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Emergence and evolution of social networks
through exploration of the Adjacent Possible space
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The interactions among human beings represent the backbone of our societies. How people
establish new connections and allocate their social interactions among them can reveal a lot
of our social organisation. We leverage on a recent mathematical formalisation of the
Adjacent Possible space to propose a microscopic model accounting for the growth and
dynamics of social networks. At the individual's level, our model correctly reproduces the rate
at which people acquire new acquaintances as well as how they allocate their interactions
among existing edges. On the macroscopic side, the model reproduces the key topological
and dynamical features of social networks: the broad distribution of degree and activities, the
average clustering coefficient and the community structure. The theory is born out in three
diverse real-world social networks: the network of mentions between Twitter users, the
network of co-authorship of the American Physical Society journals, and a mobile-phone-calls
network.
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unfold and the graph of such interactions can reveal a lot

about our social organisation and its evolution in time. That is
why social networks have attracted a great deal of attention to
understand the mechanisms underlying their evolution and
provide valuable information on the microscopic determinants of
social dynamics, for instance, individuals’ search strategies’:? or
the schemes to allocate time in socially charged activities*.

The evolution of social networks is shaped by the interplay of
complex mechanisms operating at different scales. Indeed, indi-
viduals have a heterogeneous propensity to engage in social
interactions, featuring heavy-tailed distributions of activity and
degree®. Also, people allocate their social interactions toward
similar alters®-8, for instance connecting to a friend of a friend-
triadic closure’. At the same time, individuals may seek novel
connections outside of their inner circle of contacts, based on
shared interests or experiences (focal closure)®10-13, Moreover,
social networks are intrinsically dynamical systems that evolve in
time!41> as links between nodes are continuously created and
destroyed!6-18, This time-varying nature of the networks deeply
affects not only their topological properties”!>1? but also the
dynamical processes unfolding on their evolving topology2-23,

The growing availability of large scale and longitudinal datasets
logging human interactions allowed for the study and char-
acterisation of the birth and evolution of social networks. This, in
turn, triggered the introduction of models capturing some rele-
vant aspects of the whole phenomenology, such as the propensity
of individuals to engage in social interactions®, the correlations in
the nodes’ activity patterns®>425, the emergence of topological
correlations®?27, and the clustering of nodes in tightly con-
nected communities!128:29,

All of the models proposed so far, however, feature two main
drawbacks. First, most of these models are growing models of a
network, and thus they do not account for the dynamics of the
network itself. Indeed, the growth is usually simulated by
inserting one node per evolution step that establishes edges either
by copying neighbours of a randomly selected nodes!3, by
rewiring existing connections’®3! or by following a
topological®?27, information-based3? or hierarchical?? pre-
ferential attachment. Moreover, all of these models return binary
networks where no weight is assigned to edges. An exception is
given in3* where, however, authors rely on an initial community
structure and degree distribution to reproduce the final mod-
ularity of the networks.

The second limitation applies to models describing the network
dynamics, allowing nodes to interact more than once in time.
Some of them require to fix some data-driven heterogeneous
distribution to reproduce the real-world heterogeneity of given
observables, such as the fitness associated with each node®?¢ or
the propensity for a node to engage in social interactions28. Other
models focus on particular aspects of the network evolution, such
as the drivers of the users’ activation patterns in time3® or the
strategies that a node follows to select the interacting partner3®,

In this work, we propose to solve these issues leveraging on the
notion of adjacent possible space3’-3%. Introduced by the biologist
Stuart Kauffman in the framework of molecular and biological
evolution, the adjacent possible framework posits that space (be it
of words, ideas or products) being explored by some agents is
partitioned in three regions: (i) the actual, accounting for all the
tokens that users already discovered and experienced, (ii) the
adjacent possible space, encompassing all the concepts and tokens
that are just one step away from what is known and could become
actual in the immediate future, and, (iii) non-adjacent possible
space, the set of all those things that could become possible at
some later stages, conditional to a suitable expansion of the
actual. The key ingredient of this framework is that once an

Interactions among individuals shape how our societies

individual experiences something new from his adjacent possible
space, the new item gets immediately surrounded by fresh con-
cepts previously belonging to the non-adjacent possible space that
is now part of the adjacent possible space. Recently, some of us
proposed a mathematical formalisation of the notion of the
adjacent possible space?%4! where the space of tokens that can be
explored by an agent (represented, for instance, as a Polya’s
urn*243) grows when he experiences a novelty, i.e., an item of the
space being explored never seen before. This modelling frame-
work allows making quantitative predictions of key statistical
features of innovation processes in human activities** and tech-
nological progress?>.

Here, we apply the adjacent possible framework to describe
and reproduce the dynamics of social interactions via a model
relying on a minimal set of microscopic rules, i.e., defined at the
individual level. We start from the intuition that an exploratory
process drives the growth of a social network, as individuals
expand their circle of acquaintances by exploring a space of
social connections. From this perspective, individuals expand
their potential network of contacts—i.e., their adjacent possible
space—every time they create a new connection.

We show that our model of network growth and dynamics can
correctly reproduce many features of social networks at different
scales. For instance, the heterogeneous propensity of nodes to
engage social interactions (activity), their degree distribution, the
way a node decides to allocate a social interaction toward new or
already contacted alters (ie., the individuals’ propensity to
innovate and create new connections), the dynamical growth of
average degree, the local clustering coefficient, the modularity of a
network and the overall rate of growth of the number of
edges in it.

Results and discussion

Real-world social network datasets. We test the predictions of
our theory against three different real-world social networks that
have been extensively studied and characterised in the previous
works21:25:28:46 and that represent a good proxy to dynamically
measure interactions between people (see “Methods” and Sup-
plementary Note 2 for details): (i) the American physical society
(APS) co-authorship network, (ii) the Twitter mention network
(TMN), and (iii) the mobile phone network (MPN).

The most renowned feature of these systems is that both
the propensity of a user to engage in a social interaction (ie.,
the activity a; of a node i defined as the number of events actively
engaged by node i) and the degree k; (i.e., the number of different
neighbours connected to node i) are broadly distributed. The
tails of their distributions are usually approximated with a power-
law, ie.,

P(a) ca~ ™  and P(K) o k¥,
as shown in Fig. 1a, b.

