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Optimal, near-optimal, and robust epidemic control
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In the absence of drugs and vaccines, policymakers use non-pharmaceutical interventions
such as social distancing to decrease rates of disease-causing contact, with the aim of
reducing or delaying the epidemic peak. These measures carry social and economic costs, so
societies may be unable to maintain them for more than a short period of time. Intervention
policy design often relies on numerical simulations of epidemic models, but comparing
policies and assessing their robustness demands clear principles that apply across strategies.
Here we derive the theoretically optimal strategy for using a time-limited intervention to
reduce the peak prevalence of a novel disease in the classic Susceptible-Infectious-Recovered
epidemic model. We show that broad classes of easier-to-implement strategies can perform
nearly as well as the theoretically optimal strategy. But neither the optimal strategy nor any of
these near-optimal strategies is robust to implementation error: small errors in timing the
intervention produce large increases in peak prevalence. Our results reveal fundamental
principles of non-pharmaceutical disease control and expose their potential fragility. For
robust control, an intervention must be strong, early, and ideally sustained.
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spillover from other species. Examples include

ebolaviruses!, influenza viruses?, and, most recently, the
sarbecoronavirus SARS-CoV-23. Many of these emerging patho-
gens are antigenically novel: the human population possesses little
or no preexisting immunity*. This not only can increase disease
severity’ but also leads to explosive epidemic spread®. If left
unchecked, that explosive spread can result in a large proportion
of the population becoming synchronously infected, as occurred
during the COVID-19 global pandemic. Policymakers initially
have limited tools for controlling a novel pathogen epidemic; it
can take months to develop drugs, and years to develop and
distribute vaccines®. If disease symptoms are severe, healthcare
systems may be strained to the breaking point as the epidemic
approaches its peak’.

In the absence of drugs and vaccines, mitigation efforts to
reduce or delay the peak (flattening the curve’:8) rely on non-
pharmaceutical interventions® such as social distancing!® that
decrease rates of disease-transmitting contact. These measures
carry social and economic costs, and so societies may be unable to
maintain them for more than a short period of time.

Policy design for allocating non-pharmaceutical resources
during the COVID-19 pandemic relied heavily on numerical
simulations of epidemic models'®!l; however, it is difficult to
compare predictions or assess robustness without broad princi-
ples that apply across strategies. Since models are not reality,
robust model-based policy requires not only generating the
desired outcome but also understanding what elements of the
model are producing it. This typically requires analytical and
theoretical understanding.

Relatively little is known about globally optimal strategies for
epidemic control, regardless of principal aim!>13 or intervention
duration. One result establishes that time-limited interventions to
reduce the peak epidemic prevalence should start earlier than
time-limited interventions to reduce the final epidemic sizel4. A
number of studies of COVID-19 have used optimal control the-
ory—an approach that relies on numerical optimization to study
continuous error correction!>16.

But the optimal time-limited strategy to reduce peak pre-
valence is not known. Without an analytical understanding of
epidemic peak reduction, policy design based on numerical
simulation may fail in unexpected ways; policies may be ineffi-
cient, non-robust, or both.

The early months of the COVID-19 pandemic demonstrated
how difficult real-time epidemiological modelling, inference, and
response can be. Large numbers of asymptomatic and mildly
symptomatic cases!”, as well as difficulties with testing, particu-
larly in the United States!®, left policymakers with substantial
uncertainty regarding the virus’s epidemiological parameters and
the case numbers in many locations. Countries including the
United States and United Kingdom waited to intervene until
transmission was widespread; retrospective analyses later claimed
that even slightly earlier intervention would have saved many
lives!®20,

Epidemiological uncertainties mean that no policymaker can
intervene at precisely the optimal time. To understand how this
limitation can hinder policymaking, we assess the robustness of
optimized interventions to timing error: what is the cost of
intervening too early or too late?

