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How choosing random-walk model and network
representation matters for flow-based community
detection in hypergraphs

Anton Eriksson® "™ Daniel Edler® !, Alexis Rojas 1 Manlio de Domenico? & Martin Rosvall® '

Hypergraphs offer an explicit formalism to describe multibody interactions in complex sys-
tems. To connect dynamics and function in systems with these higher-order interactions,
network scientists have generalised random-walk models to hypergraphs and studied the
multibody effects on flow-based centrality measures. Mapping the large-scale structure of
those flows requires effective community detection methods applied to cogent network
representations. For different hypergraph data and research questions, which combination of
random-walk model and network representation is best? We define unipartite, bipartite, and
multilayer network representations of hypergraph flows and explore how they and the
underlying random-walk model change the number, size, depth, and overlap of identified
multilevel communities. These results help researchers choose the appropriate modelling
approach when mapping flows on hypergraphs.
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important nodes and detect significant communities!=©.

From small to large system scales, random walk-based
methods help to uncover the inner workings of the systems the
networks represent”8. When standard network models with
dyadic relations between pairs of nodes fail to adequately repre-
sent a system’s interactions, researchers turn to higher-order
models of complex systems>?, including multilayer
networks!!-14 for multitype interactions, memory networks!>-17
for multistep interactions and simplicial complexes!®-21 and
hypergraphs?>~2> for multibody interactions.

While several methods can identify flow-based communities in
multilayer!12627 and memory!>-17 networks with higher-order
Markov dynamics, researchers have focused on combinatorial
methods to identify communities in hypergraphs28-33 and only
recently begun to unravel flow-based community structures
associated with random walks guided by hyperedges on
hypergraphs?>. However, different systems and research ques-
tions call for different random-walk and hypergraph models:
random walks can be lazy, able to visit the same node multiple
times in a row, or non-lazy and forced to move on. Hyperedges
can have arbitrary weights, and nodes can have hyperedge-
dependent weights. Because these and other models can be
represented with different network types—bipartite, unipartite
and multilayer—the questions multiply: How do different
hypergraph random-walk models combined with different net-
work representations change the flow dynamics at scales captured
by communities?

For example, random walks on hypergraphs can model the
flow of ideas in co-authorship networks. A node represents an
author, and a hyperedge connects all authors of a paper. In the
simplest dynamics, a random walker on a node picks a random
hyperedge among those that contain the node and steps to a
random node of the picked hyperedge. Then repeats. Excluding
author self-links for non-lazy walks or including hyperedge
weights from paper citations or using hyperedge-dependent node
weights for varying author contributions are natural model var-
iations that generate different dynamics?>24. How does the
organisation of authors in nested communities from research
groups to research areas change with random-walk model and
representation? The many combinations of random-walk models
and representations available to address specific research pro-
blems require us to ask, for different data and different questions,
which model and representation is best?

To address which combination of model and representation is
best for answering different questions about various hypergraph
data, we derive unipartite, bipartite and multilayer network
representations of hypergraph flows with identical node-visit
rates for the same random-walk model. For unique node-visit
rates when a representation requires directed links, we apply an
unrecorded teleportation scheme robust to changes in the tele-
portation rate and that preserves the node-visit rates when tele-
portation is superfluous in undirected networks?%. The
information-theoretic and flow-based community detection
method Infomap3° allows us to explore how different hypergraph
random-walk models and network representation change the
number, size, depth and overlap of identified multilevel com-
munities. By analysing schematic and real hypergraphs, we find
that the bipartite network representation requires the fewest links
and enables the fastest community detection. A multilayer net-
work representation that reinforces flows within similar layers
gives the deepest modular structures with the most overlapping
communities but at a high computational cost. The unipartite
network representation provides a trade-off between the two,
with intermediate compactness, speed, and detectable modular
regularities.

Researchers model and map flows on networks to identify

Results and discussion

Modelling flows on hypergraphs. We model flows on hypergraphs
with random walks, using hypergraphs with nodes V, hyperedges E
with weights w, and hyperedge-dependent node weights y. Each
hyperedge e has a weight w(e). Each node u has a weight y.(u) for
each hyperedge e incident to u, E(u) = {e € E: u € e}. To simplify the
notation when normalising weights into probabilities, we denote
node u’s total incident hyperedge weight d(u)=>_ cgu w(e) and
hyperedge €’s total node weight &(e) = ey (u)?3. With these
weights, a lazy random walker moves from node u at time ¢ to node
v at time ¢+ 1 in three stages by?>:

1. Picking hyperedge e among node u’s hyperedges E(u) with
probability %‘3.
2. P}c)king one of the hyperedge €’s nodes v with probability

3

5e)"
3. I\Sleoving to node v.

Variations include non-lazy walks, which never visit the same
node twice in a row with a modified second stage.

2. Picking one of the hyperedge €’s nodes v#u with

probability %,

and teleporting walks, which jump to a random node at some rate
to ensure that all nodes can be reached from any node in a finite
number of moves, so-called ergodic walks. To model flows that
tend to stay among similar hyperedges, such as among research
papers with similar author lists and likely similar topics, we pick
the next hyperedge based on its similarity to the previously picked
hyperedge. These hyperedge-similarity walks relate to link
communities to reveal pervasively overlapping modules® and
neighbourhood flow coupling to reveal intermittent communities
in temporal networks®’. Because hyperedge-similarity walks
depend on the previously picked hyperedge, they correspond to
a higher-order Markov chain model.

