
ARTICLE

Emergence of lanes and turbulent-like motion
in active spinner fluid
Cody J. Reeves1, Igor S. Aranson 2✉ & Petia M. Vlahovska 1✉

Assemblies of self-rotating particles are gaining interest as a novel realization of active

matter with unique collective behaviors such as edge currents and non-trivial dynamic states.

Here, we develop a continuum model for a system of fluid-embedded spinners by coarse-

graining the equations of motion of the discrete particles. We apply the model to explore

mixtures of clockwise and counterclockwise rotating spinners. We find that the dynamics is

sensitive to fluid inertia; in the inertialess system, after transient turbulent-like motion the

spinners segregate and form steady traffic lanes. At small but finite Reynolds number instead,

the turbulent-like motion persists and the system exhibits a chirality breaking transition

leading to a single rotation sense state. Our results shed light on the dynamic behavior of

non-equilibrium materials exemplified by active spinners.
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Active matter has gained much attention as a field rich
with unique and potentially useful non-equilibrium
phenomena1. These systems consist of self-driven units

that have relatively simple individual dynamics but collectively
exhibit macroscopic coherent motions2. While flocks of birds and
schools of fish are the commonly given examples of such emer-
gent collective behavior, similar phenomena have been observed
on much smaller scales with active microagents such
as bacteria3–10, chemically activated motile colloids11–15,
microtubule–kinesin bundles (active nematics)16, living liquid
crystals (suspensions of motile bacteria in liquid crystals)17,18,
and field-driven colloids19–27.

Most studies of active suspensions have focused on transla-
tional particles such as bacteria and their inanimate mimics28–35.
However, there has been rising interest in systems containing self-
rotating particles36–51. An isolated micro-rotor has no means of
self-motility. But when a rotor is coupled with other rotors,
motility becomes possible. Theoretical studies showed that cou-
pling mediated by contact in dry systems36 or hydrodynamic
interactions37,52 can induce propulsion and self-organization.
While biological examples of rotors are limited, e.g., the bacter-
ium Thiovulum majus53, there has been a growing number of
synthetic designs of rotors fueled by chemical reaction54 or
external forcing such as magnetic fields39,44,46,51,55, electric
fields56–58, oscillating platform59, ultrasound60, and applied air
flow61,62.

Simulations based on agent-based models, without hydro-
dynamics, for gear-shaped spinners36,63 and rotating dimers64

showed that a mixture of clockwise (CW) and counterclockwise
(CCW) rotors segregate into same-spin phases. This behavior was
actualized in an experiment65 using a large number of small
robots spinning on a table. The collective dynamics of fluid-
suspended rotors, however, can be quite different from that
observed in the dry systems due to hydrodynamic interactions.
For example, unlike the frozen state of gear-shaped spinners at
low density36, fluid-embedded spinners exhibit a gas-like phase,
where the particles move randomly in the stirred fluid38. Fur-
thermore, while both the dry and the fluid systems form similar
large-scale dynamic patterns, such as lanes and vortices, their
quantitative characteristics are different. Much insight has been
gained by studying these systems using discrete-spinner models,
however, this approach becomes computationally expensive when
considering large systems with a high spinner density. In such
cases, it becomes favorable to utilize continuum models that
replace the discrete individual particles with a continuous dis-
tribution. Such continuum approach allows for the computa-
tionally feasible study of the collective dynamics of large
systems27,66–69.

The existing continuum models of self-rotating systems are
phenomenological and typically based on the simplified hydro-
dynamic theory that includes either chiral components in the
stress tensor or additional chiral forcing terms in the
Navier–Stokes equation45,46,70. These models capture phenomena
such as the surface waves in active spinner systems46, active
coarsening, and the emergence of self-propelled vortex
doublets70, etc. However, the phenomenological implementation
of active rotation makes it challenging to assess if the observed
dynamics are physical or dependent on the postulated continuum
formulation. It also becomes difficult to directly compare
experiment and theory.

Here we derive a continuum model for a monolayer of sphe-
rical spinners with CW- and CCW spins suspended in liquid in a
three-dimensional domain. The model is motivated by experi-
mental realizations such as spinners trapped at a fluid
interface39,71 or on a solid substrate46. We present numerical
simulations assuming rotation due to an external DC (direct

current) electric field, known as Quincke rotation. We explore the
mixtures of CW and CCW spinners and study same-spin phase
separation. We find that the dynamics is sensitive to fluid inertia:
while in the inertialess system after a long transient turbulent-like
motion the spinners settle and form steady traffic-like lanes, at
small but finite Reynolds number the turbulent-like motion
persists. For even larger Reynolds numbers, a population initially
composed of an equal amount of CW/CCW spinners exhibits a
chirality-breaking transition and collapses into a single rotation
sense state. While our results are obtained for Quincke spinners, a
similar continuum approach can be applied to model a mono-
layer of magnetic spinners energized by an applied AC magnetic
field39,71. Our results advance a fundamental understanding of
active systems, where large-scale chiral states emerge as a result of
spontaneous symmetry breaking, as for example spinners, rotat-
ing bacteria, microtubules assays, etc.