These systems are also expanding in time as new nodes and
edges keep entering the network. In Fig. 1c we show the growth in
intrinsic time t (i.e., the number of recorded events) of the
number of edges A(f) in the systems that follows a Heaps’ law as

A(t) x 7,

where y is the exponent leading the growth of the number of links
(see Supplementary Note 3 for details).

Another feature is that individuals display correlations on their
activity. When a node engages a social interaction, it is likely to
turn its social activity (e.g., a mention in the TMN) toward a node
already contacted in the past rather than toward a randomly
selected node in the system. A possible way to quantify this
mechanism is to measure the probability p;(k — k + 1) (in short
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Fig. 1 Stylised facts in social networks' evolution: empirical data and model predictions. a The P(a) activity distribution, (b) the P(k) degree distribution,
and, (¢) the temporal growth of the total number of edges A(t) « t” as found in the American physical society (APS, red squares), mobile phone network
(MPN, green triangles) and Twitter mention network (TMN, blue circles) datasets. In each panel, we also show the same curves as found in the best fitting
model of each dataset (solid lines with the same colour as the corresponding dataset). The rescaled strengthening probability p.(k) = (1 + k/ce)’ﬁ, being c.
the memory constant for nodes of class e, as measured for different classes of nodes (symbols, colour depth proportional to the number of agents in a node
class e) is reported in panel (d) for the APS dataset, in (e) for the MPN case, and, in (f) for the TMN system. In the main panels, we compare the empirical
curves (coloured symbols) with the p.(k) found in the corresponding best-fitting urn model (black symbols) and the theoretical guideline pe(xs)w =
1+ xe)‘1 (black solid lines), being x, the rescaled degree x. = k/c.. In the insets, we show the average rescaled <pe(x9)>e for the empirical (blue lines) and
synthetic data (orange lines) as well as the theoretical behaviour p(x) = (1+ x)~1 (black line). We fixed c, by fitting the average p.(k) as measured for all
the nodes belonging to the class e. g-i The average degree (k(t,,t)) o (t/t,)? as a function of the rescaled global time g, = t/t. for different classes of nodes
entering the system at different times t. (coloured symbols) for the APS (g), MPN (h), and TMN system (i), respectively. In the insets, we show the
corresponding results for the urns model. We also show the best fit <k(t)> o t9 for all the cases (solid blue lines). Note that here the exponent g does not

depend on class e.

pi(k)) for a node i that already contacted k different nodes to
contact a new one the next time it will be active?!-2>. The p,(k),
which is formally the probability to pass from degree k — k + 1,
was found to feature the same functional form

pi(k) = <1 +§> !

1

across all the analysed datasets2®, with a single value of 8 -the
strengthening exponent- and a distributed, agent-depending
strengthening constants ¢; (see Supplementary Note 3 for details).
At odds with the strengthening exponent f3, ¢; significantly varies
across individuals. To account for the nodes” dynamic variability,
we grouped individuals in different classes, e, accordingly to their
entrance time f, into the system and their final degree k, (see the
“Methods” for details). We show in Fig. 1d-f both the rescaled
pe(x.), with x,=k/c, for each class e, (main panels) and the
average value of the rescaled probability <pe(xe)>e (insets), as
found in the empirical and synthetic data (see Supplementary
Note 3 for details).

This correlation mechanism inhibits the creation of new links,
resulting in a sub-linear growth of the average degree

(k(t, £)) o< (t/1,)",

for the e-th class of nodes, where ¢ is the global intrinsic time
measured as the number of total events recorded and where g < 1,
as shown in Fig. 1g-i.

In Fig. 2 we show for the first time the analysis of Taylor’s
law#748 on social networks evolution data. Recently pointed out
as a shared feature in evolving systems, Taylor’s law relates the
standard deviation of a random variable to its mean and it
measures the fluctuations in innovation rate#®->0. The fingerprint
of a complex dynamics is characterised by

a(t) o p(t)’

with §>1, at odds with §=1/2 characterising uncorrelated
events. Complex behaviour of Taylor’s law does not trivially
follow from Zipf's and Heaps’ laws*>°0, making it a relevant
observable to test theoretical predictions. We here measure
Taylor’s law referred to the growth of the individuals’ connections
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Fig. 2 Taylor's law in social networks. a-c Taylor's law for the number of links created by different individuals at each user's intrinsic time u, being u the

number of events where a user took part. We defined u(k) = (k/(u)), and o(k) = EO= <k,»(u)>2, where k;(u) is the degree of node i at its intrinsic time
u and where we implicitly have a dependence on the node i's intrinsic time u. Results in the empirical datasets, contrasted with model predictions, for (a)
the American physical society dataset (APS), (b) the mobile phone network (MPN) dataset, and (c) the Twitter mention network (TMN) dataset. In (a) we
also report results for the 1-link sampled database, defined in the “Methods” section. For all the empirical and synthetic datasets we find an approximate
power-law behaviour o(k) ~ u(k), with 8 > 1. For each curve, we considered the 2000 individuals with the longest history (final intrinsic time). d-f We
report the effective number of points over which the mean and the standard deviation is computed at each time t. This number decreases for the highest
values of the mean, corresponding to higher values of intrinsic time since the number of the total performed actions varies from individual to individual. The
number of samples used is reported, both for the empirical and synthetic datasets, for (d) the APS dataset, (e) the MPN dataset, and (f) the TMN dataset.
In all the cases, we considered only averages on at least 100 samples, but for the MPN case, where we additionally show values for times where at least

10 samples were available (model 10 curves).

in the network, observing a linear or superlinear behaviour
(Fig. 2).

Besides these fundamental features, we also track a set of local
and global observables, later presented in the Results section.

Model. As said, we build on the adjacent possible framework#? to
model the exploration of social spaces where individuals are
embedded. Within this framework, we microscopically model
how the space of possibilities of a node (i.e., the set of all the
social interactions that are “possible” for a node) evolves in time.
This space, at a given point in time, consists of three distinct
regions: (i) the actual, including all the links already experienced
by the individuals in the past (current connections), (ii) the
adjacent possible space accounting for all the links that are just
one step away from being explored (e.g., the friends of friends not
yet our friends), and, (iii) the non-adjacent possible space,
accounting for all the links that may become adjacent and pos-
sible at some later stage.