We derive the theoretically optimal strategy for using a time-
limited intervention to reduce the peak prevalence of a novel
disease in the classic susceptible-infectious-recovered (SIR) epi-
demic model?1-22, We show that broad classes of strategies that
are easier to implement can perform nearly as well as this theo-
retically optimal strategy. However, we show that neither the
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theoretically optimal strategy nor any of these near-optimal
strategies are robust to implementation error: small errors in the
timing of the intervention produce large increases in peak pre-
valence. To prevent disastrous outcomes due to imperfect
implementation, a strong, early, and ideally sustained non-
pharmaceutical response is required.

Results

Epidemic model and interventions. We consider the standard
SIR epidemic model?!, which describes the fractions of suscep-
tible S(#), infectious I(f), and recovered R(f) individuals in the
population at time 22, New infections occur proportional to S(£)I
() at a rate f, and infectious individuals recover at a rate y. The

model has a basic reproduction number R, = l; and an effective

reproduction number R, = gS(t). We denote the peak prevalence
by [max,

We consider interventions that reduce the effective rate of
disease-transmitting contacts S(f) below its value in the absence
of intervention f, which we treat as fixed. In the context of
COVID-19, this includes non-pharmaceutical interventions, such
as social distancing!9, as well as some pharmaceutical ones, such
as antivirals that might reduce virus shedding.

We permit interventions to operate on f only for a limited
duration of time, 7. We impose this constraint in light of political,
social, and economic impediments to maintaining aggressive
intervention indefinitely. That is, we treat costs of intervention
implicitly, subsuming them in 7. We describe such an interven-
tion by defining a transmission reduction function b(t) such that:

ds

i b(t)x BSI

dI
dt
dR I
a7

If the intervention is initiated at some time t = t;, it must stop
at time t=1t;+ 7. So necessarily b(f)=1 if t<t; or t>t;+ 7.
During the intervention (i.e, when £;<t<t;4+ 1), b(f) is an
arbitrary function, possibly discontinuous, with the range in [0,
1]. This restriction assumes that we cannot intervene increase
transmission above what occurs in the absence of intervention,
but also optimistically assumes that b(f) can be adjusted
instantaneously and that the effective reproduction number R,
can be reduced all the way to zero, at least for a limited time.

b(t)x BSI — yI (1)

The optimal intervention. We pose the following optimization
problem: given the epidemiological parameters R, and y and the
finite duration 7, what is the optimal intervention b(f) that
minimizes the epidemic peak ["™3X? The optimal intervention is of
interest for two reasons: it provides a reference point for evalu-
ating alternative interventions, and it will allow us to analyze the
inherent risks and shortcomings of time-limited interventions,
even in the best-case scenario.

We prove (Supplementary Note 1, Theorem 1) that for any R,
recovery rate y, and duration 7, there is a unique globally optimal
intervention b(f) that starts at an optimal time ¢** and is given
by:

b (1) = {ﬁ reltn @

0, telft;+fr,t;+1]

where f takes a specific value in [0, 1]. This solution says that the
optimal strategy is to maintain and then suppress. The
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Fig. 1 Interventions reduce peak infection prevalence. a-f Time courses of epidemics under optimal (a), fixed control (b), and full suppression

(¢) interventions with three different values of intervention duration z—14 days (dark lines), 28 days (intermediate lines), and 56 days (light lines)—and
their respective intervention functions b(t) (d-f). At time t, the basic reproduction number R is reduced to some fraction of its maximum (no
intervention) value; b(t) gives that fraction. Dashed black line shows time course in the absence of intervention. g, h Effect of the duration 7 on the
peak infectious prevalence (g) and the intervention starting time (h) for the optimal intervention (green), the optimized fixed control intervention (blue),
and the optimized full suppression intervention (red). Dotted red line shows the critical value .. below which full suppression is the globally optimal
intervention. Plotted parameters: Ry =3 and y = % days . See Table 1 for parameter justifications.

intervention spends a fraction f of the total duration 7 in the
maintain phase, with b(f) chosen so that R, = 1. This maintains
the epidemic at a constant number of infectious individuals equal
to I(¢/™"), while susceptibles are depleted at a rate yI(t*"). The
intervention then spends the remaining fraction 1 — f of the total
duration in a suppress phase, setting R, = 0 so that infectious
individuals are depleted at a rate yI (Fig. 1a, d).