Results and discussion
Summary of the continuum model. In the “Methods” section,
we derive a continuum model for a two-dimensional system of N
active spinners of mass m and radius a suspended in a fluid with
viscosity μ and density ρ confined to a plane of area A, see Fig. 1a.
The spinner concentration, c=N/A, is assumed to be uniform.
The system is governed by the following equations for the spinner
angular velocity ω(r, t), fluid velocity u(r, t), and pressure p(r, t):

Ip
∂ω

∂t
þ u � ∇ω

� �
¼ DIp∇

2ωþ 8πμa3 ð∇ ´ uÞz � 2ω
� �þ 2τ

ð1Þ

ρ
∂u
∂t

þ ðu � ∇Þu
� �

¼ �∇pþ μ∇2uþ 4πμa2c∇ ´ ðωẑÞ ð2Þ

∇ � u ¼ 0 ð3Þ
where Ip ¼ 2

5ma2 and D ¼ kBT
6πμa. The thermal energy of the system

is given by kBT. Details of the model derivation are provided in
the “Methods” section.

Fig. 1 Schematics of the discrete system. a Illustration of spinners confined
to a plane. Blue and yellow color corresponds to clockwise (CW) and
counterclockwise (CCW) rotation. The axis of rotation for each spinner is
shown as gray vertical line oriented in the z-direction. b The Quincke effect
is an electrohydrodynamic instability that gives rise to a torque on a
dielectric particle in a uniform DC (direct current) electric field94 if the free-
charge polarization is antiparallel to the applied field. Above a critical field
strength E > EQ rotation about an axis in the plane perpendicular to the
electric field (Ω ⋅ E= 0, where Ω is the individual spinner angular velocity)
is generated by the misaligned induced dipole of the particle, P. The
direction of rotation can be either CW or CCW, depending on the initial
perturbation in the dipole direction.
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Equation (1) is the spin angular momentum balance of the
spinners; the three right-hand side terms account for the thermal
noise, the torque on the spinners due to fluid drag, and the
externally applied torque τ. Equation (2) is the linear momentum
conservation for the fluid (the Navier–Stokes equations) with the
addition of the last term on the right-hand side, which drives the
fluid flow due to the rotation of the spinners. Equation (3) is the
incompressibility condition since we assume constant fluid
density ρ.

It is worth noting that Eqs. (1)–(3) are generic for any spherical
spinners. The specifics of the particular physical system are
introduced in the form of the externally applied torque τ, which is
what causes the particles to spin. In this paper we consider
the case of Quincke spinners, studied experimentally in ref. 72,
τ= c−1(P×E)z, where P is the polarization vector of the
individual spinner and E is the externally applied constant
(DC) electric field, see Fig. 1b. The governing equations for the
polarization vector P are provided in the “Methods” section, see
Eqs. (28)–(29).

The complete model is provided in non-dimensional form in
the Methods section, see Eqs. (31)–(36). All equations are
nondimensionalized using the spinner radius a as the character-
istic length scale and the Maxwell–Wagner polarization time tQ,
which sets the magnitude of the rotation rate, as the characteristic
time scale. The scaling of the physical variables and the
definitions of the model parameters are summarized in Table 1.
The scaling analysis shows that the most important parameter
governing the behavior of the system is the Reynolds number for
the fluid, Re ¼ ρa2=μtQ. For Re � 1, the effect of inertial terms in
Eq. (2) of is small; fluid inertia becomes important for Re � 1. In
the rest of the paper, we explore the system behavior as Re
increases. Unless otherwise noted, all simulations are performed
with α= 0.25, γ= 1.1, κ= 0.1, D*= 1, D�

P ¼ 0:1, box size
L= 480a, N= 1024, and time step dt= 0.00025tQ.

Spinners stir large-scale fluid flow. Figure 2a–c and Supple-
mentary Movie 1 show that the spinner fluid undergoes a phase
separation into clusters of CCW (yellow) and CW spinners
(blue), in agreement with the simulations using a discrete spinner
model38. These clusters themselves are rotating, growing, separ-
ating, and reconnecting as also observed in the active coarsening
continuum model in ref. 70.