A second essential ingredient of our model is the presence of
correlated novelties#(. Every time the social exploration process of
a node i activates a new connection with a node j belonging to its
adjacent possible space, i and j experience a novelty, i.e., the link
e;; gets active for the first time. In this way, j becomes now part of
the actual region of i and the adjacent possible space of i enlarges
with new possible connections that were not possible for i before.
In other words, a novelty paves the way to another in the future.

The modelling scheme we apply is a multi-agent version of a
modified Polya’s urn*243 that has already been successfully
implemented to reproduce the key statistical properties of
complex systems (Zipf's, Heaps’ and Taylor’s law) and their
dynamical correlations?0:4450:51 In the simpler formulation of
that model#’, the key ingredient is an urn, I/, initially containing
Np distinct elements. One may think of them as balls of different
colours representing an item of the space being explored. The
dynamics proceed by repeatedly withdraw balls from ¢/ and
annotating them in a temporal sequence of events S-here this

sequence represents a sequence of social contacts experienced by
a user. Every time we pick up a ball, we put it back in the urn
together with p additional copies of it, thereby reinforcing that
element’s likelihood of being drawn again in the future, in a “rich-
get-richer” fashion. To account for the adjacent possible space
expansion, whenever a novel (never extracted before) element
appears in the sequence S, we additionally put v + 1 new distinct
elements in U/, thus expanding the adjacent possible space of the
system.

We generalise this model to a multi-agent definition to account
for the birth, evolution and dynamics of social networks. To this
end, we introduce two key concepts. First, the system consists of a
collection of urns, each identified by a unique alphanumeric ID
(a, b, c,...), representing users in a social network. Second, each
ball within each urn bears the reference ID of another urn in the
system. Then, the sequence of extracted balls will correspond to a
series of social contacts annotated as tuples (i, j), where i is the ID
of the urn drawing a ball, and j is the ID of the drawn ball. For
each extraction, the reinforcement process requires to put back p
copies of the extracted ball j into the extracting urn i (and vice-
versa), so that an exploited interaction will be favoured again in
the future. To account for the expansion of the adjacent possible
space, we also let two urns that interact for the first time to
exchange a memory buffer, i.e., a subset of v+ 1 balls that each
urn shares with the other. This set is selected using a specific rule
s that we present below. Thanks to this exchange, an urn that
experiences a novel connection expands its adjacent possible
space, thus increasing the set of IDs that it may contact in the
future.

Exploration strategies. The last ingredient of our model is the
strategy s that an agent adopts when sharing its experience
(the memory buffer) with nodes contacted for the first time.
We introduce a total of six different strategies s to determine
the v+ 1 IDs contained in the memory buffer being shared
along with new links. Here, we report three of these strategies
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Fig. 3 Three possible evolutionary steps of the model. Three possible steps of the Polya's urn model for a system with equal reinforcement and innovation
parameters p =v =1 with the weighted sampling with withdrawal sampling strategy s = WSW. For each evolutionary step of the system (columns), we
show the current state of the urns (top row), the equivalent network evolution (mid-row), and, the sequence S of observed events (bottom row). In the
network, we show already active links (solid lines), links in the adjacent possible space (dashed lines), currently active links (red lines) and connections
entering into the adjacent possible space (blue dashed lines). The ball drawn is visualised with a red dashed circle while we show reinforcement balls and
memory buffer ones enclosed in black and blue rectangles, respectively. New urns entering the system are shown with dashed borders. a At time t urn a is
active and draws the ball b: the event (g, b) is then appended to the sequence S. At time t + 1 the urn a then gains p copies of b and vice-versa
(reinforcement) and, since the ey, link is new, we also draw v + 1 distinct balls from a following the WSW strategy (balls ¢ and d within the dashed
rectangle) that will be copied into b (and the same for b that sends e and f as novelties to a). In the network representation, the e, edge is active and the
€qer €afi €bc, aNd €pg links enter into the adjacent possible space. Notice that the adjacent possible of c changed without the need for c to participate in social
interaction. b At time t, urn a draws a copy of b (top). Since the edge e,, was already active in the past, we only put p copies of b in urn a and the other way
around. The network's topology does not change in this step, while the weight of the ey, link gets increased (network representation). ¢ Urn a draws a copy
of ¢ at time t (top). Since c is an empty urn, it creates v+ 1 novel IDs (g and h, in the dashed rectangle) and gains a copy of them. We add (g, ¢) to the
sequence S and we perform the reinforcement/novelties exchange between a and c. The network gains two new nodes (g and h), activates a new edge
(eqe) and inserts new links in the adjacent possible space. The actual space of ¢ acquires a while its adjacent possible space gains e, g, and h.

that turn out to best capture the phenomenology of the
empirical datasets we consider, while we refer to the Supple-
mentary Note 1 for the other strategies. The first strategy is the
weighted sample with withdrawal (WSW) strategy: an agent
draws v+ 1 distinct IDs from the urn proportionally to their
abundance in the urn itself at that time, i.e., proportional to the
number of the past interactions with each ID. Distinct means
that the node extracts exactly v + 1 IDs proportionally to their
abundance and withdraws all the balls of an ID x after it has
been drawn. This strategy corresponds to sharing the IDs that
interacted the most with a node in the past and is the one
applied in Fig. 3. Then, we define the symmetric sliding window
(SSW): each agent keeps a buffer of its last v+ 1 distinct alters
with whom he interacted in the past. These represent the set of
IDs shared with a newly contacted agent. After the exchange,
both agents update their memory buffer by pushing in the ID of
the agent just contacted and removing the v + 1st ID from their
buffers. This strategy favours the spreading in the network of
the recently activated connections, rather than the most fre-
quent ones. Finally, we introduce the asymmetric sliding win-
dow (ASW): it is a variant of the previous strategy, the
difference being that only the agent that initiated the interac-
tion updates its memory buffer after the communication event.

Given these definitions, we can now define the sequential
evolution steps of our model.