These hyperedge-similarity walks require multilayer networks
since the other representations contain no information about the
previously visited hyperedge?. For example, compare the
random walker in the unipartite and multilayer schematic
networks in Fig. 1b, d: once the random walker reaches node c,
only the multilayer network captures that the random walker
came through the hyperedge with nodes ¢, f and g and can use
different transition rates compared with arrival through the
hyperedge with nodes a, b and c. Bipartite and unipartite
networks, as well as multilayer networks, can represent the other
random-walk variations. Altering the random-walk process alters
the node-visit rates, but a specific process has identical node-visit
rates irrespective of network representation by our design.

Bipartite networks offer the most direct representation of the
basic three-stage random-walk process above. We represent the
hyperedges with hyperedge nodes, and the three stages become a
two-step walk between the nodes at the bottom and the
hyperedge nodes at the top in Fig. 1b. For simplicity, we refer
to them as nodes and hyperedge nodes. First a step from a node u
to a hyperedge node e,

w(e)
= 1
= M
and then a step from the hyperedge node to a node v,
_ Y
ev T 6( 6) . (2)

By starting the random walk on the nodes and taking two steps at
a time, corresponding to a two-step Markov process3, hyperedge
nodes are only intermediate stops with zero flow when the
random walk is back on the nodes after two steps. The stationary
distribution of the random walk is concentrated to the nodes. For
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a)

Fig. 1 A schematic hypergraph represented with three types of networks. a The schematic hypergraph with weighted hyperedges and hyperedge-

dependent node weights. White circles labelled from a to j represent nodes, and large orange circles represent hyperedges incident to the nodes in each
circle. Thin hyperedge borders for weight 1, medium for weight 2, and thick borders for weight 3. No node borders for node weight 1, thick borders for
aggregated weights larger than 1 (Supplementary Code 1). A lazy random walk depicted with an arrow on the schematic hypergraph represented on: b a
bipartite network where the unlabelled nodes represent the hyperedges, ¢ a unipartite network and d a multilevel network with grey circles defining each
layer. The colours indicate optimised module assignments, in d for hyperedge-similarity walks. The links' thicknesses are proportional to the random walk’s

transition rates.

oA Q Q

a b c d e

f

Fig. 2 Bipartite network with state nodes for non-lazy random walks.
White circles with black borders represent hyperedges, and small, coloured
circles within the hyperedges represent the state nodes. To prevent random
walks on bipartite networks from visiting the same node at the bottom
twice in a row by backtracking from the hyperedge node at the top, we use
state nodes in the hyperedge nodes. Each hyperedge node requires one
state node for each node in the hyperedge. The state nodes have one
incoming link from its source node and outgoing links to all other nodes in
the hyperedge. Colours indicate the optimised partition. The links'
thicknesses are proportional to the random walks' transition rates.

non-lazy walks represented with bipartite networks, we use so-
called state nodes®® in the hyperedge nodes. We let each
incoming link to a hyperedge node connect to a state node with
out-links to the hyperedge’s all nodes except the incoming link’s
source node. This memory network ensures that walks are not
backtracking®® (Fig. 2).

To represent the random walk on a unipartite network, we
project the three-stage random-walk process down to a one-step
process between the nodes and describe it with the transition rate
matrix

w(e)y(v)
ecBuy) d(u) 8(e) ’

Z PuePev =
ecE(u,v)

uv

3)

where E(u,v)={e€Eucevee} is the set of hyperedges
incident to both nodes u and v. Each hyperedge forms a fully
connected group of nodes (Fig. 1¢c). Unipartite networks for non-
lazy walks have no self-links. The unipartite representation forms
a weighted one-mode projection of the bipartite representation
and requires more links with its fully connected groups of nodes.

To represent the random walk on a multilayer network, we
project the three-stage random-walk process down to a one-step
process on state nodes in separate layers. Each hyperedge e with
weight w(e) forms a layer o with weight w(a). A state node u®
represents u in each layer a € E(u) that contains the node. All
state nodes in the same layer form a fully connected set (Fig. 1d).
The transition rate between state node u* in layer a and state
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P(xﬂ _ w(ﬁ) )/ﬁ(V)

uv

d(u) 8(B)

Node u’s state node-visit rates in different layers sum to u’s visit
rate in the unipartite and bipartite representations. With one state
node per hyperedge layer that contains the node, the multilayer
representation requires most nodes and links to describe the walk.
But this cost from including state nodes such that all nodes have a
state node for each incident hyperedge comes with benefits: the
multilayer representation can describe higher-order Markov
chains.