The flow is localized the interface between CW and CCW
clusters, see Fig. 2b and Supplementary Movie 2. Physically, the
fluid flow is canceled out in the region between the same spin
spinners. Hence, even though the spinners might rotate very fast,
the flow might be very weak, especially in the interior of the same
spin regions; accordingly, while inertia might be very important
in the angular conservation equation, it might be less so in the
linear momentum conservation (Navier–Stokes equation for the
fluid flow). At the boundary between clusters, opposite spin

spinners pump fluid in the same direction causing bands of flow
or edge currents, see an illustration of this in Fig. 2d.

Emergence of lanes depends on Reynolds number. An impor-
tant question concerns the long-term behavior of a system
composed of spinners that are initially randomly 50 CW : 50
CCW. Previous theoretical studies38,41 of discrete micro-spinners
have shown that the system exhibits separation into same-spin
clusters that eventually evolve into emergent patterns, such as
lanes or vortices. This work however was restricted to Stokes flow
(Re ¼ 0), while recent colloidal experiments39,44 suggest a non-
negligible Reynolds number.

Using the continuum model, if we consider Re ¼ 0 and an
initial 50 CW : 50 CCW random configuration, lanes always
eventually form, see Fig. 3a and Supplementary Movie 3,
regardless of the initial configuration. Therefore, the continuum
model is in agreement with the discrete spinner model. The
formation of lanes can be qualitatively interpreted as a result of
the fact that the Stokes flow corresponds to least dissipation.
Segregation into the same spin regions is thus favored since the
flow vanishes in the interior of the same spin region and the only
remaining flow is confined to the interface between opposite spin
regions. The flow (and thus the dissipation) is reduced if the
interface between these same spin domains is minimized, which
in the case of the periodic boundary conditions considered in our
simulations, is a straight line. Conservation of mass further
requires two interfaces with opposite flow directions resulting in a
lane configuration.

A small, non-zero Reynolds number, such as Re ¼ 0:01, leads
to distorted lanes, see Fig. 3b and Supplementary Movie 4. These
quasi-stable lanes have turbulent-like flow near the interfaces
between the two opposite-spin clusters. The lanes can also
spontaneously dissolve into to a transient turbulent-like state and
then reappear.

For small but finite Reynolds number, e.g., Re ¼ 0:1 and
greater, the system only exhibits a turbulent-like motion with no
emergent collective large-scale structure, as shown in Fig. 3c and
Supplementary Movie 1. If the initial state is lanes, instead of a
random configuration, the lanes become unstable and dissolve
into turbulent-like motion, see Supplementary Movie 5.

For an even larger Reynolds number, such as Re ¼ 1, the ratio
of CW to CCW spinners is no longer conserved and the system
exhibits a chirality-breaking transition. As the inertial terms of
the Navier–Stokes equation become more significant, the fluid
vorticity is not solely determined by the spinner angular velocity
distribution. Instead, the inertial-induced component of the fluid
vorticity can cause the spinners to flip spin orientation. For this
case, the fluid flow initially exhibits turbulent-like motion, but
eventually begins to favor a single spin orientation, see
Supplementary Movie 6. Clearly this behavior is not present in
dry system of spinners.

We can quantitatively distinguish between the lane and the
turbulent-like cases by studying the probability distribution
function (PDF) of the fluid velocity, u. As shown in Fig. 4a, the
PDF for lanes exhibits a clear bi-modal distribution due to the
two sides of the lane. For the turbulent-like case, Fig. 4b, the PDF
is Gaussian unlike the non-Gaussian behavior observed in
experiments with colloidal spinners71,73. Overly populated tails
in our simulation were found to be due to underresolved
simulations. Velocity and vorticity correlation functions for
turbulent-like regimes are displayed in Fig. 4c, d.

Finally, it is worth mentioning that the discrete spinner
model38,41 also observed the formation of vortices in the case of
larger spinner concentrations, which is not captured by our
continuum model. This deviation is likely because steric repulsion

Table 1 The dimensionless parameters and their definitions
in terms of the properties of the spinners and the
environment.

Parameter Symbol Definition

Spinner diffusion D* DtQ/a2

Inverse particle Reynolds number κ 8πμa3tQ/Ip
Normalized electric field γ E/Ec
Reynolds number Re ρa2/μtQ
Area filling fraction α Nπa2/A

Here a is the particle radius, tQ is the Maxwell–Wagner relaxation time tQ, D is the diffusion
constant, E is the electric field, Ec is the critical electric field, N is the number of spinners, A is the
area covered by spinners, μ is the fluid dynamic viscosity, Ip is the particle moment of inertia, ϵ is
given by Eq. (30).
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is neglected in the continuum model but becomes non-negligible
at higher spinner concentrations. Steric repulsion can be included
in the continuum model by introducing a particle stress tensor27.

