5 the system is at its dynamic steady-state: contraction pulses are constantly propagating from the edges to the bulk of the tissue, where they
collide and annihilate. b A kymograph representation of the dynamics shows the transient shrinking phase, converging to the dynamic steady-state, where
pulses propagate at constant speed from the rims to their annihilating point at the center. c A sample measurement of the entire system length L(t). During
the transient shrinkage, a kink may be seen. Then, further exponential decay (with time scale we label Tss) brings the system to its asymptotic average
length Lss, around which it oscillates with frequency Ω and amplitude Amp. d–e Time series of L(t) as a function of the contraction force fc and the viscosity
γ. We show early and late intervals, taken from long simulation runs. While we focus on ordered pulsatile behavior, different possible types of dynamics are
seen at the extremities of parameter space. These include all-contractile (no-deactivation) mode; cell collapse to negative area (non-physical); increasingly
long Tss (long transient); and irregular traveling pulses (chaos). More details in Supplementary Fig. 1. f A phase diagram shows the different types of
dynamics as a function of the non-dimensional parametersef(related to force) and~t (related to time). g A plot of the system length L vs. its variation in time
∂L=∂t shows the sharp transition from an ordered pulsation mode (limit cycles) to chaos as a function of ~t. The trajectory is depicted in a dashed line in (f).
Plotted data points are taken from the steady-state.
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and 5tc � γ
kp
). We consider a disk-like shape of a tissue with free

boundaries (Fig. 1h). For the single-cell rest shape we choose a
regular, compatible hexagon, with rest perimeter p0 and rest area
a0

�
a0 ¼ 3p3ðp0=6Þ2=2

�
. The cell’s perimeter is controlled by an

active unit: when reaching criticality (either a critical area ac or
critical perimeter pc, showing slight differences between them) a
compression force fc is acting for a duration of tc to shorten the
perimeter (see “Methods”).

The results are qualitatively similar to the 1D case: In the excitable
mode (a0< ac) a single pulse is propagating from the perturbed point
across the tissue (Supplementary Movie 2). It propagates faster closer
to the rim as boundary cells are less constrained and hence more
responsive. In the oscillatory mode (ac< a0), after an initial shrinking
phase, the system is self-compressed and contraction pulses are
propagating in a uniaxial, azimuthal or a spiral fashion (Fig. 4a,
Supplementary Movie 3 left). As in 1D, an expansion front is a
precursor to a shrinkage front, while all cells in between are actively
contracting. Static contraction and chaotic modes exist as well,
resembling similar states in the 1D case (not shown).

The emergent dynamics we observe is analogous in structure to
generalized reaction-diffusion dynamics. To observe that, we write a
simple continuum model, written in the spirit of the discrete model
we presented here (see Supplementary Note 4). The dynamics may
be written as: ∂tu ¼ D∇2uþ R where u(r,t) is the displacement

vector of each point from its original location r at time t. The
diffusion coefficient D depends on viscoelasticity Dj j / k=γ and the
reaction term, R, depends on the cellular activity fc; tc; lc.

Despite the similarities to the 1D setting, a unique feature of
the 2D case is the fact that the system is prone to geometrical
frustration. An intuitive way to see it, is that rim-cells can only
release stresses in the radial direction, but not in the azimuthal
one. As a result, rim-cells are not beating like isolated cells, as in
1D. Although rim-cells relax some of their stress faster than bulk
cells, complete relaxation pends on “waiting” for the entire
system. This can be seen in the radial gradient of strain
(Supplementary Movies 3, 4, Supplementary Fig. 2). In addition,
bulk cells are relaxing slowly due to viscosity and due to the
energy wells, they reach at concave shapes (their perimeter needs
to temporarily decrease in order to go back to convexity). The
result of these two types of frustration is long intervals of
quiescence, with no active contractions. We show that as ~f
increases, quiescence periods increase, while short bursts of
activity occur between them (Supplementary Fig. 2).