For example, to model flows that tend to stay among similar
layers, we pick a hyperedge not only proportional to its weight
but also proportional to its similarity to the hyperedge picked in
the previous step. To include hyperedge-dependent node weight
information in the similarity measure, we use one minus the
Jensen—-Shannon divergence between the transition rate vectors
P,, and Pg, to nodes at layers « and 8 as the hyperedge coupling
strength,

D¥ = w(B)[1 — JSD(a, B)]
1 1 1 1
w(p) {1 - H(E P, + 5Pﬁv) +3H(P,) + EH(PﬁVﬂ
(5)

for B € E(u, v). With node u’s total incident hyperedge weight in
layer «

for § € E(u,v). (4)

s= 5 D,
=) ©
the hyperedge-similarity walk has the transition rates
DB ya(v
p = v) for B € E(u,v). (7)

S. (B

Because the transition rates at a node depend on the current layer,
the random walks generate higher-order Markov dynamics that a
unipartite or bipartite network representation without state nodes
cannot capture.

To ensure ergodic node-visit rates, we derived an unrecorded
teleportation scheme that leaves the node-visit rates unchanged
when teleportation is superfluous for hypergraphs with
hyperedge-independent node weights, robust to changes in the
teleportation rate when teleportation is needed3* and indepen-
dent of the representation (see Methods).
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Mapping flows on hypergraphs. To identify flow-based com-
munities or modules in hypergraphs, we seek to compress a
modular description of random walks on the network repre-
sentations. We cast the problem of finding flow-based commu-
nities in hypergraphs as a minimum-description-length problem
with the map equation framework?.

The map equation measures, in bits, the optimal codelength L
per step of a random walk on a network for a given node partition
M with m modules. When all nodes are in the same module, the
map equation is simply the Shannon entropy H of the node-visit
rates P = {m,}. For the schematic example in Fig. 1 with lazy
walks, the one-module codelength is

L(M,) = H(P) )

= H(ﬂm Ty, Ty g, Ty ﬂf? ﬂg, Ty, iy ”])

' 9
=3.09 bits ®

for the bipartite, unipartite, and multilayer network representa-
tions because they have the same node-visit rates. The modified
hyperedge-similarity walk gives slightly different node-visit rates
and codelength.

When the map equation combines within and between-module
codelengths in partitions with more than one module, different
representations with identical node-visit rates need no longer give
the same codelength because the flows between modules can vary.
For modules i =1, ..., m with

entry flow rates g, =24 yeiWirs

exit flow rates g, =2 ,c; giWurs
entry flow rate random variable ~ Q ={g,.}
with total flow rate g, =g,
exit and node — visit rate random variables ~ P; ={g, ., 7,¢;}

with total flow rate  p; =gq; + 2,7,

the map equation takes its general two-level form

L(M) = q,H(Q) + zi:piQH(Pi)' (10)
The first term is the codelength for between-module movements,
followed by the sum of codelengths for within-module move-
ments over all modules.

When a network has modular regularities, a partition captures
the modular flows when the random walker spends long times
within the modules with few transitions between them. The
codelength is shorter than in the one-module solution because the
information required to specify a random walker’s position in a
module decreases with its size. But for partitions with too many

modules, the information required for describing between-
module movements exceeds the gain from using small modules.
The optimal partition has the shortest codelength. Its node
assignment best captures the modular regularities of flows on the
network.

Using the optimal three-module solution for the unipartite
network representation in Fig. 1c as an example, the codelengths
for the bipartite representation—with the leftmost hyperedge
assigned with nodes 4, b and ¢ in Fig. 1b to match the three-
module unipartite solution—and the unipartite representations
are

LM3) =4, H(q,: 92+ 93.)
+(q,~ + 7y + M, + 7 + m)H(q, -, g, T, 7, )
+ @y + 7, + 1y + 1H (G, -, 7, T, )
+ @3~ + 7+ 7 + TPH(Gs 1, 74, 7T, )

B { 3.29 bits for the bipartite representation

2.35 bits for the unipartite representation,
(11

with modules ordered from largest to smallest total flow rate.
Since the node-visit rates are the same, the higher between-
module flows for the bipartite representation

ql(\ qlr\ qZﬁ qZ/\ q3n q3r\
Bipartite 0.071 0.082 0.14 0.14 0.22 0.21
Unipartite 0.027 0.033 0.044 0.041 0.044 0.042

(12)

explain the large codelength difference. In the bipartite
representation, a random walker can transition between modules
even when visiting the same node multiple times in a row if an
incident hyperedge belongs to a different module. Even with a
zero node-visit rate that does not contribute to the codelength, a
hyperedge node with nodes in multiple modules costs extra bits
because its links carry flows across module boundaries. As a
result, the bipartite network representation favours fewer, larger
modules than the unipartite network representation.

The multilayer representation enables further compression
beyond the unipartite solution because a node’s state nodes can
belong to different modules. The multilayer compression gain is
illustrated for the non-lazy walk on the schematic hypergraph in
Fig. 1. In this example, substituting non-lazy for lazy walks does
not change the optimal unipartite solution, and the map equation
takes the same form as in Eq. (11), but altered node- and link-

Table 1 Optimal flow-based communities of the schematic hypergraph in Fig. 1a represented with different networks.
Representation Nodes Links Modules Codelength (bits) Overlap
Lazy

Bipartite 15 32 2 290 -
Unipartite 10 40 3 2.35 -
Multilayer 16 98 3 235 1.00
Multilayer h-s2 16 98 4 2.28 1.09
Non-lazy