Turbulent-like flow has a power-law energy spectrum. In many
quasi-two-dimensional active systems exhibiting turbulent-like
behavior, such as magnetic rollers39, or swimming bacteria74, the
energy is injected at the microscopic scale. For example, rotation of
bacterial flagella results in the onset of large-scale collective behavior
and so-called "active turbulence”6, characterized by the inverse
cascade75. It is tempting to assume that in the Quincke system, the
inverse cascade should be present as well due to the microscopic
rotation of individual spinners. However, the situation is less clear
in our model because the microscopic energy injection scale is
coarse-grained in the continuum approximation and replaced by
the effective driving torque τ in Eq. (1). This torque may slowly vary
in space and does not produce the inverse cascade.

As the simulations show turbulent-like behavior, it is of interest
to compute the energy spectrum, E(k), and the energy flux in k-
space, ΠE. The energy spectrum E(k) is obtained by taking the
Fourier transform of the spatial auto-correlation of u:

EðkÞ ¼ k
2π

Z
A
e�ik�r0 uðrÞ � uðrþ r0Þ

� �
dx0dy0

� 	
jkj¼k

ð4Þ

such that r0 ¼ x0x̂ þ y0ŷ and 〈. . . 〉∣k∣=k is the average over all
wavenumbers k such that ∣k∣= k. Correspondingly, the energy
flux is obtained as follows

ΠEðkÞ ¼ hu< k½ðju � ∇Þu�i ð5Þ

Here u<k is the low-pass filtered velocity field with the wave

numbers outside ∣k∣ < k set to zero:

u< kðr; tÞ ¼ ∑
jkj<k

~uðk; tÞeik�r ð6Þ

and ~uðk; tÞ is the Fourier transform of u(r, t)76.
A hallmark of the inverse cascade in 2D turbulence is the

energy scaling E(k) ~ k−5/3 and negative value of the energy flux
ΠE(k) for small wavenumbers k. As shown in Fig. 5, the energy
cascade scales as k−5/3. However, the energy flux is negative only
in a very narrow range, ΠE(k) < 0 for k < k0 ≈ 0.016, which is not
consistent with the energy cascade observed in 2D classical
turbulence76–78 and colloidal experiments44,71. We suspect that
this behavior is due to the relatively small system size in the
computations and coarse-gaining of the microscopic energy
infection scale. In the cases where lanes form at long times, the
fluid flow initially exhibits transient turbulence-like motion with
the same k−5/3 scaling, prior to settling into lanes.

The turbulence inertial range is characterized by two lengthscales,
the Taylor microscale76, and the integral scale79. The Taylor
microscale falls in between the large-scale eddies and the small-scale
eddies. The integral scale LI can be extracted from the velocity
autocorrelation function in Fig. 4c. It gives LI≈ 100 for particle
Reynolds number Re= 0.1. The corresponding r.m.s. (root mean
square) velocity urms can be determined from Fig. 4b and is about 5,
resulting in the integral scale Reynolds number of the order of 50. The
Taylor microscale λ is several times smaller, and is determined from
the fluctuations of velocity and velocity gradients, ð∂rhuiÞ2 ¼ u2rms=λ

2.
It roughly can be estimated from the velocity gradients (vorticity)
autocorrelation function, Fig. 4d, which gives λ≈ 15.

Initially, the spinners begin to phase separate into larger and
larger same spin clusters. However, the energy spectrum exhibits
a peak that occurs at the length scale of the domain, ~L. This
demonstrates the cluster size becomes limited by the size of the

Fig. 2 Predicted collective behavior at intermediate Reynolds number Re ¼ 0:1. a Spinner angular velocity, ω, showing clusters of clockwise spinners
(ω < 0) and counter-clockwise spinners (ω > 0). b Squared magnitude of the fluid velocity, ∣u∣2. c Plot of the fluid vorticity (∇ × u)z. Black arrows show the
direction of fluid flow. d Sketch illustrating that in the interior of a region of co-rotating spinners flow is negligible due to the canceling effect of the same
sense of rotation of neighboring spinners. At the interface between regions of opposite rotation there is a net flow (black arrows) generated by the counter-
rotating spinners. Yellow spheres rotate counterclockwise and blue spheres rotate clockwise, gray arrow indicates the direction of rotation.
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domain. The spatial correlation functions for the fluid flow73 and
fluid vorticity are another useful metric for studying turbulent
flows. As shown in Fig. 4, the turbulent flow case exhibits no
characteristic length scale as seen in meso-scale turbulence. This
behavior is consistent with colloidal spinner experiments71,73.