The effectiveness of the optimal intervention, when it should
commence, and the balance between maintenance and suppres-
sion all depend on the total allowed duration of the intervention,
7. The longer we can intervene (larger 7), the more we can reduce
the peak (smaller ™M), the earlier we should optimally act

(smaller '), and the longer we should spend maintaining
versus suppressing (larger f) (Fig. la, g, h and Supplementary
Note 1, Theorem 1, Lemma 7, and Corollary 4). Notably, there is
a critical duration 7. such that if the intervention is shorter than
T then the optimal strategy is to suppress for the entire
duration of the intervention (Fig. 1g, h, Supplementary Fig. 1, and

Supplementary Note 1, Theorem 4).

Near-optimal interventions. Although theoretically enlightening,
the optimal intervention described above is not feasible in prac-
tice. Implementing it would require policies flexible enough to
fine-tune transmission rates continuously, imposing ever-
changing social behaviors. It would also require instantaneous
and perfect information about the current state of the epidemic in
the population, information that will clearly not be available even
with greatly improved testing and contact tracing.

We therefore also consider other families of potential
interventions and study how they perform compared to the
optimal intervention.

Real-world interventions typically consist of simple rules that
are fixed for some period of time (quarantines, restaurant
closures, physical distancing). We model such fixed control
strategies (previously investigated by others!314) as interventions

of the form:
bu(t) =0 fort e [t;,t; + 1] (3)

Fixed control interventions are determined by two parameters:
the starting time # and the strictness o€ [0,1]. For any
intervention duration 7, we can numerically optimize ¢; and o
to minimize the peak prevalence I™3X (Fig. 1b, e).

For a given Ry, y, and 7, an optimized fixed control
intervention yields an epidemic time course that is remarkably
similar to the one obtained under the globally optimal
intervention strategy (Fig. la, b). Peak prevalence I™# is only
slightly lower in an optimal intervention than in an optimized
fixed control intervention of the same duration (Fig. 1a, b, g). The
effectiveness and implementation of a fixed control intervention
depend on 7: as with the optimal intervention, longer interven-
tions are more effective, should start earlier, and are less strict
(Fig. 1e, g, h).

The similarities between fixed control interventions and
optimal interventions can be understood by considering the time
course of R, during the intervention. At first, the fixed control
intervention mainly depletes the susceptible fraction. As suscep-
tible hosts are depleted, R, falls, so the intervention naturally
begins to deplete the infectious fraction. Fixed control interven-
tions are thus qualitatively similar to the optimal maintain, then
suppress intervention. Optimizing a fixed control strategy has the
effect of choosing a ¢ and f; that emulate—and thus perform
nearly as well as—an optimal intervention (Fig. la, b, g).

As 7 becomes small, the optimal ¢ for a fixed control
intervention also becomes small, mimicking the suppression
phase of the optimal intervention. For small enough 7, the
optimal o is equal to 0: the intervention consists entirely of
suppression (Supplementary Fig. 1a). As 7 increases, the optimal
o also increases, producing interventions with longer and longer
susceptible-depleting maintenance-like periods (Supplementary
Fig. la). The epidemic trajectory becomes increasingly flat,
eventually approximating a pure maintenance intervention. Note
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that achieving this approximate flatness with a fixed control
intervention requires allowing some initial growth of the infected
class (R,>1 at t;), albeit at a reduced rate compared to no
intervention. Growth of the infectious class never occurs during
optimal interventions.

We also analyze a third class of interventions: the full
suppression interventions defined by

by(t) =0,t € [t;,t; + 1. (4)

These interventions emulate extremely strict quarantines
(Fig. 1c, f). They are characterized by the complete absence of
susceptible depletion. Such interventions are fully determined by
the starting time t;, which can be optimized given the total
allowable duration .

Note that full suppression interventions are a limiting case
both of maintain-suppress interventions (with no maintenance
phase, f=0) and of fixed control interventions (with maximal
strictness, 0=0). Accordingly, the optimized full suppression
intervention performs similarly to the optimal intervention and to
the optimized fixed control intervention for short durations,
when those favor a relatively short maintenance phase and high
strictness (Fig. 1c). For longer interventions, the effectiveness of
full suppression rapidly plateaus (Fig. 1g and Supplementary
Note 1, Corollary 6). Accordingly, the optimal time to initiate
a full suppression intervention plateaus with increasing 7
There is no benefit in fully suppressing too early (Fig. 1h and
Supplementary Note 1, Corollary 6).