Bipartite 26 52 2 3.00 -
Unipartite 10 30 3 2.63 -
Multilayer 16 68 3 2.62 1.10
Multilayer h-s@ 16 68 4 232 1.29

The number of nodes includes state nodes for the multilevel representations and the bipartite non-lazy representation. We quantify the module overlap by the effective number of node assignments in
the optimal solutions (see Methods).

aHyperedge-similarity.
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visit rates change the codelength to 2.63 bits (Table 1). Assigning
node fs two state nodes f* and f8 for its representation in the
layers with nodes a, b, ¢ and d, e, f, respectively, to modules two
and three in the optimal multilayer solution changes Eq. (11) to

L(M) = an(qlr\7 q2n7 q3n) (13)
+ (qlm + T[g + nh + T[i + ﬂj)H(qlrw ﬂg? nh7 7Ti7 71])
+ (QZA tr,+m .t T[fa)H(qu‘«’ Tla> Ty Ty ”f”‘) (14)

+ (q3m + T + T, + ﬂfﬁ)H(q3m7 Ty, ey T[fﬁ)
= 2.62 bits.

When modules two and three overlap in node f, less flow crosses
their boundaries,

qln qlr\ qu\ qu\ q3(\ q3r\

Unipartite 0.042 0.045 0.065 0.063 0.064 0.063

0.042 0.045 0.058 0.057 0.021 0.021
(15)

The compression gain from reduced flows between modules and

within the third module is larger than the loss from adding state
node f* to the second module. Overlapping modules in the

Multilayer

multilayer hyperedge-similarity representation enable further
compression because flows stay even longer within modules.

To find the optimal partitions for the different representations,
we use the community-detection algorithm Infomap3?. Infomap
is to the map equation what the Louvain®? or the Leiden*!
method is to the objective function modularity*2, which favours
partitions with a high internal density of links compared with a
statistical null model. Infomap uses a similar search algorithm as
the Leiden method but tries to find the node assignment that
minimises the map equation’s codelength. Infomap can find not
only shallow two-level partitions with nodes in modules, but also
deeper hierarchical partitions—from top-level supermodules with
multiple levels of submodules down to leaf-level modules
containing the nodes—if such multilevel solutions give higher
modular compression3. Infomap also finds two-level or multi-
level solutions in multilayer networks2®.

Using Infomap, we compare how much the different
representations can compress modular flows. When mapping
flows modelled by lazy and non-lazy random walks on the
schematic network in Fig. 1, the optimal partitions of the bipartite
networks have two communities. In contrast, the unipartite and
multilayer networks have three communities and the multilayer
networks with hyperedge-similarity walks have four communities
(Table 1 and Fig. 3).

With a state node for each hyperedge a node belongs to, the
multilayer network provides Infomap with degrees of freedom that

Bipartite

Unipartite

Multilayer Multilayer h-s

Fig. 3 Alluvial diagrams of optimal partitions for the schematic hypergraph in Fig. 1a. Darker bars represent the optimised modules in each partition,
with height proportional to the flow volume of the contained nodes a to j. Streamlines connect modules that contain the same node(s). a Optimal partitions
for lazy walks represented with the networks in Fig. Tb-d using the same colours. b Optimal partitions for non-lazy walks. The non-lazy bipartite

representation with the same colours as in Fig. 2. h-s hyperedge-similarity.
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enables overlapping communities with possibly higher compression.
But for this small network, only non-lazy walks give overlapping
modules with 0.01 bits compression gain (Table 1). With walks that
preferentially move to similar hyperedges, the optimal partitions of
the multilayer hyperedge-similarity network representations for lazy
and non-lazy random walks both have more overlap in four
modules (Table 1 and Fig. 3). The hyperedge-similarity walks
favour these overlapping modules because they stay longer within
them than the regular walks.

For a given random-walk model, the representations give
equivalent node-visit rates but alter the link flows, and with
different link flows, the optimal partition can change. The
bipartite network representation favours partitions with fewer
modules than the unipartite network representation because
assigning hyperedge nodes to modules implies encoding more
transitions between modules. Multilayer representations, espe-
cially with walks that spend longer time among similar
hyperedges, favour more overlapping modules. The random-
walk model determines how much the multilayer network
modules overlap. Non-lazy and hyperedge similarity walks favour
overlap because they lead to longer persistence times among
nodes in possibly overlapping modules.

Experiments. To illustrate how the network representation affects
detected communities in real hypergraphs, we generated a col-
laboration hypergraph from the 734 references in Networks
beyond pairwise interactions: structure and dynamics by Battis-
ton et al.!9. We modelled the referenced articles as hyperedges
and their authors as nodes. Authors with multiple articles form
connections between the hyperedges. We analysed the largest
connected component with |V| =361 author nodes in |E| =220
hyperedges. The median number of authors in a hyperedge is 3,
and the authors have contributed to 2.2 articles on average
though most have only contributed to one.