Activity enhances transport. The capability of the spinner sys-
tem for active transport can be quantified by tracking the position
of point particles si that are being passively advected by the fluid
flow, ∂si/∂t= u(si, t) and computing the mean-square-

displacement (MSD), jsiðt þ t0Þ � siðt0Þj2
� �

. In addition, the
mean square velocity (MSV) for the fluid flow, juj2� �

, is another
useful metric for the studying the active transport of the system.

As shown in Fig. 6a, the MSD initially exhibits a transient
ballistic regime for all shown Re values. Counterintuitively, the
MSD and MSV decrease as Re increases, Fig. 6b. For increasing
Re, the spinner-driven flow begins to compete with the effects
from the inertial terms. Also, the force term in Eq. (2), accounting
for the spinners disturbing the fluid, is proportional to viscosity.
Therefore, the disturbance in the fluid generated by the spinners
does not get damped down with higher fluid viscosity.

The curves for different Re values begin to qualitatively diverge
in the long term. The lane formation cases, Re ¼ 0 and
Re ¼ 0:01, show sustained ballistic motion in MSD (~t2) and a
relatively constant MSV, as all the motion is confined to the
interface of the lanes. Yet for sustained turbulent-like behavior,
Re ¼ 0:1 and Re ¼ 1, the MSD shifts away from a ballistic regime
closer towards a diffusive regime (~t). However, a reliable
evaluation of the diffusion coefficient would require a much
longer integration time. For Re= 1, the MSV also exhibits an
eventual decrease. This is due to the chirality breaking of the
spinner orientation.

Conclusions
To summarize, we develop a continuum coarse-grained model for a
suspension of discrete microspinners. Assuming Quincke rotation,
we then present numerical simulations that demonstrate the
emergence of lanes of same-spin fluid and turbulent-like behavior
depending on the Reynolds number. Our work sheds light on active
spinner materials and makes testable predictions for experiments on
the effects of fluid inertia and chirality symmetry breaking.

For the case of the Stokes flow, the formation of lanes of spinners
is favored as it minimizes the interfaces between counter-spin
clusters, thus minimizing the energy of the system. This behavior is
in agreement with the existing discrete spinner models36,38. Yet,
even small inertia causes turbulent-like behavior, which becomes
more pronounced with increasing Re: turbulent lanes for Re � 0:01
and sustained turbulent-like flow for Re≥ 0:1. We also quantita-
tively characterize lane formation and the turbulent-like flow
through the mean square displacement, MSV, and the energy
spectrum statistics. Furthermore, for non-zero Reynolds numbers
we observe that initially 50:50 CW/CCW population of spinners
exhibit a chirality symmetry breaking transition and consequent
condensation to a single sense of rotation state.

While this work used periodic boundaries, future work could
apply this model with both fixed, impenetrable boundaries and
soft, deformable boundaries, as well as arrays of artificial obsta-
cles. Another possible avenue is the case of non-uniform spinner
densities. As the spinner densities, in experiments, are often non-
constant in space and time, it would be of interest to see how this
would affect the collective and turbulent behavior seen in this
study. The model can be modified to analyze other experimental
systems, e.g., magnetic spinners at water-air interface25,39 and
could also be easily generalized for a three-dimensional suspen-
sion of neutrally buoyant micro-rotors.

Methods
Derivation of the continuum model. Let us consider N spherical spinners of
radius a and mass m confined to a 2D plane of area A. The translational motion of
a spinner is the result of being passively advected by the surrounding fluid flow, u,
and Brownian diffusion. The translational velocity of an individual spinner located
at position r is then:

vpðr; tÞ ¼ uðr; tÞ þ
ffiffiffiffiffiffi
2D

p
ξðtÞ: ð7Þ

The thermal noise of the system is modeled by a random variable ξ(t) that is
Wiener process governed by the standard normal distribution. In the low-Reynolds
number limit, the diffusion constant is D= kBT/6πμa, where kBT is the thermal

Fig. 3 Predicted spinner angular velocity at increasing Reynolds numbers
Re. Plots of spinner angular velocity ω for the long-term behavior for a
Re ¼ 0, b Re ¼ 0:01, and c Re ¼ 0:1. Yellow regions have counterclockwise
(CCW) spinners and blue regions have clockwise (CW) spinners. The black
arrows show the direction of fluid flow.
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energy and μ is the fluid viscosity. We also assume low spinner concentration such
that the effect of steric repulsion is negligible.