Rip resistance mechanism. An intriguing feature of the 2D active
tissue is its effective mechanical properties under tensile stress. To
demonstrate them, we design a numerical experiment where we
pull a 2D sheet at two opposite rim points with a constant force

Fig. 4 2D tissue dynamics and the active cohesion hypothesis. a Sequential snapshots from a dynamic simulation of a 2D cellular sheet with EIC in an
oscillatory mode (Supplementary Movie 3 left). Shown, is a case of area-trigger (where a cell’s critical area ac is lower than its rest-area a0). Similar
patterns appear with a perimeter-trigger (where a critical perimeter, pc, is lower than the rest-perimeter p0). Greyscale represents cell area; red dots
represent actively contracting cells. The white arrows highlight the propagation of circular and spiral pulses that have features similar to the 1D case: an
extension front, followed by a shrinking front, while all cells in between are actively contracting. b Adding a yielding response to the model: when the
tension on a cell–cell junction is higher than a critical value, σs, an immediate softening occurs in both neighboring cells: a reduction in stiffness from k to ks
(In the 2D case, the softening can be either in the perimeter stiffness kp or area stiffness ka). In the sketch, arrows mark contractions, dashed blue lines
mark softening. c Snapshots from a simulation of a tissue with both contraction and softening thresholds (Supplementary Movie 3 right). Red dots mark
contracting cells, blue hexagons mark softened cells. The white arrows highlight the propagation of pulses with softening fronts accompanying the
extension and shrinkage fronts. d–g Testing the response of an excitable tissue (pc > p0) to external stretch in the x-axis: d The pulling configuration: A
constant force is pulling uniaxially on the sheet, acting directly on a fixed set of cells on each side (marked with red dashed circles). e The distance between
the pulling points L, normalized to the distance at rest L0, as a function of time. f We present peak values of mechanical fields per pixel across the tissue.
We show the maximal cell perimeter strain (p/p0), area strain (a/a0) and junction stress (σ) throughout the simulation. We compare a passive material, a
material with contraction response (EIC) and a material with both EIC and yielding responses. The contractile material dynamically distributes the strains in
the tissue but presents high levels of junction stress. A material with the added yield-response increases slightly the levels of cell strain but cuts-off high
junction stress values. See also Supplementary Movie 4 and Supplementary Fig. 3. g Histogram-view of all data points in the pulling simulation.
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(Fig. 4d, Supplementary Movie 4). First, we look at a passive
elastic sheet. At equilibrium, high values of stress and strain
are focused near the pinching points or along the pulling axis
(depending on specifics of the elastic model). Adding viscous
behavior either postpones this elastic equilibrium or creates
indefinite creep. All these cases impose a threat for tissue cohe-
sion. However, constant pulling on the active tissue results in a
dynamic steady state, where high strains vanish, and instead
strains oscillate in time around a lower average, exhibiting both
tension and compression (Fig. 4e). In addition, maximal strains
are evenly distributed in space, as all cells are participating in the
dynamics (Fig. 4f). This can be seen also in the histogram of all
strain values at all times (Fig. 4g). When the contraction
threshold value (ac or pc) is lower than the actual cell rupture
value, the tissue will successfully avoid failure due to high cell
strains (see Supplementary Movie 4 and Supplementary Fig. 3).

Adding a second cellular response–softening/yielding due to
junction stress- sets an upper bound for junctional stresses as
well. We add to the simulation such a cell softening threshold—
decrease in the elastic module kp by the arbitrary factor two upon
reaching critical junction stress σs (Fig. 4b, methods). For
simplicity, we assume that once the junction stress is restored
below σs, the stiffness returns to its original value. Our results
show that the added response does not change the spatiotemporal
patterns significantly, except introducing a tailing softening front
(Fig. 4c, Supplementary Movie 3). Under external tension, the
softening threshold did not change the strain and stress
distributions dramatically (Supplementary Movie 4, Supplemen-
tary Fig. 3), but it did cut-off high-stress values, trading them for
localized high strains, as seen in the pictures of peak values
(Fig. 4f) and at the distribution tails (Fig. 4g). When the threshold
values pc; σs

� �
are set below cell and junction rupture values

respectively, the tissue avoids failure by suppressing both cell
strain and junction stress simultaneously.