Model rules. The three parameters of the model are the reinfor-
cement parameter p, the number of novelties to be shared v and
the memory buffer exchange rule s. A schematic representation of
the model is given in Fig. 3 and we resume here the steps defining
it (see the Supplementary Note 1 for details):

(1) we start with two urns, a and b having a copy of each
other’s ID inside of them; the urns also contain the v+ 1
distinct identities (IDs) of other urns that did not
participate yet to any interaction (¢, d for a and e, f for
b). These sets represent their initial memory buffers. The
sequence of events S is initially empty;

at each time step, we extract a “calling” urn i proportionally
to the size of the urn U; (the number of balls within the urn
i). We then draw a ball from the calling urn i, say the ID j.
This double extraction corresponds to a single event (i, j)
that we append to the main sequence S. In Fig. 3 the first
event is the (a, b) one.

reinforcement: following the event (i, j), we add p copies of i
in the /s urn and p copies of j in the ’s urn. For example, in

)

€)
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Fig. 3a, b, we add p copies of g in the b’s urn and p copies of
b in the a’s urn.

(4) novelty: if it is the first time that i and j interact, i and j
exchange their memory buffer. With this mechanism, we
add j’s memory buffer into U; and, vice-versa, i’'s memory
buffer into U;. In Fig. 3a, a’s memory buffer (c, d) is copied
into U, and b’s memory buffer (e, f) is copied into U,. In
this case, the memory buffer is determined using the s =
WSW strategy, that is, by extracting exactly v + 1 IDs from
U, proportionally to their abundance.

(5) if anode j is called for the first time by another node (i.e., j
is an empty urn so that U; = 0), it creates v + 1 new agents
(empty urns) and, for each of them, it creates a ball into its
urn: these v + 1 IDs represent the initial memory buffer of j.
In Fig. 3¢ node c creates two brand new nodes, g and F, that
will represent its initial memory buffer. We note here that
the newly created agents are initially empty urns so that
they can participate in the dynamics (they can be included
in the social network) only if another urn (agent) calls
them. Only after this first call, they may actively engage in
an interaction. In this scheme, an agent cannot join the
network “from outside,” i.e., unless it is engaged by another
agent already belonging to the network. Of course, the
scheme can be generalised to account for other schemes for
nodes to enter the system but we will not cover this detail in
the present work.

Each evolution step is defined as a repetition of the 2 — 5 steps
of the just outlined procedure, as shown in Fig. 3. The parameters
p and v weigh the relative importance of the reinforcement and
exploration processes in the system. We define R=p/v as the
ratio between the two. The model is then entirely defined by three
parameters only: the reinforcement value p, the ratio R=p/v
setting the relative importance of the reinforcement (exploit) and
novelties (explore) mechanisms, and the strategy s used to
exchange the memory buffer between nodes getting in contact for
the first time.

Let us note that our model does not only represent a network
growth model. Instead, it reproduces a sequence of interaction
events that mimic the original network dynamics, i.e., the actual
sequence of events. This feature is at variance with other models
of network growth where each evolution step corresponds to the
insertion of a new node establishing its connections following a
given rule®!3, Moreover, the creation of new edges and the
reinforcement of their weights stem from the exploration that
each user does of the possible connections and the expansion of
the number of potential acquaintances rather than from local
rewiring schemes3%:31. In the following, we show that, after fitting
the model’s parameters to the three different networks we
analyse, the model’s simple microscopic rules reproduce the main
topological and dynamical features of empirical networks.
Besides, the values of the three model’s parameters give some
insights on the nature of the three social networks we are
analysing.

Comparison between model and datasets. We now compare the
main network features emerging from our modelling scheme’s
evolution to their empirical counterpart. To compare the theo-
retical predictions with the observed data, we optimised the
model by fixing the parameter values that minimise, for each
empirical dataset, a cost function S,(p, R, s). The latter evaluates
the goodness of fit of the synthetic simulations to the empirical
dataset d by looking at eight selected observables, both local and
global, topological and dynamical (see the “Methods” for details).
Specifically, we consider (i) the strengthening exponent f3, (ii) the
q exponent leading the average degree growth, (iii) the y exponent

driving the growth of the number of edges growth in time. We
also take into account (iv) the asymptotic value of the average
clustering coefficient ¢ and the fraction of activated edges that are
either old (already activated in the past) or new (being activated
now) and that happen to insist on a triangle (closed) or not
(open), thus defining four categories: the (v) old open (OO),
(vi) the old closed (OC), (vii) the new open (NO) and (viii) the
new closed (NC) active links, measuring the fraction of events
falling in each category per time range in the asymptotic limit of
the system evolution (see the “Methods” section). We summarise
the results in radar plots in Fig. 4, showing the observed values for
the eight selected observables along with their best numerical
estimates. We observe that the model endowed with optimal
values of the parameters is able to quantitatively reproduce all the
selected observables in all the datasets, exception made for the
APS dataset. In the latter, the model fails to predict the obser-
vables related to the network topology correctly. To explain this
discrepancy, we note that the APS dataset is composed of cliques
of events—rather than one single event between two IDs per time.
This feature leads to a high clustering coefficient (as all the agents
publishing one paper are fully connected) and in an increased
count of events observed along old edges insisting on at least one
closed triangle. To filter out this effect, we performed a sub-
sampling of the data by drawing a single link among all the
possible ones for each paper and re-computed the features of this
sub-sampled dataset (see the “Methods” for details and the
Supplementary Note 4 for other sampling strategies that give
similar results). When analysing these results, the disagreement
between the real system and the model results disappears (see
Fig. 4a, b), revealing that the model can explain the underlying
interaction processes also in this dataset.

In the Supplementary Note 1, we give an analytical solution of
the model and we show how each model parameter affects the
main observables of the system. Here we report that as for the
global observables discussed in “Results and discussion” and
reported in Figs. 1 and 2, the relevant parameters are the ratio R =
p/v and the sharing strategy s, while the absolute values of p and v
impact the behaviour of the observables related to the local
topology of the network. Despite the limited number of
parameters, the model is flexible enough to reproduce a wide
range of phenomenologies, from highly exploratory situations such
as the APS dataset (high y and low f exponent) to more
exploitative scenarios, with a reduced number of connections
being explored such as in the MPN (with a large  and a low y
exponent).