Taken together, these results show that the most efficient way
for long interventions to decrease the peak prevalence ™M is to
cause susceptible depletion while limiting how much the number
of infectious individuals can grow. For short interventions, by
contrast, it is most efficient simply to reduce the number of
infectious individuals. Optimizing an intervention trades off cases
now against cases later. We prove (Supplementary Note 1,
Theorems 2, 3) that optimal and near-optimal interventions cause
the epidemic to achieve the peak prevalence exactly twice: once
during the intervention and once strictly afterward. All optimized
maintain-suppress interventions of duration 7 and maintenance
fraction f have this twin-peak property, including the globally
optimal intervention and the optimized full suppression inter-
vention; so does the optimized fixed control intervention for any
duration 7. This means that these optimized interventions always
end before herd immunity is reached. If an intervention continues
until herd immunity is reached, then an earlier intervention of the
same duration could have produced a lower epidemic peak while
permitting a small rebound. In this context, the absence of a
second peak is not a sign of policy success; it is a sign that
policymakers acted too late.

Mistimed interventions. The optimal and near-optimal inter-
ventions are extremely powerful. For COVID-like epidemic
parameters, the 28-day optimal and fixed control interventions
reduce peak prevalence from ~30% of the population to <15%.
Even the 28-day full suppression intervention reduces peak pre-
valence to well <20%. These are massive and potentially health
system-saving reductions.

In practice, however, interventions are not automatically
triggered at a certain number of infectious individuals or at a
certain point in time. They are introduced by policymakers, who
must estimate the current quantity of infectious individuals I(¢),
often from very limited data, must begin roll-out with an
uncertain period of preparation, and must also estimate the
epidemiological parameters R, and y. These tasks are difficult,
and so policymakers may fail to intervene at the optimal moment

t?P. We consider timing errors in both directions, although in
practice acting late might be more common than acting early.

How costly is mistiming a time-limited intervention? We find
that even a single week of separation between the time of
intervention and ¢’ can be enormously costly for realistic
COVID-19 epidemic parameters (Fig. 2a—c, g-i).

While the optimal intervention achieves a dramatic reduction
in the height of the peak, mistiming such an intervention can be
disastrous. Intervening too early produces a resurgent peak, but it
is even worse to intervene too late. For example, if the
intervention is initiated 1 week later than the optimal time, then
max s barely reduced compared to the absence of any
intervention whatsoever, particularly for a full suppression
intervention (Fig. 2a-c, g-i).

The extreme costs of mistiming arise from the steepness of the
I(t) curve at t**. Optimized interventions permit some cases now

1
in order to reduce cases later. Both infectious depletion and
susceptible depletion require currently infectious individuals in
order to be effective at reducing peak prevalence. This means that,
except for interventions of very long duration 7, the optimal start
time ¢ occurs during a period of rapid, near-exponential
growth in the fraction infectious I(f).

The practical problem with this approach is intuitive: because
S(#) and I(¢) are so steep at S(t"), I(t*"), small errors in timing
produce large errors in terms of S(t;), I(t;) (Fig. 2a-c). Indeed, for
epidemics that have faster dynamics, the consequences of
mistiming interventions are increasingly stark (Figs. 2a—f and 3b).

It is also clear why being late is costlier than being early
(Figs. 2g-i and 3a-d). An early intervention is followed by a large
resurgent second peak, but the resurgence is slower and smaller
than the uncontrolled initial surge permitted by a late interven-
tion, owing to the susceptible depletion that occurs during the
early intervention (Figs. 2a-c, g-i and 3a-d).

Importantly, Supplementary Note 1, Theorems 2 and 3 imply
that late implementation of an optimized intervention results in a
maximal epidemic peak at the time the intervention is initiated,
whereas early implementation postpones the maximal peak
(Fig. 2a—c). In practice, this means that early interventions allow
for course corrections.