Discussion
In this work, we suggest a model for the propagation of con-
traction pulses in epithelia. The only requirement for pulse pro-
pagation is a single cell EIC-contraction due to expansion. Unlike
passive elastic retraction after expansion, the model requires the
contraction to be active, and include a memory time scale, in
order to bring a contracting cell significantly below its rest length
despite the overdamped conditions. We show that in order for a
contraction to propagate in the excitable-cell mode, the con-
traction impulse should be strong enough relative to the excita-
tion threshold ~t~f >~ϵ (a qualitatively similar criterion will exist in
the oscillatory-cell mode, with lss in the role of l0). The resulting
nonlinear pulses travel in the excitable media via local energy
injections. Despite the overdamped conditions they travel long
distances as solitons that do not decay nor change their shape,
and evolve dynamically following reaction-diffusion equations for
the strain. In biological tissues, and specifically in T. adhaerens,
we speculate that such long-range contraction pulses can be used
as means for inter-cellular information transfer and tissue
communication.

In parallel, we suggest in this work another physiological role
for such contraction dynamics in tissues: increasing their resis-
tance to rupture. We refer to the immediate need of a tissue to
keep its integrity under acute tension and avoid damage. Under
continuous external stretch, passive sheets reach a steady state of
strain focusing in specific areas. In contrast, sheets with cellular
EIC reach a dynamic state of oscillations between stretch and
compression across the entire tissue, diminishing high strain
values. This strain homogenization consumes cellular energy and

cannot be achieved in a passive material. However, when a cel-
lular sheet is under continuous tension, there is a trade-off
between two failure modes. Cellular contractions can prevent
rupture by high cell strain, yet it increases cell–cell junction stress.
Cell softening prevents cell–cell detachment by reducing junction
stress, but it increases cell strain. Using the two responses of
contraction and softening, the tissue is spatially distributing,
while setting an upper bound, for both cell strain and junction
stress, preventing rupture by the two failure modes simulta-
neously. We show here this simultaneous protection is possible
with no parameter fitting.

In biological tissues, it is unclear whether an EIC is triggered by
strain, stress, or strain rate. The exact parameter is hard to dis-
tinguish experimentally, and currently remains unknown. For our
model, we choose cell-strain and junction-stress as triggers for
cellular response, as they threat tissue cohesion: cell cortex net-
works rearrange due to stress, but are probable to fail entirely in
high strain. Cell–cell junctions, on the other hand, hardly expand,
but may break under stress. In addition, in the presence of drag, a
cellular contraction reduces cell strain but increases junction
stress. Therefore, we choose high cell strain as the trigger for
contraction and high junction stress as the trigger for softening,
as two antagonistic actions that directly relate to the two failure
modes. We demonstrated here that these feedback loops can
indeed promote tissue stability. We choose the active contraction
to be governed by a fixed compression force that lasts a fixed
duration of time. This is a minimal assumption inspired by our
experimental results from T. adhaerens, where we showed the
average contraction profile, as well as a narrow distribution of
contraction times relative to contraction amplitudes and speeds26.
We chose the yielding effect to mean an immediate softening by a
constant factor and immediate recovery when the junction-stress
is restored below the threshold. This is again a simplifying
assumption in the lack of accurate data.

Our work opens a family of models, that vary in the specifics of
the cellular responses (exact mechanical trigger, level of response,
the activation and recovery functions etc). How do these details
change the model’s results is a subject for future works, both
numerical/analytical and experimental. However, as long as the
activity thresholds are lower than the rupture values
ð~ϵ < ϵrupture; σs < σruptureÞ and as long as the contraction is
propagating to neighboring cells ð~t~f > ~ϵÞ the dynamic patterns
and the spatial homogenization of the loads would be qualita-
tively the same.