Global trends. Besides the eight observables included in the cost
function Sy(p, R, s), in Fig. 1 we show that the model can also
reproduce the empirical networks’ broad activity (panel a), the
degree distributions (panel b), the growth of the number of edges
in the network E(f) xt’ (panel c), the functional form of the
strengthening function p.(k) (panels d—f), as well as the sub-linear
growth in of the average degree (panels g—i). Let us note that the
average p.(k) curves presented in the insets of Fig. 1d-f feature
different support in the rescaled degree x, = k/c,. In particular,
the APS and TMN empirical data span a larger rescaled degree
range with respect to the synthetic data, while the opposite is true
in the MPN case. This difference is due to the discrepancy in the
P(c;) distribution of the strengthening constant ¢; in the empirical
populations and the synthetic ones, as we show in the inset of
Fig. 5a. Indeed, our model reproduces larger (smaller) ¢; in the
APS/TMN (MPN) cases compared to the empirical situation.
This results in a smaller (larger) range of the rescaled degree (k.)
as shown in Fig. 1d-f.

In the insets of Fig. 1g-i, we also show that the model can
reproduce the average degree growth in time (k(t,,t)) o 1 for
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Fig. 4 Eight selected observables for model's optimisation. a-d Radar plots comparing eight selected observables measured in empirical (blue lines) and
synthetic data (red lines). In each panel, we report the reinforcement and novelties parameters p and v and their ratio R as well as the optimal sampling
strategy s, that is: (@) American physical society (APS) with the symmetric sliding window (SSW) strategy s, (b) the 1-link subsampled APS with the

asymmetric sliding window (ASW) strategy, (¢) the mobile phone network (MPN) fitted with the ASW strategy, and, (d) the Twitter mentions network

(TMN) with the weighted sampling with withdrawal (WSW) strategy.

the different node classes. The g exponent reproduced by the
model is not always in perfect agreement with the empirical value
(e.g, g=056 in the TMN while g=0.63 in the best fitting
model), but in the Supplementary Fig. 13, we show that the
distribution P(g,) of the exponent per node class is in very good
agreement between the empirical and synthetic cases.

Furthermore, the model can reproduce the broad fluctua-
tions in the rate of innovation (i.e., in the creation of new
links), as measured by Taylor’s law (Fig. 2). In the
Supplementary Note 3G we also show that the model
qualitatively reproduces the inter-event distribution between
two consecutive events of edges creation for a node as well as
the entropy of such sequence. These results represent the first
improvement of our model with respect to the state of the art
as we do not require (i) to manually specify a broad fitness
distribution of the nodes to reproduce the heterogeneous
degree distribution as in ref. %, (ii) to specify the probability to
contact a new node instead of an already contacted one as in
ref. 28, as the strengthening behaviour of p,(k) naturally
emerges from the microscopic evolution rules, and (iii) to
set the selection rule of the next active node i and the
probability distribution of the alter j that he will contact, as
they emerge from the model as opposed to refs. 2634,

Heterogeneities in the experience of the new. Besides the properties
already exposed, the model also correctly captures the hetero-
geneous propensity of individuals to establish new connections,
i.e, the rate at which they experience novelties. To quantify this
rate, we look at the exponent of the Heaps’ law describing the
growth of the degree of an individual, k{(x;), i.e., the number of
distinct people encountered as a function of the number of social
events performed x;: k;(x;) o x{. Figure 5a reports the distribu-
tion of empirical exponents « for the three datasets considered.
These distributions are peaked at different &, values for the dif-
ferent datasets (@pg ~ 0.9, while @y ~ 0.7 and @y ~ 0.4).
Remarkably, the model correctly reproduces both the peak value
and the broadness of each empirical P(«) distribution.

Another empirical quantity heterogeneously distributed is the
strengthening constants ¢;, setting the probability for an
individual with k connections to acquire a new one as
pik)=(1+k/ ¢;)P. The inset of Fig. 5a shows that our model
qualitatively reproduces the empirical distribution P(c;) of the
strengthening constants ¢;, even tough with some discrepancies
between the empirical and synthetic data. In particular, the
variance of the synthetic values is limited by the strict evolution
rules of the urn, that cannot indefinitely diverge from the average
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Fig. 5 Topological properties of social networks: empirical data and model predictions. In all the panels, we show the data of the empirical datasets using
symbols and data from the synthetic simulations with solid lines. To distinguish the datasets, we use the red colour for American physical society (APS),
cyan for the APS 1-link subsample dataset, green for the mobile phone network, and blue for the Twitter mentions network dataset. a The P(a) distribution
of the local Heaps' exponent a for a sample of 10% of nodes as measured in the empirical networks and the simulated ones. In the inset, we show the P(c;)
distribution of the individuals’ strengthening constant ¢; as measured in empirical data (coloured boxes) and their corresponding simulations (black boxes).
b The P(w) link weight distribution for the three empirical datasets (symbols) and the ones found in the artificial networks (solid lines). € The average
overlap in the network obtained by removing edges in ascending order of weight up to a given cumulative density function value (percentile). d The average
clustering coefficient c(fo) measured on the network obtained by removing edges being in the overlap percentiles O <fo. @ The distribution P(r) of the
community sizes r found in the different datasets. In the legend, we show the network modularity m as measured in each dataset. f The distribution of the
fraction of core nodes within the communities of the different networks. We compare the empirical results (blue distributions on the left) with the synthetic
ones (orange areas on the right, the dataset names are reported on the x-axis).

behaviour. That is why all the three best-fitting models feature a
similar P(c;) distribution (all peaked at around ¢; ~ 1) whereas the
empirical cases show smaller ¢; in TMN and APS, while larger c;
are observed in the MPN case. A possible extension of the model
should then try to address this drawback. However, the model
automatically reproduces a distributed propensity of individuals
to decrease their social exploration at a given cumulative k. This is
at variance with previous works that explicitly encoded this rule
in the model definition?83>.