We introduce a probability density, Ψ(r,Ω, t), of finding a spinner at position r
and with angular velocity Ω. Since there are N total spinners, the normalization for
Ψ is given as

Z Z
A
Ψðr;Ω; tÞdΩdA ¼ N: ð8Þ

Using Eqs. (7)–(14) and the Fokker–Planck equation80, it can be shown that the
governing equation for Ψ is given by the following Smoluchowski equation

∂Ψ

∂t
þ u � ∇Ψ� D∇2Ψþ ∂

∂Ω
_ΩΨ

� � ¼ 0; ð9Þ

assuming an incompressible fluid (∇ ⋅ u).

From this point on the derivation of our continuum model follows ref. 67. It is
useful to define a function h:iΩ such that

hXiΩðr; tÞ ¼
Z 1

�1
Xðr;Ω; tÞΨðr;Ω; tÞdΩ: ð10Þ

We will therefore define the local spinner density as c(r, t)= 〈1〉Ω, the local angular
velocity per unit area as ωðr; tÞ ¼ hΩiΩ , and the local external torque per unit area
as τðr; tÞ ¼ hτeiΩ .

Integrating Eq. (9) leads to

∂c
∂t

þ u � ∇c� D∇2cþ _ΩΨ
� �j1�1 ¼ 0: ð11Þ

We can ignore the boundary term in Eq. (11) as spinners with ∣Ω∣→∞ are non-
physical and inherently have zero probability, Ψ= 0.

∂c
∂t

þ u � ∇c ¼ D∇2c: ð12Þ

Therefore Eq. (12) gives the evolution equation for the spinner density of the
system. It is worth noting that, with appropriate boundary conditions, c is
conserved and ∫AcdA=N according to Eq. (8).

Spin angular momentum equation. If we multiply Eq. (9) by Ω and integrate with
respect to Ω, it is straightforward to show that

∂ω

∂t
þ u � ∇ω ¼ D∇2ωþ 2h _ΩiΩ � Ω _ΩΨ

� �j1�1: ð13Þ

We can again ignore the boundary term as spinners with ∣Ω∣→∞ are non-physical
and have zero probability.

The conservation of spin angular momentum of a single spinner is

Ip _Ωðr; tÞ ¼ ζp
1
2
ð∇ ´ uÞzðr; tÞ �Ωðr; tÞ

� �
þ τeðΩ; tÞ ð14Þ

where Ip ¼ 2
5ma2 is moment of inertia and ζp= 8πμa3 is the friction coefficient for

a sphere and the externally applied torque on the spinner is τe(Ω, t). The effect of
thermal noise is ignored in Eq. (14) because the spinners rotation rate is very high
and thus the rotational Peclet number Ω/Dr≫ 1, where Dr= kBT/(8πμa3).

Using Eq. (14), Eq. (13) simplifies to

∂ω

∂t
þ u � ∇ω ¼ D∇2ωþ ζp

Ip
cð∇ ´ uÞz � 2ω
� �þ 2I�1

p τ: ð15Þ

Furthermore, if we assume a constant spinner density c and define ω ¼ ω=c,

Fig. 4 Probability distribution functions (PDF) for the fluid velocity and correlation functions for the fluid velocity and vorticity. Reynolds numbers are:
a Re ¼ 0 and b Re ¼ 0:1. Spatial correlation of the c fluid velocity 〈u(r) ⋅ u(r+ r0)〉 and d fluid vorticity h ∇ ´ uðrÞð Þ � ∇ ´ uðrþ r0Þ

� �i. Here r= (x, y) is the
spatial position, and r0 is the displacement vector. The vertical axis for (c) and (d) are normalized so the curves have intercepts equal to one. The gray
curve shows the lane formation case, Re ¼ 0, and the blue curve shows the turbulent-like case, Re ¼ 0:1. In the case of lanes, the PDF (a) exhibits a clear
bi-modal distribution as expected with formation of lanes, while for sustained turbulent-like motion, the PDF (b) exhibits a Gaussian distribution. For
reference, the dashed curve provides the Gaussian distribution with the same mean and standard deviation.