Assuming that highly cited papers have higher influence and
receive more flows?3, we assigned the relative importance of
references by their number of citations ¢ in December 2020. Some
references had no citations and some were highly cited. One such
example is Diffusion of innovations by Everett M. Rogers, with
more than 120,000 citations. To avoid disproportionally large or
small hyperedge weights w(e), we weighted the edges by the
logarithm of the number of citations and added unit constants to
avoid the zero citation problem,

we)=In(c+1)+1. (16)

We modelled the authors’ different contributions to articles by
assigning higher weights to the first and last author?3, We used
the edge-dependent node weights

y.(v) = {

We assumed equal contribution for alphabetically sorted authors,
and assigned all of them weight y(v) = 1. This model ranks a co-
corresponding author’s contributions lower than those of the
corresponding authors.

To study how hypergraph representations and random-walk
models affect the community structure, we generated bipartite,
unipartite and multilayer representations for lazy and non-lazy
random walks on the collaboration network. We identified nested
hierarchical partitions in each network with Infomap, using 100
independent searches for each network. Infomap’s running time
depends on the number of nodes, links and solution levels: the
bipartite and unipartite representations finished 3-7 times faster
than the multilayer representations. The non-lazy bipartite
representation with many state nodes ran almost as long.

The optimised partitions for the lazy and non-lazy representa-
tions behave like the schematic example: The bipartite repre-
sentations have the fewest leaf modules and highest codelengths,
and the multilayer hyperedge-similarity representations have the
most leaf modules and shortest codelengths, with the unipartite
and the regular multilayer representations in between (Table 2).
Except for the non-lazy bipartite representation with its many
state nodes, the lazy representations have more leaf modules and
shorter code lengths than their corresponding non-lazy repre-
sentations because the lazy random walk is more confined than
the non-lazy random walk.

With more nodes than in the schematic example, the solutions
have more depth. The bipartite solutions have three, and the
unipartite and multilayer solutions have four hierarchical levels.
The unipartite and multilayer solutions also have more top
modules. With non-lazy dynamics, they split the largest top
module, and in the lazy dynamics, they split the two largest top
modules. But the second-largest top module reunites in the
hyperedge-similarity representation, with stronger connections
between similar hyperedges (Fig. 4 and Supplementary Fig. 1).
The unipartite and multilayer solutions are also most similar at
the leaf level (Supplementary Fig. 2).

In this larger example, the multilayer hyperedge-similarity
representations give more overlap. The non-lazy representations
result in higher average overlap because random walkers visiting a
node must continue to other nodes, often in the same or a similar

2
1

if node v is first or last author,

(17)

otherwise

Table 2 Optimised flow-based multilevel communities of the collaboration hypergraph represented with different networks.

Representation Nodes Links Modules Codelength (bits)
Top Leaf Levels Overlap

Lazy

Bipartite 581 1560 4 23 3 - 5178 (1)

Unipartite 361 2607 9 69 4 - 3.82557 (2)

Multilayer 780 17,193 9 76 4 1.003 3.82730 (2)

Multilayer h-s? 780 17,193 8 90 4 1127 3.54939 (3)

Non-lazy

Bipartite 141 3548 5 25 3 - 51733 (2)

Unipartite 361 2246 7 49 4 - 4.25104 (8)

Multilayer 780 12,843 7 54 4 1.098 416349 (8)

Multilayer h-s? 780 12,843 9 66 4 1.181 3.70432 (1)

aHyperedge-similarity.

The number of nodes includes state nodes for the multilevel representations and the bipartite non-lazy representation. Shortest codelength of 100 trials with the variance in parenthesis. We quantify the
module overlap by the effective number of node assignments in the optimal solutions (see Methods).
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Fig. 4 Alluvial diagrams of optimised partitions for different representations of the collaboration hypergraph. Darker bars represent the modules in
each partition, with height proportional to the flow volume of the contained nodes. Streamlines connect modules that contain the same nodes. Lazy walks
in a and non-lazy walks in b. Module names from the top-ranked author within each module. Colours derive from the bipartite representations' partition
and differentiate author-groups that collaborate more within the group than with authors in other groups. h-s hyperedge-similarity.

hyperedge layer. When random walkers from dissimilar hyper-
edges come together at a node, they tend to return to where they
came from and favour overlapping modules. The non-lazy
representations also result in higher max overlap with the same
authors topping all representations (Fig. 5).

In line with the information-theoretic duality between finding
regularities in data and compressing those data, representations
that enable deeper solutions with more modules have shorter
codelengths (Table 2). The lazy multilayer representation is an
exception. Its optimised codelength is bound above by the lazy
unipartite representation’s codelength—they have the same
codelength for the same hard partition—and overlapping
modules can potentially reduce the codelength. Infomap’s best
codelength was instead 0.05% longer than for the lazy unipartite
representation. Multilayer representations with their many state
nodes and links aggravate the search problem, and Infomap could
not find a better solution in 100 attempts. But the gain from
overlapping modules is higher for the non-lazy multilayer
representation and Infomap finds a solution with a significantly
shorter codelength.

A case study on the fossil record. Palaeontologists classify major
groups of marine animals archived in the fossil record into global-
scale faunas that change over time*4. They have used standard*”
and complex network representations*¢ to delineate these evo-
lutionary faunas over the past 500 million years. However, it is

still unclear how such an organisation of marine animals into
modules representing large-scale faunas changes with random-
walk model and input network representation.