Topological correlations. We now focus on the topological cor-
relations of the empirical and synthetic networks of interactions.
In Fig. 5b we show that the model correctly reproduces the overall
link weight distribution P(w;), i.e., the distribution of the number
of activations of a single edge w;;. Then, we test that both the
empirical and the synthetic data obey the weak and strong ties
scheme of the Granovetter conjecture>!2. The latter states that
links in a social system will be arranged to have communities of
individuals tightly connected by strong ties and with a large
neighbours overlap. These communities are then interacting
through weak ties, i.e., links acting as bridges between commu-
nities composed by nodes sharing a limited number of common
neighbours (low overlap). To prove this, we measure how the
overlap O; of two nodes (i.e., the fraction of common neighbours
of nodes i and j with respect to their total number of neighbours)
correlates with the weight w;; of the edge between i and j. In
Fig. 5¢ we show how the average edges’ overlap varies as we filter
out network’s edges with a weight smaller than a given percentile
w. In all the cases we observe a positive correlation between the
two quantities at high values of w, the only exception being the
APS case (red symbols). As for the previous clustering analysis,
we show that once we subsample the APS events, the empirical
data agree with numerical simulations (cyan symbols and line).

Also, in this case, our model is able to reproduce a non-trivial
arrangement of the edges’ weights and their topology. In the
Supplementary Note 3H we compare other topological measures
finding a good agreement between the empirical and synthetic
cases (positive degree assortativity and negative local clustering-
degree correlation).

We further test if our model reproduces the community
structure (modularity) of the empirical networks. In Fig. 5d, we
inspect how the average clustering coefficient c(fo) of the network
varies when removing the edges e;; by their ascending overlap, i.e.,
by discarding edges with overlap O;; < fo, being fo the cumulative
percentile of the overlap distribution. We find ¢(fo) to increase as
one removes edges with small overlap, indicating that the removal
of weak ties is removing bridges between communities. Then, the
c(fo) peaks and, if we keep removing the higher overlap edges, we
start breaking the triangles in the communities’ cores, the
clustering coefficient decreases. Again, the disagreement between
the empirical and synthetic APS dataset disappear if we consider
the 1-link sub-sampled dataset. As shown in Fig. 5d, the
subsampled dataset perfectly matches the corresponding
numerical data.

Then, in Fig. 5e we show, for each dataset, the P(r) distribution
of the community size r as found in the empirical networks
(symbols) and the numerical simulations, together with the
modularity values of the networks (see the “Methods” for details).
Surprisingly enough, the model can reproduce the communities’
size distribution and the modularity values for the APS (both
original and sub-sampled) and the TMN datasets. In the MPN
dataset, the synthetic network’s modularity is found to be smaller
than the empirical one. This finding can be due to the limited size
that the network reaches in the simulation time (~2500 nodes
versus the millions of the real case) and the fraction of time steps
that we can simulate compared to the real case (107 simulated
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Fig. 6 Dynamics of links formation: empirical data and model predictions. The plot of the empirical data and model results for the fraction of activated
links that are: old (i.e., they have been active before) and open (they close no triangle) OO(t) (blue markers), old and close (i.e., they close at least one
triangle) OC(t) (orange markers), new (i.e., they get activated for the first time) and opens NO(t) (green markers), and new and close NC(t) (red markers).
In each case, we show the temporal behaviour (markers), and the asymptotic value (dashed lines, the asymptotic value is reported in the legends). Panels
refer to (@) American physical society (APS) and (b) its model, (¢) 1-link subsampling of APS and (d) the synthetic model, (e) the mobile phone network
(MPN) dataset and (f) it is corresponding numerical one, and (g) the Twitter mentions network TMN dataset with (h) the synthetic one.

steps versus the 2-10° real events). Nevertheless, the overall
shape of the communities size distribution is also reproduced in
this case.

We then check if the generated networks also reproduce the
empirical core-periphery structure. Intuitively, a core-periphery
structure corresponds to a network with communities composed
by a densely connected set of nodes (the core) to which other
nodes sparsely connected amongst them are linked (the
periphery, see Methods for details). We report the results in
Fig. 5f where we show the distribution of the fraction of core
nodes detected for each community. As one can see, the model
correctly reproduces even the proportion of core and periphery
nodes in communities.

Finally, passing to the microscopic dynamics, we report the
temporal evolution of the number of events allocated by nodes
toward new or old links insisting or not on triangles (the
categories OO, OC, NO, and NC defined above and in the
“Methods”). Again, we note that, while the original dataset of APS
shows a behaviour not well reproduced by the model, the latter
very nicely predicts the behaviour featured by the 1-link sub-
sampled APS dataset, as well as the behaviour featured by the
other two datasets (Fig. 6).

These additional results overcome some of the limitations of
previous models and approaches. For example, in34 the commu-
nity structure has to be fixed from the beginning of the
simulation, whereas other models where the community structure
emerges from the network growth do not account for either the
edges weights>13:33, the network dynamics3® or the topological
correlations of weights and overlap3>. Moreover, none of the
network dynamic models we are aware of can reproduce this large
set of dynamical and topological observables at once. Either they
focus on the link weights allocation?3, on the activation patterns
of nodes? or they do not account for global observables such as
community structures and modularity at all3°.

Optimal exploration strategies. Let us finally note that the optimal
parameters values found for each dataset draws some meaningful
insights on the microscopic mechanisms driving the exploration
of the social space in the different context of each social network.
In the TMN case, we find R =1, so that the reinforcement and

the novelty exchange processes equally influence the single
agents’ exploration process: this is reasonable in a system where
new connections require little effort from the user. Moreover, the
strategy s = WSW (weighted sampling with withdrawal) with v =
5 is the one that better describes the empirical data: users select
new accounts to mention by sampling from the past interactions
of the alters they are connecting with proportionally to the
number of their past interactions.

On the other hand, in the MPN case, the best fit is obtained
for R=3 and p=21. The system dynamic is dominated by
reinforcement processes that tend to reinforce links that are
first established and inhibiting the creation of new edges. In this
case, the best fit with the s=ASW memory buffer sampling
strategy highlights that individuals share their last v4+1=28
contacts, thus spreading copies of recently contacted IDs rather
than the most contacted ones. Notice that the last contacted
v+1 IDs may, in general, be different from the most
representative IDs within the urn. The asymmetric nature of
the ASW strategy indicates that users actively exploring new
connections update their memory buffer, whereas nodes
passively participating in communication tend to conserve
their previous memory buffers.