Our model and the rip resistance mechanism are yet to be tested
experimentally in epithelia. Specifically, accurate measurements of
response to tension in cells will shed light on the specific parameters
of EIC. Measurements at the tissue level will then test our model’s
predictions regarding the properties of the pulse dynamics. The
minimal nonlinear model we presented fits the fast soliton nature of
the pulses seen in T. adhaerens but may be applicable to other
observed contraction waves, as in drosophila embryo and MDCK
monolayers. Specifically, it would be interesting to test our predic-
tions in various embryonic tissues, and in epithelia that is either
contractile or prone to high, repeatable mechanical stresses (e.g.,
heart, lung, gut, bladder, vasculature),

We suggest to further investigate dynamics in epithelia of early-
divergent animals, that bring tissue mechanics to the context of the
evolution of multicellularity. Alongside the fundamental ability of
cells to stay cohesive as tissues, it may shed light on the origin of the
excitation-contraction coupling35, on mechanical information pro-
pagation in living materials, different architectures of information
processing, and the evolution of neuro-muscular systems36–40. Such
early epithelium dynamics may also be seen as embodied calcula-
tions yielding “behavior” and supporting physiological needs (e.g.,
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locomotion and navigation, wound healing, and size control).
Finally, to the best of our knowledge, our work highlights a new type
of active materials, and may inspire the engineering of synthetic
analogues that actively resist rupture.

Methods
The simulation code was written in MATLAB (MathWorks, 2017b) and is available
on GitHub (https://github.com/PrakashLab).

We adopt a dynamical modeling paradigm built around gradient-descent on
overdamped equations of motion. Unlike the conventional use of gradient descent,
the energy functional in the algorithm is not constant; rather, it changes every time
a cell is activated or deactivated. Inspired by T. adhaerens, we take the activation
time tc to be shorter than the viscoelastic time K/γ, which is the time scale to
approach cellular steady state. Therefore, our gradient descent algorithm will not
necessarily reach steady state, and indeed in most interesting cases it does not.

The equation of motion is therefore

γ_li ¼ � ∂E
∂li

where li is the length of cell #i, and the overall free energy E is a sum of the energies
of all cells, E tð Þ ¼ ∑

i
εi tð Þ. (Note that the cellular energy εi is different than the cell

strain ϵi mentioned earlier). In 1D, the energy of each cell is given by

εi tð Þ ¼ k li tð Þ � lo
� �2�Flc

i tð ÞliðtÞ
where the boxcar function Flc

i represents the cellular contraction forces: Flc
i takes

the value fc when li> lc and maintains it for a duration of tc, after which it goes back
to 0 (Fig. 1d).

To model 2D tissues, we generalize the above framework using a 2D vertex-
model, evolving under the cellular energy function

εi ¼ ka ai tð Þ � ao
� �2þ kp pi tð Þ � p0

� �2þ FAc
i tð Þpi tð Þ:

The function FAc
i now takes the value fc when ai> ac (or when P > Pc) and

maintains it for a duration of tc. In this formulation, the force may be triggered by
an area or perimeter threshold but acts on the perimeter.

We define the tensile stress on cell–cell junction for each edge in the 2D hex-
agonal grid (an edge is attaching two cells, and is composed of two vertices). We
evaluate this stress using a three-step procedure. First, the forces on the two
relevant vertices arising from the first cell are averaged, and their mean is projected
to the axis normal to the edge. The same average and projection is calculated for
forces arising from the other cell. Second, for each pair of cells with a shared edge,
the two normal forces are subtracted to find the force required to maintain the
constraint of confluency. This calculated force is then divided by the edge length to
find the force per unit length associated with each junction.

To model tension-induced yielding we add a second cellular response—softening
of both cells adjacent to an overstressed junction (we treat cell edges as junctions).
The energy functional then becomes:

εi ¼ kA ai tð Þ � ao
� �2þ kP;i pi tð Þ � p0

� �2þ FAc
i tð Þpi tð Þ

where kP,i= kP if the edges of the ith cell are all under the critical tension σs, and
kP;i ¼ ks< kP if one of its junctions is overtensed. In the numerical experiments
presented here we choose ks ¼ kP=2. Once the normal stress is reduced below σs,
perimeter stiffness is set back to kp.

Data availability
All relevant data are available from the authors upon request.

Code availability
All relevant code is available from the authors upon request.
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