Sustained interventions. Are there any sustained measures that
can improve the robustness of optimized interventions? Because the
severity of mistiming is governed by the steepness of I(¢), measures
that reduce steepness should alleviate the impact of mistiming. We
propose using weak measures of long duration to achieve this
desired outcome. Even though these measures by themselves may
have little effect on ™3, they can buffer timing mistakes when used
in combination with stronger, time-limited interventions.

We consider sustained weak interventions, modeled as a constant
reduction of R throughout the entire epidemic, both on their own
and combined with optimized time-limited interventions (Fig. 2d=+f).

If perfectly timed, an optimized time-limited intervention outper-
forms a sustained intervention. Moreover, adding a sustained
intervention to a perfectly timed time-limited intervention provides
little extra benefit (Fig. 2g-i). However, even a slightly mistimed
time-limited intervention is far worse than a sustained intervention.
Most importantly, if both sustained and time-limited interventions
are adopted, the time sensitivity of the time-limited intervention is
reduced. In particular, the otherwise-disastrous cost of intervening
too late is reduced (Fig. 2d-i).

Discussion
COVID-19 has thrown into relief the importance of flattening the
curve. Our analysis establishes the optimal strategy to minimize
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Fig. 2 Mistiming an intervention reduces its effectiveness. a-f Time courses of epidemics under optimal (a), fixed control (b), and full suppression
(c), interventions that are possibly mistimed: a week late (dark lines), optimally timed (intermediate lines), and a week early (light lines). Dashed black line
shows time course in the absence of intervention. d-f Time courses of epidemics with a sustained control that reduces the basic reproduction number R
by 25%, combined with the effects of possibly mistimed optimal (d), fixed control (b), and full suppression (f) interventions, with line lightness as before.
Dashed gray line shows time course with only sustained control and no additional intervention. g-i Effect of offset of intervention time t; from optimal
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full suppression (i) interventions. Dashed black and gray lines show /M@ in the absence of intervention, without and with sustained control, respectively.
Plotted parameters: R, =3 and y = % days—'. See Table 1 for parameter justifications.

peak prevalence in the SIR epidemic model, given an intervention
of limited duration. Simpler interventions can closely approx-
imate the optimal outcome.

Deriving the optimal strategy highlights the fundamental
materials—susceptible depletion and infectious depletion—of any
epidemic mitigation strategy, and it provides a yardstick against
which to measure all other strategies.

However, it would be unwise to attempt an optimal or near-
optimal intervention in practice. The inevitable errors in timing
that arise from uncertainty in inference and delays in imple-
mentation will produce disaster.

It is particularly costly to act too late. This causes an elevated peak
immediately before the intervention even starts. By contrast, a pre-
mature intervention leads to a substantially delayed second wave?3
after the relaxation of controls. Such a delay may sometimes be more
desirable than peak reduction itself. A second wave is less challenging
to control and manage than a first wave: healthcare capacity can be
increased in the interim, pharmaceutical interventions such as anti-
virals may become available, epidemiological parameters will be

better known, and accumulated population immunity will reduce
the exponential growth rate even in the absence of intervention.
Moreover, our results apply to any interventions that policymakers
might be able to take during a second wave.

Our analysis has many limitations, and it leaves a large body of
important questions unresolved. We have generously assumed
that policymakers possess complete information about epidemic
parameters and about the initial epidemic state, and err only in
intervention timing. Future studies can work to address the
problem of disease control under uncertainty, by coupling an
understanding of optimal interventions with an analysis of epi-
demiological inference. Errors of inference are likely to be mag-
nified by subsequent intervention mistiming. Moreover, our
analysis makes the unrealistic assumption that intervention
strength b(f) can be tuned at will. However, in practice, b(f) can
be tuned only coarsely, and even fixed control interventions are
not truly enforceable in their idealized form.