Finally, in the APS case, we find an extremely exploratory
dynamics characterised by a relatively low R = 0.4, i.e., a relatively
high v. This finding is symptomatic of a dynamics where the
exploration of the social space overtakes the reinforcement of
existing connections. A possible explanation lies in a large
number of students and researchers authoring a few papers before
quitting academia, providing a constant influx of new potential
connections to be explored by senior researchers. The SSW
optimal sampling strategy reveals that authors tend to share their
last v 4 1 ~ 16 people they have been collaborating with, implying
a preference to recommend recently active connections to new
collaborators. Moreover, this strategy also catches the intrinsic
symmetric nature of the co-authorship interaction, as both co-
authors update their buffers of potential new collaborators.
Further confirmation of this is that the sub-sample of the APS
dataset is best fitted by a comparable R = 0.33 but with an ASW
strategy s = ASW, where only the node actively engaging the
interaction updates its memory buffer.

COMMUNICATIONS PHYSICS| (2021)4:28 | https://doi.org/10.1038/s42005-021-00527-1 | www.nature.com/commsphys 9


www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00527-1

Conclusion

In this work, we proposed a theoretical model of social explora-
tion to explain the birth and evolution of social networks. The
theory is based on the adjacent possible framework and builds on
a recently introduced mathematical formalisation of its condi-
tional expansion. In this framework, the creation of new social
bonds is the outcome of an exploration process unfolding on the
space of possible new acquaintances, whose boundaries change
while people explore them.

Without relying on unnecessary assumptions, our theoretical
model builds on the adjacent possible space expansion and
microscopic evolution rules that let emerge both microscopic and
macroscopic features of real-world social networks. We compared
the predictions with the empirical data from three diverse social
networks: the network of mentions between Twitter users, the
network of co-authorship of the APS, and a mobile phone-call
network. The agreement between theory and data is surprisingly
good. On the macroscopic side, the model reproduces the main
static and dynamic features of those social networks: the broad
distribution of degree and activities, the average clustering coef-
ficient, and the innovation rate at the global and local levels. At
the microscopic level, the most striking feature captured is the
probability for an individual, with already k connections in its
local network, to acquire a new acquaintance. The model also
captures the topological correlations, the modular structure and
the core-periphery organisation of nodes. Besides, the model is
able to grasp the temporal-evolution of real-world systems at very
different scales, from the local exploit/explore mechanisms of
single agents to the global organisation of the network in com-
munities of coherent users. To the best of our knowledge, this is
the first model that reproduces these features without super-
imposing a heterogeneous fitness distribution to nodes, a specific
rule to choose whether to interact with a new or old alter or to set
the modularity of the initial network manually. Moreover, it is the
first attempt to reproduce both the network growth (in terms of
nodes and edges) and its dynamics (the sequence of activation
events of the edges in time) at once, giving results in excellent
agreement with the empirical case.

Besides being able to capture very complex features of social
networks quantitatively, our theory also allows us to deepen our
understanding of the microscopic mechanisms shaping the pro-
pensity of people to reinforce old contacts or establish new ones.
For instance, in the Twitter mentions network, we find the
exploration and reinforcement processes to be of equal impor-
tance. Moreover, when getting in contact with new alters, users
share a sample of their most common contacts as new potential
connections. On the other end of the spectrum, in the mobile
phone-calls network, people reinforce their existing bonds more
than they explore new ones. When suggesting new potential
contacts to others, people tend to exchange their most recent
contacts, rather than their most common ones. Finally, the net-
work of scientific co-authorship of the APS journals features the
most exploratory dynamics, with new connections massively
expanding the adjacent possible space of a single node. In this
case, people preferably share their last contacts, and the optimal
synthetic update procedure is symmetrical, correctly reproducing
the intrinsic symmetric nature of the interactions.

The theoretical framework proposed here is, of course, open to
possible improvements. First, the simulated dynamics describes
the evolution of a system from its outset. The initial conditions set
here could be far from those of the real-world systems considered.
Despite the excellent agreement with empirical data, a more
comprehensive study on the dependence of the system evolution
on the initial state is in order. Other generalisations could con-
cern the possibility to remove links>? or to generalise the model to
have a separate rate of nodes and links entrance in the system.

Finally, our modelling scheme does not account for effects con-
nected to semantics or affinity between people. For instance, it
seems reasonable to assume that people create bonds and interact
based on shared interests or their level of homophily®34. The
generality of the approach presented here will make the extension
of the theoretical framework desirable and possible along these
lines. Also, we restricted to the case when nodes exchange their
memory buffer only on their first encounter, whereas other
strategies may be considered. Another important extension is to
test the predictive potential of the model fitting it on a subset of
the points and test its forecasting ability to determine which
nodes will be in contact (and with which strength) in the future.

We believe that the presented framework, together with its
predictions validated on real-world social networks, represents a
valuable step toward understanding the processes underlying the
birth and evolution of social networks. It further creates an
important bridge between network theory and urns models,
opening the way to constructive contamination between the two
fields and full exploitation of results derived for stochastic pro-
cesses relevant in innovation dynamics®%>1->>. This development,
in turn, unlocks the possibility to grasp the very essence of social
interactions and allows for the design of efficient and informed
policies to address crucial challenges dealing with collective
processes ongoing in social networks, such as the spread of dis-
eases and online misinformation.

Methods

Data and code. Here, we summarise the empirical data used to test the predictions
of our theory. These are three different real-world social networks: (i) the APS co-
authorship network generated by all the papers published in all the APS journals
from January 1970 to December 2006. (ii) TMN logging all the mentions between
users recorded between January and September 2008. (iii) MPN recording the calls
between users of a national provider in an undisclosed European country between
January and July 2008. We refer also to the Supplementary Note 2 for details. These
datasets represent diverse contexts of social interactions, making them an ideal set
of empirical observations to test the universality of our model. In particular, the
APS dataset describes the undirected interactions of co-authors of scientific
papers®®->%, Here interactions have a high cost in terms of time and resources. The
TMN dataset reports the directed citations of a user i citing a user j (that corre-
sponds to an edge from i to j) between users of the micro-blogging platform, in
which interactions are requiring few resources and can be virtually established
from and to any node in the network®. Finally, the MPN dataset lies somewhere in
between: communication is not as cheap as in the TMN but still easier than in the
APS case®. Also, the network may be not single scoped for the users taking part in
it: some of them may use it to call close contacts whereas others may use the phone
for business reasons!”>2>. Let us also note that the TMN and APS datasets account
for the growth of the two systems since their onset. Indeed, the effective onset of
user adoption for Twitter occurred during 20081, whereas the APS created the
majority of its journals in 1970. This circumstance ensures a unique testbed for a
model of network growth. On the other hand, the MPN situation is more subtle as
we have only a limited observation window on a system that underwent a long
evolution period beforehand. Summarising, the three datasets used in the study are:

®  The co-authorship networks found in the Journals of the APS> covering the
period between January 1970 and December 2006 and containing 301,236
papers written by 184,583 authors that are connected by 995,904 edges.