To illustrate how the network representation of the underlying
paleontological data affects empirical estimates of this macro-
evolutionary pattern, we generated a hypergraph from genus-level
fossil occurrences®® available from the Paleobiology Database®’.
Due to computational limitations, we restricted our analysis to
fossil occurrences from the Cambrian (541 MY) to the Cretaceous
(66 MY). We modelled the remained 77 geological stages in the
reduced data set as hyperedges and the 13,276 fossil genera as
nodes. In this hypergraph, genera occurring in multiple geological
stages form connections between hyperedges. We weighted the
hyperedges by dividing the number of samples where a genus
occurs in a given geological stage by the total number of samples
recorded at the stage, a procedure modified from ref.48. We
generated bipartite, unipartite and multilayer network represen-
tations for lazy and non-lazy random walks from the underlying
palaeontology data and identified optimised partitions in the
assembled networks with Infomap.

For lazy random walks, Infomap partitioned only the multi-
layer representations into multilevel communities, with three
modules at the first hierarchical level reproducing the Cambrian,
Paleozoic (with lower-level modules from Ordovician to Per-
mian) and Mesozoic (with lower-level modules from Triassic to
Cretaceous) large-scale or evolutionary faunas*44° (Fig. 6a). Like
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Fig. 5 The effect of random-walk model on researchers’ effective module
assignments. Authors in the collaboration hypergraph with the highest
average effective number of assignments—the per-node module overlap
measure in Eq. (25)—in the lazy and non-lazy multilayer representations
(see Methods). Curves connect authors between different random-walk
models. h-s hyperedge-similarity.

the schematic example and the hypergraph of metabolic reaction
data, the bipartite representation for the lazy random walks has
the fewest leaf modules and highest codelength. The multilayer
hyperedge-similarity representation has the most leaf modules,
shortest codelength and highest overlap. Leaf modules in this
representation can be interpreted as faunas from each geological
period in the underlying data (Table 3).

For non-lazy random walks, Infomap partitioned the bipartite
representation into a multilevel solution with shorter codelength
than the unipartite representation and the standard multilevel
representation (Fig. 6b). The multilayer hyperedge-similarity
representation also provides the most leaf modules and the
highest overlap. Both multilayer representations reproduce the
three large-scale or evolutionary faunas. Unlike the other
representations, the multilayer hyperedge-similarity representa-
tion’s lower-level modules capture faunas from each geological
period, including the Silurian.

Infomap applied to the bipartite representation of the non-lazy
random walks identified similar lower-level faunas but combines
Cambrian and Paleozoic into a single top module, obscuring the
large-scale pattern. For lazy and non-lazy random walk models,
unipartite representations fail to capture the larger-scale faunas
that characterise the underlying system. Unipartite models also
fail to distinguish some lower-level structures, providing a single-
scale view of the system that lies between the lowest and higher
levels in the multilayer solutions.

Our results suggest that representing fossil occurrence data with
multilayer networks offers some advantages to quantify macro-
evolutionary patterns. Compared with unipartite and bipartite
representations, multilayer networks enable discovering more
regularities in the fossil record. Their optimised partitions provide
higher compression, deeper hierarchy and a better multiscale view.

A case study on metabolic reaction data. Caenorhabditis
elegans is an about 1-mm long, transparent nematode
found worldwide. C. elegans is one of the most studied model
organisms in molecular biology for insights about diseases’
underlying metabolic pathways**—>1, We used the genome-scale
metabolic network model called iCEL1273%2, which contains
1273 genes, 623 enzymes and 1985 metabolic reactions and is
available at wormflux.umassmed.edu. The data include metabolic
pathways such as Glu-tRNA(GIn):L-glutamine amido-ligase for
Aminoacyl-tRNA biosynthesis. The corresponding reversible
reaction ATP 4+ GLN —L + GLUTRNAGLN + H,0 <«
ADP +GLNTRNA + GLU —-L + H + Plwith reactants on
the left-hand side and products on the right-hand side requires
one or more catalysing enzymes. The enzymes catalysing a
reaction consist of proteins or protein complexes, which their
coding genes’ Boolean logic can describe. For example, we denote
the catalysing enzyme for the reaction above by C39B5.6 &
Y66D12A.7 & Y41D4A.6, which corresponds to Glutamyl-tRNA
(Gln) amidotransferase subunit B, Glutamyl-tRNA(GIn) amido-
transferase subunit C and Glutamyl-tRNA(GIn) amidotransferase
subunit A.

While standard networks with links between pairs of nodes
representing reactants and products in the same reaction can
provide insights about cell function?, such dyadic relations fail to
capture the co-existence of multiple proteins in complexes.
Instead, we use hyperedges to represent metabolic reactions and
nodes to represent reactants, products and enzymes. We
represent each enzymatic protein complex with genes related by
Boolean ANDs by a node such that genes related by Boolean ORs
form multiple nodes in the same reaction. While many other
abstractions of metabolic systems are possible, this representation
naturally describes protein complexes in hypergraphs. To test
how different random-walk models and network representations
capture functional modules of metabolites and enzymes, we
generated unipartite, bipartite, and multilayer representations
from the C. elegans hypergraph and identified multilevel
communities with Infomap.