Fig. 5 Energy spectrum E(k). The spectrum is computed by Eq. (4) for a
flow at the intermediate Reynolds number Re ¼ 0:1. The spectrum shows
an energy cascade and scaling, k−5/3. Inset: dependence of the energy flux
ΠE(k) vs k. Computations performed with L= 300a to increase resolution, L
is the integration domain size, a is the particle radius.
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τ ¼ τ=c, Eq. (15) can be simplified to

∂ω

∂t
þ u � ∇ω ¼ D∇2ωþ ζp

Ip
ð∇ ´uÞz � 2ω
� �þ 2I�1

p τ: ð16Þ

The above derivation is based on the assumption that a spinner is not self-
propelled. In other words, uðr0; tÞ is dependent only on spinners located at r≠r0 .

Fluid flow. Assuming Stokes flow, the fluid flow generated by a single spinner can
be approximated as a point rotlet81, with torque 8πμa3Ωẑ. The resulting fluid flow
is given by the solution to the following forced Stokes equation:

�∇ps þ μ∇2us ¼ �∇ ´ ζpΩδðr� r0ÞδðzÞẑ
� �

: ð17Þ

For distribution of N spinners with center of mass position r0i and angular velocity
Ωi, the fluid flow can be written as

u ¼ ∑
N

i¼0
usðr� r0i; z;ΩiÞ: ð18Þ

uðr; z; tÞ ¼
Z

A

Z 1

�1
usðr� r0; zÞΨðr0;Ω; tÞdΩ dr0: ð19Þ

The pressure distribution, p(r, z, t) can be computed similarly. By multiplying Eq.
(17) by Ψ(r0) and integrating, the Stokes equation for the spinner distribution can
be shown to be

0 ¼ �∇pþ μ∇2uþ 4πμa2∇ ´ ðωẑÞ: ð20Þ
For flows with non-negligible inertia, Eq. (20) can be approximated for low Rey-
nolds flow as

ρ
∂u
∂t

þ ðu � ∇Þu
� �

¼ �∇pþ μ∇2uþ 4πμa2∇ ´ ðωẑÞ: ð21Þ

Since the majority of experiments and previous theoretical work involve an
effectively two-dimensional system25,39,60,61, we will therefore consider a two-
dimensional fluid flow in the plane of the spinners. For the case of two-dimensional
flow, a frictional drag term, −βu, can be added to the right side of Eq. (21). For
small β values, this term does not qualitatively change the observed behaviors. The
effect of larger β is more extensively studied in ref. 70. The form of Eqs. (1)–(3) is
consistent with the continuum model derived for ferrofluids82 and the model used
to analytically study the hydrodynamics for a system of micro-rotors83,84.

Spinner’s torque. A common spinner system consists of ferromagnetic colloids in
either a rotating or oscillating magnetic field42. The external torque is then given by

τ ¼ c�1μ0ðM ´HÞz ; ð22Þ
where μ0 permeability of vacuum, magnetization is M, and the magnetic field is H.
An oscillating magnetic field allows for spontaneous-symmetry breaking in the
direction of rotation. Therefore, spinners can have either a CW or CCW spin44,85.
However, a rotating magnetic field predetermines the spinner’s direction of rota-
tion, causing the spinners to be either all CW or all CCW46.

We, instead, consider a system of Quincke spinners driven by a DC electric
field. Quincke rotation has the advantage of being well studied86–89 and it allows
for simultaneous populations of CW and CCW spinners.

Quincke rotation. For a fluid with conductivity and permittivity (σ1,ϵ1) and a
suspended spherical particle with conductivity and permittivity (σ2,ϵ2), Quincke
rotation occurs when

ϵ2
σ2

>
ϵ1
σ1

ð23Þ

and the external electric field ∣E∣ is above a threshold given by

Ec ¼
ϵ1tQ
2μ

ϵ2 � ϵ1
2ϵ1 þ ϵ2

� σ2 � σ1
2σ1 þ σ2

� �
 ��1=2

; ð24Þ

where

tQ ¼ ðϵ2 þ 2ϵ1Þ
ðσ2 þ 2σ1Þ

ð25Þ

is the Maxwell–Wagner relaxation time. The characteristic angular velocity for a
Quincke spinner is

ΩQ ¼ 1
tQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEj
Ec

� �2

� 1

s
: ð26Þ

Neglecting the higher-order electromagnetic interactions89 between spinners, we
instead focus on the spinners’ hydrodynamic interactions. If R is the distance
between two rotors, the hydrodynamic forces scale as ~R−2 while the electro-
magnetic forces86 scale as ~R−4.