® TMN, containing all the mention events exchanged by users from January to
September 2008. The network has 536,210 nodes performing about 160 M
events and connected by 2.6 M edges;

® MPN composed of 6,779,063 users of a single operator with about 20% market
share in an undisclosed European country from January to July 2008. The
datasets contain all the phone calls to and from company users, thus including
the calls towards or from 33,160,589 users in the country connected by
92,784,825 edges.

® The synthetic simulations have been run for T=10° evolution steps for
configurations with R<1, T=5 - 107 otherwise. We performed ten indepen-
dent simulations for each set of parameters. We define as the best set of
parameters the set featuring the lowest average cost function on those ten
replicas. In the figures, we report the figures and behaviour of the run that
gave the minimum cost function among these ten runs.

The code used to run the simulations, all the analysis code, as well as the
synthetic data analysed, are available in®2. Due to data policies and IPR, we cannot
share the MPN data, while the APS data are from the work in® and the TMN data
are made available on figshare (see link in the Data availability section) . Finally, let
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us note that we used these three datasets despite the wealth of longitudinal network
datasets present in the literature because we needed the complete sequence of
events to measure and fit all the dynamical observables.

Asymptotic behaviour of the system. In this work, we leverage on a previous

analysis performed on the same datasets as found in?°. Specifically, we measure the
strengthening probability p;(k), i.e., the probability for an individual i who already
contacted k distinct individuals in the past to contact a new one (i.e., a new node of
the network). To average this probability on homogeneous classes of people, we

divide the nodes in e=1, ..., E classes depending on their time of entrance in the
system, t,, and their final degree k., one class for each combination of ¢, and k.. The
functional form of the probability p.(k) is found to depend on class e of the nodes

as p,(k) = (1+k/ ce)fﬁ with a single overall 8 exponent and a distributed rein-
forcement constant c,. The latter is fixed by computing, for each k the ratio between
the number of events resulting in a degree increase from k to k + 1 performed by
the nodes belonging to the class e and the total number of events performed by the
same set of nodes at degree k (thus including the ones toward already contacted
nodes). As for the growth of the average degree (k(t,,t)), we measure the average
degree at time ¢ > ¢, for all the nodes belonging to the class with entrance time .. In
this way, we are defining a new set of classes only defined in terms of the entrance
time t,. Asymptotic behaviour is found to be (k(t,,t)) o< t9.

Model cost function. We ran the model at different values of R and p for each one
of the six sample strategies s (see Supplementary Note 3 for details). For each
dataset d we select the configuration that best fit the data by minimising the cost
Sa(p, R, s) that reads

where of and ¢¢ are the value and uncertainty on the ith observable of the
empirical dataset and 6;(p, R, s) is the value of the same observable measured in the
simulations with configuration (p, R, s). The eight selected observables are: (1) the
exponent y leading the growth of the number of edges E(t)  t7, (2) the optimal
measured in the strengthening function p(k), (3) the average clustering coefficient
¢, (4) the exponent leading the growth of the average degree per node class

(k(e, t)) o t1, (4)-(8) the fractions OO, OC, NO, NC of events allocated toward old/
new link insisting or not on an open/closed triangle.

APS subsampling. In the APS dataset, we transform each paper published by n
authors in a sequence of E = n(n — 1) events with all the possible links between all
the ordered couples of co-authors. We then sample [ links over the E possible links
for each paper to be inserted in the total sequence S. The results reported in the
main text refer to /=1, and the reader can refer to the Supplementary Note 4 for
results with different values of / and different strategies of subsampling (number of
sampled links proportional to E).

Modularity and core-periphery measures. Communities and modularity values
have been found using the Infomap algorithms in the Python iGraph module®,
using the edges weights w;; as the weight parameters and with ten trials. For
computational reasons, we restricted ourselves to a sub-graph induced by a sub-
sample of 100,000 nodes in all the analysed cases (both empirical and synthetic).
These sub-samples have been determined using the sampling method found in® in
its deterministic version. Indeed, this method returns a set of nodes whose sub-
network best reproduces the modularity, clustering and overlap features of nodes in
a network. In the core-periphery analysis, the algorithms find another set of
communities as this algorithm uses a configuration model as its null model.
However, we show in the Supplementary Note 5 that the P(r) distribution of
community sizes is consistent with the one found by the Infomap algorithm. For
the core-periphery analysis, we run the model introduced in®® with its C-+-+
implementation found in® against the same sub-graphs of the previous analysis.
Also in this case we use the edges’ weights w;; as the weight passed to the algorithm.

Events on new-old and open-closed edges. We count, for each logarithmically
spaced time interval, the number of events happening on edges that are either old
(already activated in the past), new (being activated now) and that happen to close
a triangle (closed) or not (open). These four categories are then: the OO, OC, NO,
and NC that we define as the fraction of events falling in each category per time
range in the asymptotic limit of the system evolution—i.e., after 60% of the events
passed.

Data availability

Aggregated data used to produce all the population-level figures in the paper have been
deposited on figshare at https://doi.org/10.6084/m9.figshare.13308428. This repository
also contains the raw data of Twitter and APS datasets. The mobile phone network
dataset was not directly accessible to the authors as it was analysed by uploading the
analysis scripts to Marton Karsai at ENS Lyon, France, which we thank for the help
provided.

Code availability

All the code used to analyse and produce the paper figures is available on GitHub: the
code used to analyse the data is in https://github.com/ubil5/pytvn while the code to run
the simulations and analyse the output is on https://github.com/ubil5/pyUrns.
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