We have studied time-limited interventions. This time limit
captures the social and economic costs of the intervention. It also

COMMUNICATIONS PHYSICS| (2021)4:78 | https://doi.org/10.1038/s42005-021-00570-y | www.nature.com/commsphys 5


www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00570-y

(days)

opt

offset from ¢

1

basic reproduction number R

0 30
duration 7 (days)

60 90 0

0.30
0.25
©
o
0.20 =
g
2
0.15 &
=)
3
0.10 ~
5
<
0.05
0.00
0.12 »
<
3
0.10 3
o
<
0.08 =
L;f
0.06 &
oy
0.04
=
&
0.02 g
=
0.00

0.1 02 0.3 04 05 06 0.7
recovery rate v (days™?)

Fig. 3 Effect of parameter variation on peak reduction and robustness to mistiming. a, b, Peak prevalence /M@ as a function of offset from

optimal intervention initiation time t,.°pt and a intervention duration 7, b recovery rate y. ¢, d Asymmetry between intervening early and intervening late,
quantified as /M2 for a 7-day late intervention minus /M@ for a 7-day early intervention, as a function of the basic reproduction number R, and ¢ duration
7, d recovery rate y. Unless otherwise stated, Ry =3, y = % days~, and 7 =28 days. See Table 1 for parameter justifications.

reflects the possibility that noncompliance with measures may
rise over time, a concern that some policymakers had when
planning COVID-19 responses4.

We have focused our analysis on the epidemic peak. This
quantity is critical because it is the point at which health services
will be most strained. An overwhelmed health system can dra-
matically increase infection-fatality rates, direct morbidity, and
medical complications!®!1. Peak epidemic prevalence is a good
proxy for demands on the healthcare system, but an even better
metric is the total person-days with prevalence exceeding
the maximum healthcare capacity. If the peak prevalence cannot
be reduced below this capacity, then the strategy that minimizes
the peak will not necessarily minimize the cumulative impact
above capacity. It might be preferable to permit a slightly higher
peak, and then move to full suppression.

A policymaker also seeks to reduce the total cases during the
epidemic. But for an explosively spreading novel pathogen, this
consideration may be secondary to reducing peak prevalence and
avoiding healthcare system collapse. Moreover, interventions that
reduce the epidemic peak almost necessarily reduce the total case
count (or final size) of the epidemic, although they may not do so
as efficiently as interventions targeted directly at final size

reduction!. A policymaker may also wish to delay the epidemic
peak to allow time for healthcare capacity to build and phar-
maceuticals to be developed; this too produces different policy
trade-offs!4.

In general, however, when healthcare capacity is larger, the
problem of minimizing the cumulative impact above capacity
becomes almost identical to the problem of minimizing peak
prevalence. Whereas when capacity is smaller, the problem of
minimizing cumulative impact becomes the same as minimizing
the final size of the outbreak!4.

We use one of the simplest possible models of disease
transmission: the SIR model in a homogeneously mixing popu-
lation, and in the large population limit in which differential
equations are appropriate. This is by design. We show that
even in a simple setting, without the other confounding factors
of real-world disease spread, such as population structure,
stochasticity, time-varying transmission rates, or partial immu-
nity, time-limited, non-pharmaceutical control is not robust to
implementation error.

Had our model included those complicating factors, one might
have conjectured that the danger of mistiming is linked to those
modeled factors chosen, and could therefore be controlled by
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Table 1 Model parameters, default values, and sources/justifications.

Parameter Meaning Units Value Source or justification

Ro Basic reproduction number Unitless 3 Estimates for COVID range from 2 to 3.57:34
Y Recovery rate days™! = Infectious period for COVID of ~1-2 weeks3>
p Rate of disease-causing contact days! Roy Calculated

T Duration of a time-limited intervention days 28 Approximately T month

carefully accounting for them. Had we studied an intervention
that was not provably optimal, one could have argued that a more
optimal intervention would not carry such risks. Instead, the
simplicity of our model and the provable optimality of the stra-
tegies studied demonstrate that these risks of mistiming are a
fundamental feature of the initial exponential growth of an epi-
demic, regardless of the optimality of the intervention or the
putative realism of the model used.