The external torque from the electric field is then given as

τ ¼ c�1ðP ´EÞz ð27Þ
with electric polarization density P(r, t) (dipole moment per unit area) governed by

∂P
∂t

þ ðu � ∇ÞP ¼ DP∇
2Pþ t�1

Q ðPeq � PÞ þ ω ´P ð28Þ

where the equilibrium polarization density is Peq is

Peq ¼
�cϵjEj

1þ t2QΩ
2
Q

x̂ þ ω

jωj tQΩQ ŷ

� �
: ð29Þ

and

ϵ ¼ 4πϵ1a
3 ϵ2 � ϵ1

2ϵ1 þ ϵ2
� σ2 � σ1

2σ1 þ σ2

� �
ð30Þ

Eq. (28)–Eq. (29) are provided in ref. 83 with the inclusion an artificial diffusion
term for numerical stability.

Continuum model of a Quincke spinner fluid. We will assume a constant, uniform
electric field E parallel to x–y plane. Without loss of generality, we can define
E ¼ Ex̂.

We nondimensionalize the system of equations in order to reduce the number
of parameters. Equations (1)–(3) and Eqs. (26)–(29) can be nondimensionalized as
Eqs. (31)–(36) using the scalings and dimensionless parameters shown in Table 1.
X* is the corresponding dimensionless value of a variable X.

∂ω�

∂t�
þ ðu� � ∇�Þω� ¼D�∇�2ω� þ κ ð∇� ´ u�Þz � 2ω�� �

þ 2κγðP� ´ x̂Þz
ð31Þ

Re
∂u�

∂t�
þ ðu� � ∇�Þu�

� �
¼ �∇�p� þ ∇�2u� þ 4α∇� ´ ðω� ẑÞ ð32Þ

∇� � u� ¼ 0 ð33Þ

∂P�

∂t�
þ ðu� � ∇�ÞP� ¼ D�

P∇
�2P� þ P�

eq � P� þ ω� ẑ ´P� ð34Þ

P�
eq ¼ �γ�1 x̂ þ ω�

jω�jΩ
�
Q ŷ

� �
ð35Þ

Ω�
Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 � 1

p
ð36Þ

Fig. 6 Time evolution of the mean-square-displacement (MSD) and mean
square velocity (MSV). a MSD and b MSV. Each curve representing a
different value of Reynolds number Re: Re ¼ 0 (gray), Re ¼ 0:01 (red),
Re ¼ 0:1 (blue), Re ¼ 1 (yellow). Reference scalings are shown with black
dashed lines.
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The system involves seven dimensionless parameters: the dimensionless spinner

diffusion coefficient (D*), the particle Reynolds number (κ−1), the strength of the

electric field relative to critical field (γ), the Reynolds number (Re) for the fluid, and

the percentage of area covered by spinners (α), and a small artificial diffusion

constant (D�
P) for the polarization evolution equation. Since Quincke rotation only

occurs for E > Ec, we will operate for γ > 1. For the dimensionless form of the

equations see Supplementary Note 1.
The parameters γ and α control how fast the spinners rotate and the

corresponding effect on the fluid flow. D* determines the characteristic length for
the interface between two opposite-spinning clusters. Therefore, the only
parameters that could significantly change the qualitative behavior of the system
are Re and κ.

In the initialization of ω*, each grid point is randomly assigned a small positive
value (CW) or a small negative value (CCW).

Scaling and dimensionless parameters. We scale the length by the particle radius a,
time by the tQ is the Maxwell–Wagner relaxation time tQ. The electric field E is
normalized by the critical electric field Ec. Here N is the number of spinners, A is
the area covered by spinners, and μ is the fluid dynamic viscosity. Correspondingly,
the polarization P is scaled by Nϵ/A, where N is the number of spinners, A is the
area covered by spinners, and ϵ is given by Eq. (30). Finally, the pressure p is
normalized by μ/tQ, where μ is the fluid dynamic viscosity. Definitions of the model
dimensionless parameters are given in Table 1.

Numerical methods. The reported results are numerical simulations of the con-
tinuum model using a square domain of length L, double periodic boundary
conditions. The code is highly parallelized using CUDA to run on a NVIDIA
graphics card. Spatial derivatives are computed using a pseudo-spectral method90.
All Fourier and inverse transforms are computed using the fast Fourier transform
(FFT). Equations (31)–(34) are then time-stepped using first-order exponential
time differences91. For Stokes flow, the fluid velocity is solved using the stream-
function formulation92. For non-Stokes flow, the fluid velocity is time-stepped
using the method of Chorin Projection93. Details about the numerical imple-
mentation can be found in Supplementary Note 2.

Data availability
The data that support the findings of this study are available in the main text and
supplementary information. Additional information is available from the corresponding
author upon request.

Code availability
The code is available from the corresponding author upon reasonable request.
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