All hypergraph representations include modules with protein
complexes otherwise overlooked in representations based on
standard dyadic relationships. Again, the unipartite and multi-
layer representations have optimal solutions with shorter
codelengths that reveal more modular regularities. The optimal
solutions for the bipartite representations have fewer levels or
modules (Table 4 and Fig. 7).

While the lazy and non-lazy random walk solutions are similar
for several representations (Fig. 7a, b), the non-lazy walks give a
deeper solution with more modules for the bipartite representa-
tion. Nevertheless, the solutions for the bipartite representations
aggregate enzymes found in several metabolic processes, while the
other representations include modules with enzymes representa-
tive of specific biological processes. For example, gene ontology
enrichment analysis shows that Module 1:3 in the bipartite
solution for non-lazy random walks includes both lipid and
amino-acid metabolism. In the unipartite and multilayer
representations, this module splits into distinct modules for lipid
and amino-acid metabolism with more specific processes
(Fig. 7b).

Only the multilayer hyperedge-similarity solutions have
significant overlap (Table 4). The module overlaps constitute
common metabolites such as water and NAD. Assigning these
common metabolites to multiple modules compresses the data
more and reveals more regularities in smaller modules. But better
representing the specific biological processes come at a relatively
high computational cost. Infomap takes much longer to identify
overlapping modules in the multilayer networks with numerous
state nodes than hard partitions in the unipartite networks.
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modules in each partition, with height proportional to the flow volume of the contained nodes. Streamlines connect modules that contain the same nodes.
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Table 3 Optimised flow-based multilevel communities of the hypergraph of fossil data represented with different networks.

Representation Nodes (x103) Links (x103) Modules Codelength (bits) Time (hh:mm:ss)
Top Leaf Levels Overlap

Lazy

Bipartite 13 79 5 8 2.02 - 10.50927 (5) 00:00:06

Unipartite 13 16,155 6 13 2.02 - 10.3953503 (1) 00:13:24

Multilayer 40 174,490 3 17 3.00 1.01 10.39819 (1) 09:08:43

Multilayer h-s? 40 174,490 3 19 3.28 1135 9.84170 (1) 14:19:39

Non-lazy

Bipartite 53 25,937 2 15 3.02 - 10.34889 (3) 01:14:25

Unipartite 13 16,141 6 12 2.02 - 10.4031798 (6) 00:13:04

Multilayer 40 174,209 3 15 3.00 1.010 10.406141 (9) 08:55:03

Multilayer h-s? 40 174,209 3 16 3.00 1135 9.84912 (1) 13:23:13

in parenthesis. The elapsed time during 20 optimisation trials.
2Hyperedge-similarity.

The number of nodes includes state nodes for the multilevel representations and the bipartite non-lazy representation. The partitions’ number of non-trivial top and leaf modules. The average number of
levels is weighted by flow volume. We quantify the module overlap by the effective number of node assignments in the optimal solutions (see Methods). Shortest codelength of 20 trials with the variance

Infomap even fails to compress the multilayer network beyond
the unipartite network for non-lazy random walks because the
more challenging search problem offsets the tiny compression
gain from overlapping modules. The unipartite representation
provides a good trade-off between speed and compression,
revealing more regularities than the bipartite representation much
faster than the multilayer representations.

Conclusions

We have derived unipartite, bipartite, and multilayer network
representations of hypergraph flows with different advantages.
We used the information-theoretic and flow-based community
detection method Infomap to explore how different hypergraph
random-walk models and network representations change the
number, size, depth and overlap of identified multilevel
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Table 4 Optimised flow-based multilevel communities of the hypergraph of metabolic reactions in C. elegans represented with
different networks.

Representation Nodes (x103) Links (x103) Modules Codelength (bits) Time (hh:mm:ss)
Top Leaf Levels Overlap

Lazy

Bipartite 8.1 45 15 - 2.00 - 9.75 (9) 00:00:02

Unipartite 6.1 4055 5 336 3.02 - 8.50728 (3) 00:03:01

Multilayer 23 46,269 4 385 3.03 1.027 8.493270 (9) 01:10:50

Multilayer h-s? 23 46,269 6 484 3.02 1.155 8.210230 (9) 01:36:37

Non-lazy

Bipartite 29 10,659 15 28 2.96 - 10.10 (6) 00:19:55

Unipartite 6.1 4049 4 228 3.00 - 8.50728 (3) 00:02:41

Multilayer 23 45,519 3 283 3.01 1.089 8.79427 (1) 01:41:53

Multilayer h-s? 23 45,519 4 390 3.01 1.237 8.5072 (1) 01:44:33

The number of nodes includes state nodes for the multilevel representations and the bipartite non-lazy representation. The partitions’ number of non-trivial top and leaf modules. The average number of
levels is weighted by flow volume. We quantify the module overlap by the effective number of node assignments in the optimal solutions (see Methods). Shortest codelength of 20 trials with the variance
in parenthesis. The elapsed time during 20 optimisation trials.
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Fig. 7 Alluvial diagrams of optimised partitions for different representations of the C. elegans metabolic system. Modules that account for 99.9% of the
flow volume are included. Darker bars represent the modules in each partition, with height proportional to the flow volume of the contained nodes.
Streamlines connect modules that contain the same nodes. Lazy walks in a and non-lazy walks in b. Dashed lines surround the submodules that have the
same parent module. Modules that appear together in the largest top module in the multilayer representations' partition coloured in blue. All other modules
in orange. h-s hyperedge-similarity.
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communities. By identifying flow-based communities both in a
schematic and real hypergraphs—a small collaboration hyper-
graph of researchers working on networks beyond pairwise
interactions, a large faunal hypergraph of sampled species across
geological stages and the metabolic system of the model organism
C. elegans—we found that the bipartite network representation
enables the fastest community detection among the tested
representations because it uses the fewest links and often has
shallower solutions.