That said, time-limited non-pharmaceutical control in less
idealized circumstances is worthy of study. Di Lauro et al.l4
provide a numerical treatment of time-limited interventions in a
metapopulation of internally well-mixed SIR demes. Countries
such as Vietnam??, Taiwan?®, and New Zealand?’ successfully
adopted non-pharmaceutical strategies aimed at eliminating of
SARS-CoV-2 transmission locally and then suppressing reintro-
ductions. Metapopulation models could reveal the conditions
under which local elimination with a time-limited intervention is
viable and robust. Similarly, heterogeneities in a single population
—for instance, in individual susceptibility or in degree of social
connectedness—can alter disease dynamics232%, Future studies
could assess the impact of realistic network topologies on the
optimality and robustness of interventions.

Still, our simple analysis offers several clear, practical principles
for policymakers. First, act early. There is a striking asymmetry in
the costs of acting too early versus too late. Second, work to slow
things down. Slowing epidemic growth makes interventions more
robust and also makes the inference of epidemiological para-
meters more accurate. Third, when in doubt, bear down. Even the
crude policy of full suppression is remarkably successful at
reducing peaks and delaying excess prevalence. If policymakers
are very late to act, then full suppression is, in fact, optimal.

Naive optimization is dangerous. Real-world policy must
emphasize robustness, not efficiency.

Methods

Model parameters. Table 1 gives definitions of model parameters, their units,
default values plotted in the figures, unless otherwise stated, and justifications for
those choices.

State- and time-tuned maintain-suppress interventions. When we ask what it
means for a maintain-suppress intervention to be mistimed, we need a model of
how the intervention is implemented. One possibility is that the policymaker
directly observes S(t) throughout the intervention and chooses b(t) = I%(f) during
the maintenance phase based on the directly observed S(t). We call this a state-
tuned intervention.

Alternatively, the policymaker plans to intervene at some S(t) value S; predicted
to occur at a time t;. The policymaker knows that during a successful maintenance
phase, S(f) = S; — yI(t — t;). The policymaker then chooses the maintenance phase
values of b(t) according to this predicted S(¢). We call this a time-tuned
intervention.

When we study mistimed interventions, we use time-tuned interventions. Since
instantaneous epidemiological observation is not possible, time-tuned
interventions are a more realistic model of how a maintain-suppress intervention, if
possible at all, would, in fact, be implemented. If instantaneous epidemiological
observation were possible during interventions, timing errors could be mitigated
better than either state- or time-tuning allows. Policymakers could observe the true
(S5 I;) at the moment of intervention t; and then employ whichever intervention of
duration 7 is optimal given that it begins at (S;, I,).

Indeed, it can be seen that time-tuned interventions are, in fact, slightly more
robust to mistiming than state-tuned interventions. They are partially self-
correcting where the state-tuned interventions are not.

Late interventions have I'™¥ = [;. But since a late time-tuned intervention has
higher initial strictness than a late state-tuned intervention, it avoids unnecessary
time spent at ™3 = [,

Early time-tuned interventions achieve lower IM3 than equivalent early state-
tuned interventions. This is true even—in fact, especially—for very fast epidemics.
During the maintain phase of a maintain-suppress intervention, the strictness
decreases in time (see Supplementary Note 1, Eq. 11). If the intervention is too
early, this allows for some initial growth of the infectious fraction and thus
improved depletion of the susceptible fraction (Fig. 2a, d) relative to maintaining at
I; (as in a state-tuned intervention). The ensuing second peak is therefore reduced.

An intriguing side effect of this automatic course correction is that for relatively
fast epidemics, some premature interventions outperform others that are less early
(note the branching in Fig. 3b).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data sharing is not applicable for this article as no datasets were generated or analyzed
during the current study.

Code availability

All code needed to reproduce numerical results and figures is archived on Github
(https://github.com/dylanhmorris/optimal-sir-intervention) and on OSF (https://osf.io/
rq5ct/), and licensed for reuse, with appropriate attribution/citation, under a BSD 3-
Clause Revised License. We wrote numerical analysis and figure generation code in
Python 330, using numerical solvers provided in NumPy3! and SciPy®2, and produced
figures using Matplotlib®3. Parameter choices for numerical analysis are stated in the
figure captions and in Table 1.
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