A multilayer network representation that reinforces flows
within similar layers—one for each hyperedge—gave the deepest
modular structures with the most module overlap. But the
modular detection gain comes at a high computational cost:
combining fully connected layers with other layers requires many
more nodes and links than in the bipartite network representa-
tion. If the research question does not require hyperedge
assignments or overlapping modules, the unipartite network
representation provides a trade-off with intermediate compact-
ness, speed and the ability to reveal modular regularities. Among
the random-walk models, lazy walks typically give more modules
in deeper nested structures, and non-lazy walks provide higher
modular overlap. Our methods and results help researchers
model and map flows on hypergraphs to study the effects of
multibody interactions in complex systems.

Methods

Unrecorded teleportation. With hyperedge-independent node weights where
ye(u) = p(u) for all hyperedges e € E(u), undirected weighted networks can
represent the dynamics, and the stationary distribution of the random walk 7, is
proportional to the product of node «’s total incident hyperedge weight d(u) and
weight p(). With normalised node-visit rates??,

)y
T S e d)y) (18)

For the multilayer network representation, the node-visit rates split between layers
based on the node u’s incident hyperedge weight per layer state node

= wl@yw) (19)
v d(v)y(v)

With hyperedge-dependent node weights y.(u), only directed weighted
networks can represent the dynamics. We use random teleportation to ensure
ergodic walks when deriving the node-visit rates with the power-iteration method.
Unrecorded teleportation to links minimises the distortion3%: in each iteration of
the power-iteration method, we distribute a fraction 7=10.15 of each node’s flow
volume among all nodes proportional to their out-link weights. The remaining flow
volume moves on the links proportional to their weights. In the last iteration, we
move all flows on the links proportional to their weights and record all flows on
links and nodes to obtain the ergodic node- and link-visit rates with unrecorded
teleportation. This procedure gives equivalent visit rates as simulating a random
walker that only records moves on links: with probability 1 — 7, the random walker
moves to a node by following the links proportional to their weights and records
the link and the target node. With probability 7, the random walker teleports
without recording to the link’s source node proportional to the link weight. The
normalised number of recordings of each node and link gives the visit rates.

We want teleportation applied to undirected networks—where it is unnecessary
—to leave the node- and link-visit rates unchanged. We achieve this smooth
teleportation by scaling the transition rates from nodes by the node-visit rates: then
unrecorded teleportation proportional to the nodes’ total out-link weights followed
by recorded moves on the links proportional to their weights distributes on the
nodes according to the ergodic visit rates on undirected networks>%. For the general
case when the node weights can depend on the hyperedge, and the network may be
directed, we use Eq. (18) without assuming y.(u) = y(u) as an approximation of the
node-visit rates:

~ ZeeE(u)w(e)ye(”)
== o 20
K SRR E N ) @0)
for nodes and
~a _ w(@)y, (1)
T = ZveV,ueE(v)w(e)ye(V) for & € E(w) @n

for state nodes. With exact node-visit rates, we would obtain the stationary flow
volumes on links by multiplying the transition rates by the source nodes’ visit rates.

With approximate node-visit rates, instead, we obtain the link weights

ﬁ/MC = ﬁupue (22)
for bipartite networks,
WMV = ﬁMPMV (23)
for unipartite networks, and
W = 72P% for B € E(u,v) (24)

for multilayer networks. With unrecorded teleportation proportional to these link
weights, modelling flows on hypergraphs give node-visit rates pi, and link-flow
rates w,,, robust to changes in the teleportation rate and independent of the
representation.

Module overlap metric. Modules overlap when Infomap assigns a node’s state
nodes in the multilayer network representations to different modules. Measuring
the overlap through the absolute number of assignments is misleading because the
overlap is 2 regardless of the number of state nodes assigned to a different module
than the rest. Instead, we used the effective number of assignments. If a fraction f of
node u’s state nodes is assigned to the mth module in u’s module assignment set,
the mth element of u’s assignment vector is a’, = f and the effective number of
assignments measured by the perplexity of u’s module assignments is

0, = 2H@), (25)

The effective number of assignments is one if all u’s state nodes are in one module,
and it is equal to the number of assignments when the state nodes are divided
evenly among #’s module assignments. We averaged over all nodes for the partition
overlap.

Data availability

All data are available on GitHub (github.com/mapequation/mapping-hypergraphs). The
fossil data are available on the Paleobiology Database#’ (paleobiodb.org). The metabolic
reaction dataset for C. elegans, iCEL1273%2, is available at wormflux.umassmed.edu.
Furthermore, all data are available from the corresponding author upon request.

Code availability
The source code is available on GitHub (http://github.com/mapequation/mapping-
hypergraphs).
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